Dicyanovinyl end-capped 9,10-bis (phenylethynyl) anthracenes for organic solar cells
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEDicyanovinyl end-capped 9,10-bis (phenylethynyl) anthracenes for organic solar cells
Data publikacji: 25.01.2018
Czasopismo Techniczne, 2018, Volume 1 Year 2018 (115), s. 47 - 59
https://doi.org/10.4467/2353737XCT.18.004.7955Autorzy
Dicyanovinyl end-capped 9,10-bis (phenylethynyl) anthracenes for organic solar cells
Zsyntetyzowano grupę związków na osnowie 9,10-bis(fenyloetynylo)antracenu z peryferyjnymi grupami eletrono-akceptorowymi typu dicyjanowinylenu. Związki zmodyfikowano grupami funkcyjnymi zwiększającymi ich rozpuszczalność i utrudniającymi krystalizację. Przygotowano komórki fotowoltaiczne o strukturze objętościowej metodą wirową. Obliczenia kwantowo-chemiczne przeprowadzono przy funkcjonale B3LYP na poziomie 6-31G(d) i wyliczono energię poziomów elektronowych HOMOLUMO. Opisane ogniwa scharakteryzowano podając następujące parametry: sprawność urządzenia (PCE), współczynnik wypełnienia (FF), napięcie rozwarcia (Voc) i prąd zwarcia (Jsc). Skonstruowane urządzenie o konfiguracji: ITO/PEDOT:PSS/P3HT(P3OT)barwnik/Al osiągnęło sprawność 2.7%.
[1] Pope M., Kallmann H.P, Magnante P., Electroluminescence in Organic Crystals, J. Chem. Phys. 38, 1963, 2042–2046.
[2] Helfrich W., Schneider W.G., Recombination Radiation in Anthracene Crystals, Phys. Rev. Lett. 14, 1965, 229–231.
[3] Nasu K., Nakagawa T., Nomura H., Lin C.-J., Cheng C.-H., Tseng M.-R., Yasuda T., Adachi C., A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence, Chem. Commun. 49, 2013,10385–10387.
[4] Wan W., Du H., Wang J., Le Y., Jiang H., Chen H., Zhu S., Hao J.A., Novel blue luminescent materials for organic light-emitting diodes based on C9-fluorenyl anthracenes, Dyes Pigm. 96, 2013, 642–652.
[5] Zhang P., Dou W., Ju Z., Yang L., Tang X., Liu W., Wu Y., A 9,9′-bianthracene-cored molecule enjoying twisted intramolecular charge transfer to enhance radiative-excitons generation for highly efficient deep-blue OLEDs, Org. Electron. 14, 2013, 915–925.
[6] Wang J.-J., Hu T.-L., Bu X.-H., Cadmium(ii) and zinc(ii) metal-organic frameworks with anthracene-based dicarboxylic ligands: Solvothermal synthesis, crystal structures, and luminescent properties, CrystEngComm. 13, 2011,5152–5161.
[7] Zhu M., Wang Q., Gu Y., Cao X., Zhong C., Ma D., Qin J., Yang C., Efficient deep-blue emitters comprised of an anthracene core and terminal bifunctional groups for nondoped electroluminescence, J. Mater. Chem. 21, 2011, 6409–6415.
[8] Zhang J., Xu B., Chen J., Ma S., Dong Y., Wang I., Li B., Ye L., Tian W., An organic luminescent molecule: What will happen when the "butterflies" come together?, Adv. Mater. 26, 2014,739–745.
[9] Ye S., Chen J., Di C.-A., Liu Y., Lu K., Wu W., Du C., Liu Y., Shuai Z., Yu G., Phenyl-substituted fluorene-dimer cored anthracene derivatives: Highly fluorescent and stable materials for high performance organic blue- and white-light-emitting diodes, J. Mater. Chem. 20, 2010,3186–3194.
[10] Li B., Miao W., Cheng L., Synthesis and fluorescence properties of9,10-bis(phenylethynyl)anthracences,Dyes Pigm. 43, 1999, 161–165.
[11] Kilså K., Macpherson A.N., Gillbro T., Mårtensson J., Albinsson B.,Control of electron transfer in supramolecular systems,Spectrochim. Acta, Part A 57, 2001, 2213–2227.
[12] Kawai T., Sasakia T., Irie M., A photoresponsive laser dye containing photochromic dithienylethene units,Chem. Commun., 2001, 711–712.
[13] Kilså K., Kajanus J., Macpherson A.N., Mårtensson J., Albinsson B., Bridge-Dependent Electron Transfer in Porphyrin-Based Donor-Bridge-Acceptor Systems, J. Am. Chem. Soc. 123, 2001, 3069–3080.
[14] Ribierre J.C., Ruseckas A., Cavaye H., Barcena H.S., Burn P.L., Samuel I.D.W., Photophysical Properties of 9,10-Disubstituted Anthracene Derivatives in Solution and Films, J. Phys. Chem. A 115, 2011, 7401–7405.
[15] Levitus M., Garcia-Garibay M.A., Polarized Electronic Spectroscopy and Photophysical Properties of 9,10-Bis(phenylethynyl)anthracene, J. Phys. Chem. A 104, 2000, 8632–8637.
[16] Angelova A., Ionov R., Monolayer and Spectroscopic Studies of an Amphiphilic (Phenylethynyl)anthracene Probe in Pure and Mixed Films with Charged and Neutral Lipids, Langmuir 15, 1999, 7199–7207.
[17] Angelov B., Angelova A., Ionov R., An Amino-Substituted Phenylethynyl-anthracene Probe Shows a Sensitivity to Changes in the Lipid Monolayer Curvature of Nonlamellar Lipid/Water Phases, J. Phys. Chem. B 104, 2000, 9140–9148.
[18] Lübtow M., Helmers I., Stepanenko V., Albuquerque R.Q., Marder T.B., Fernández G., Self-Assembly of 9,10-Bis(phenylethynyl) Anthracene (BPEA)Derivatives: Influence of p–p and Hydrogen-Bonding Interactions on Aggregate Morphology and Self-Assembly Mechanism, Chem. Eur. J. 23, 2017, 6198–6205.
[19] Wang C.-Y., Ediger M.D., Enhanced Translational Diffusion of9,10-Bis(phenylethynyl)anthracene (BPEA) in Polystyrene, Macromolecules 30, 1997, 4770–4771.
[20] Deppe D.D., Dhinojwala A., Torkelson J.M., Small Molecule Probe Diffusion in Thin Polymer Films Near theGlass Transition: A Novel Approach Using Fluorescence Nonradiative Energy Transfer, Macromolecules 29, 1996, 3898–3908.
[21] Wisnudel M.B., Torkelson J.M., Small-Molecule Probe Diffusion in Polymer Solutions: Studiesby Taylor Dispersion and Phosphorescence Quenching, Macromolecules 29, 1996, 6193–6207.
[22] Giménez R., Pinol M., Serrano J. L., Luminescent Liquid Crystals Derived from 9,10-Bis(Phenylethynyl)anthracene, Chem. Mater. 16, 2004, 1377–1383.
[23] Xiao D., Xian Y., Liu L., Gu Z., Wen B., Organic nanoparticle of 9,10-Bis(phenylethynyl)anthracene: a novel electrochemiluminescence emitter for sensory detection of amines, New J. Chem. 37, 2013, 1–3.
[24] Ponnu A., Anslyn E.V., A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives, Supramol. Chem. 22, 2010, 65–71.
[25] Kim S.-O., Lee M.W., Jang S.H., Park S.M., Park J. W., Park M.-H., Kang S.H., Kim Y.-H., Song C.K., Kwon S.K., Organic semiconductor based on phenylethynyl end-capped anthracene, Thin Solid Films 519, 2011, 7998–8002.
[26] Li Y., Ji D., Liu J., Yao Y., Fu X., Zhu W., Xu Ch., Dong H., Li J., Hu W., Quick Fabrication of Large-areaOrganic Semiconductor SingleCrystal Arrays with a RapidAnnealing Self-Solution-Shearing Method, Sci. Rep. 5, 2015, 13195,1–9.
[27] Malakhov A.D., Skorobogatyi M.V., Prokhorenko I.A., Gontarev S.V., Kozhich D.T., Stetsenko A.D., Stepanova I.A., Shenkarev Z.O., Berlin Y.A., Korshun V.A., 1-(Phenylethynyl)pyrene and 9,10-Bis(phenylethynyl)anthracene, UsefulFluorescent Dyes for DNA Labeling: Excimer Formation and Energy Transfer, Eur. J. Org. Chem., 2004, 1298–1307.
[28] Fatemi D.J., Murata H., Merritt C.D., Kafafi Z.H., Highly Fluorescent Molecular Organic Composites for Light-Emitting Diodes, Synth. Met. 85, 1997, 1225–1228.
[29] Huang J., Su J.-H., Tian H., The development of anthracene derivatives for organic light-emitting diodes, J. Mater. Chem. 22, 2012, 10977–10989.
[30] Fitzner R., Mena-Osteritz E., Walzer K., Pfeiffer M., Bäuerle P., A–D–A-Type Oligothiophenes for Small Molecule Organic Solar Cells: Extending the π-System by Introduction of Ring-Locked Double Bonds, Adv. Funct. Mater. 25, 2015, 1845–1856.
[31] Lai Y.-Y., Yeh J.-M., Tsai C.-E., Cheng Y.-J., Synthesis, Molecular and Photovoltaic Properties of an Indolo[3,2-b]indole- Based Acceptor–Donor–Acceptor Small Molecule, Eur. J. Org. Chem., 2013, 5076–5084.
[32] Sahu D., Padhy H., Patra D., Yin J.-F., Hsu Y.-C., Lin J. T., Lu K.-L., Wei K.-H., Lin H.-C., Synthesis and applications of novel acceptoredonoreacceptor organic dyes with dithienopyrrole- and fluorene-cores for dye-sensitized solar cells, Tetrahedron 67, 2011, 303–311.
[33] Kuropatov V., Klementieva S., Fukin G., Mitin A., Ketkov S., Budnikova Y., Cherkasov V., Abakumov G., Novel method for the synthesis of functionalized tetrathiafulvalenes, anacceptoredonoreacceptor molecule comprising of two o-quinone moieties linked by a TTF bridge, Tetrahedron 66, 2010, 7605–7611.
[34] Silvestri F., Marrocchi A., Acetylene-Based Materials in Organic Photovoltaics, Int. J. Mol. Sci. 11, 2010, 1471–1508.
[35] Danel K., Lin J.T., Novel red-light-emitting 9,10-bis(phenylethynyl)anthracenes, Arkivoc (i), 2002, 12–18.
[36] Danel K., Ozga K., Kityk I.V., Circularly light-induced electrogyration in the arylethynyl derivatives incorporated within the oligoetheracrylate photopolymer matrices, Chem. Phys. 313, 2005, 33–38.
[37] Frisch M.J., Trucks G.W., Schlegel H.B. et al., Gaussian 03: Revision E.01, Gaussian Inc., Wallingford CT 2004.
[38] Fudickar W., Linker T., Why Triple Bonds Protect Acenes from Oxidation and Decomposition, J. Am. Chem. Soc. 134, 2012, 15071–15082.
[39] Yucel B., Meral K., Ekinci D., Uzunoğlu G.Y., Tüzün N.S., Özbey S., Kazak C., Ozdemir Y., Sanli B., Kayık G., Dağdeviren M., Synthesis and characterization of solution processable 6,11-dialkynyl substituted indeno[1,2-b]anthracenes, Dyes Pigm. 100, 2014, 104–117.
[40] Pettersson L.A.A., Ghosh S., Inganas O., Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate), Org. Electron. 3, 2002, 143–148.
[41] Fujiwara H., Spectroscopic Ellipsometry: Principles and Applications, John Wiley&Sons, Ltd . 2007.
[42] Feller L., Bearinger J.P., Wu L., Hubbell J. A., Textor M., Tosatti S., Micropatterning of gold substrates based on poly(propylene sulfide-bl-ethyleneglycol), (PPS–PEG) background passivation and the molecular-assembly patterning by lift-off (MAPL) technique, Surf. Sci. 602, 2008, 2305–2310.
[43] Woollam J. A., Co. Inc.CopleteEASETM Data Analysis Manual, Lincon 2009.
[44] Bujak P., Kulszewicz-BajerI., Zagorska M., Maurel V., Wielgus I., Pron A., Polymers for Electronics and Spintronics, Chem. Soc. Rev. 42, 2013, 8895–8999.
[45] Bijak K., Sek D., Siwy M., Grucela-Zajac M., Janeczek H., Wiacek M., Malecki G., Schab-Balcerzak E., Spectral, electrochemical and thermal characteristics of glass forming hydrazine derivatives, Opt. Mater. 37, 2014, 498–510.
[46] Kung Y.-C., Hsiao S.-H., Novel luminescent and electrochromic polyhydrazides and polyoxadiazolesbearing pyrenylamine moieties, Polym. Chem. 2, 2011, 1720–1727.
[47] Grigoras M., Vacareanu L., Ivan T., Catargiu A.M., Photophysical properties of isoelectronic oligomers with vinylene,imine, azine and ethynylene spacers bearing triphenylamine and carbazole end-groups, Dyes Pigm. 98, 2013, 71–81.
[48] Mishra A., Bäuerle P., Small Molecule Organic Semiconductors on the Move:Promises for Future Solar Energy Technology, Angew. Chem. Int. Ed. 51, 2012, 2020–2067.
Informacje: Czasopismo Techniczne, 2018, Volume 1 Year 2018 (115), s. 47 - 59
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Dicyanovinyl end-capped 9,10-bis (phenylethynyl) anthracenes for organic solar cells
Dicyanovinyl end-capped 9,10-bis (phenylethynyl) anthracenes for organic solar cells
Institute of Chemistry, Agricultural University
Institute of Chemistry, Agricultural University
Institute of Physics, Faculty of Physic, Mathematics and Computer Science, Cracow University of Technology
Faculty of Materials Science and Ceramics, AGH University of Science and Technology
Publikacja: 25.01.2018
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 1534
Liczba pobrań: 1287