A Translation Evaluation Function based on Neural Network
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEA Translation Evaluation Function based on Neural Network
Publication date: 24.03.2017
Schedae Informaticae, 2016, Volume 25, pp. 139 - 151
https://doi.org/10.4467/20838476SI.16.011.6192Authors
A Translation Evaluation Function based on Neural Network
[1] Koehn P., Hoang H., Birch A., Callison-Burch C., Federico M., Bertoldi N., Cowan B., Shen W., Moran C., Zens R., et al., Moses: Open source toolkit for statistical machine translation. In: Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions, Association for Computational Linguistics, 2007, pp. 177–180.
[2] Douib A., Langlois D., Smaili K., Genetic-based decoder for statistical machine translation. December 2016, Nous n’avons pas encore la date officielle de publication.
[3] Papineni K., Roukos S., Ward T., Zhu W.J., BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting on association for computational linguistics, Association for Computational Linguistics, 2002, pp. 311–318.
[4] Bojar O., Chatterjee R., Federmann C., Haddow B., Hokamp C., Huck M., Logacheva V., Pecina P., eds. Proceedings of the Tenth Workshop on Statistical Machine Translation. Association for Computational Linguistics, September 2015
[5] Neubig G.,Watanabe T., Optimization for statistical machine translation: A survey. Computational Linguistics, 2016.
[6] Och F.J., Minimum error rate training in statistical machine translation. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics-Volume 1, Association for Computational Linguistics, 2003, pp. 160–167.
[7] Ondrej B. at. al, eds. Proceedings of the First Conference on Machine Translation. Association for Computational Linguistics, August 2016.
[8] Langlois D., Loria system for the wmt15 quality estimation shared task. In: Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal, September 2015, pp. 323–329.
[9] Kim H., Lee J.H., A recurrent neural networks approach for estimating the quality of machine translation output. In: Proceedings of NAACL-HLT, 2016, pp. 494–498.
[10] Koehn P., Och F.J., Marcu D., Statistical phrase-based translation. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, Association for Computational Linguistics, 2003, pp. 48–54.
[11] Bergstra J., Bastien F., Breuleux O., Lamblin P., Pascanu R., Delalleau O., Desjardins G., Warde-Farley D., Goodfellow I., Bergeron A., et al., Theano: Deep learning on gpus with python. In: NIPS 2011, BigLearning Workshop, Granada, Spain, Citeseer, 2011.
[12] Bojar O., Buck C., Federmann C., Haddow B., Koehn P., Leveling J., Monz C., Pecina P., Post M., Saint-Amand H., et al., Findings of the 2014 workshop on statistical machine translation. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, Association for Computational Linguistics Baltimore, MD, USA, 2014, pp. 12–58.
[13] Och F.J., Ney H., A systematic comparison of various statistical alignment models. Computational linguistics, 2003, 29(1), pp. 19–51.
[14] Willmott C.J., Matsuura K., Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model perfor
Information: Schedae Informaticae, 2016, Volume 25, pp. 139 - 151
Article type: Original article
Titles:
A Translation Evaluation Function based on Neural Network
A Translation Evaluation Function based on Neural Network
University of Lorraine
34 Cours Léopold, 54000 Nancy, France, France
Universite de Lorraine, Loria, Campus Scientifique, BP 239, 54506 Vandoeuvre-les-Nancy, France
University of Lorraine
34 Cours Léopold, 54000 Nancy, France, France
Published at: 24.03.2017
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 2104
Number of downloads: 1357