FAQ

 A c-holomorphic effective Nullstellensatz with parameter

Publication date: 24.11.2017

Universitatis Iagellonicae Acta Mathematica, 2017, Volume 54, pp. 33 - 41

https://doi.org/10.4467/20843828AM.17.003.7079

Authors

Maciej Denkowski
Institute of Mathematics, Jagiellonian University, Cracow, Poland
https://orcid.org/0000-0001-7231-2482 Orcid
All publications →

Titles

 A c-holomorphic effective Nullstellensatz with parameter

Abstract

We prove a local Nullstellensatz with parameter for a continuous family of c-holomorphic functions with an effective exponent independent of the parameter: the local degree of the cycle of zeroes of the central section. We assume that this central section defines a proper intersection and we show that we can omit this assumption in case of isolated zeroes.

References

1. Achilles R., Tworzewski P., Winiarski T., On improper isolated intersection in complex analytic geometry, Ann. Polon. Math., LI (1990), 21-36.

2. Chirka E. M., Complex Analytic Sets, Kluwer Acad. Publ., 1989.

3. Cygan E., Nullstellensatz and cycles of zeroes of holomorphic mappings, Ann. Polon. Math., LXXVIII (2002), 181-191.

4. Denkowska Z., Denkowski M. P., Kuratowski convergence and connected components, J. Math. Anal. Appl., 387 no. 1 (2012), 48-65.

5. Denkowski M. P., The  Lojasiewicz exponent of c-holomorphic mappings, Ann. Polon. Math., 87 no. 1 (2005), 63-81.

6. Denkowski M. P., A note on the Nullstellensatz for c-holomorphic functions, Ann. Polon. Math., 90 no. 3 (2007), 219-228.

7. Denkowski M. P., On the complex  Lojasiewicz inequality with parameter, preprint arXiv:1406.1700 (2014).

8. Draper R. N., Intersection theory in analytic geometry, Math. Ann., 180 (1969), 175-204. 

9. Galligo A., Gonzalez-Vega L., Lombardi H., Continuity properties for at families of polynomials (I) Continuous parametrizations, J. Pure Appl. Algebra, 184 (2003) 77-103.

10. P loski A., Tworzewski P., E ective Nullstellensatz on analytic and algebraic varieties, Bull. Polish Acad. Sci. Math., 46 (1998), 31-38.

11. Remmert R., Projektionen analytischer Mengen, Math. Ann., 130 (1956), 410-441. 

12. Spodzieja S., Multiplicity and the  Lojasiewicz exponent, Ann. Polon. Math., 73 (2000) no. 3, 257-267.

13. Tworzewski P., Intersection theory in complex analytic geometry, Ann. Polon. Math. LXII.2 (1995), 177-191.

14. Tworzewski P., Winiarski T., Continuity of intersection of analytic sets, Ann. Polon. Math., 42 (1983), 387-393.

15. Tworzewski P., Winiarski T., Cycles of zeroes of holomorphic mappings, Bull. Polish Acad. Sci. Math., 37 (1986), 95-101.

16. Whitney H., Complex Analytic Varieties, Addison-Wesley Publ. Co., 1972.

Information

Information: Universitatis Iagellonicae Acta Mathematica, 2017, Volume 54, pp. 33 - 41

Article type: Original article

Titles:

English:

 A c-holomorphic effective Nullstellensatz with parameter

Polish:

 A c-holomorphic effective Nullstellensatz with parameter

Authors

https://orcid.org/0000-0001-7231-2482

Maciej Denkowski
Institute of Mathematics, Jagiellonian University, Cracow, Poland
https://orcid.org/0000-0001-7231-2482 Orcid
All publications →

Institute of Mathematics, Jagiellonian University, Cracow, Poland

Published at: 24.11.2017

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Maciej Denkowski (Author) - 100%

Article corrections:

-

Publication languages:

English

View count: 1928

Number of downloads: 1185

<p>  A c-holomorphic effective Nullstellensatz with parameter</p>