TLS measurement automation – case study SITEPLANNER
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEPublication date: 19.12.2024
Geoinformatica Polonica, 2024, Vol. 23 (2024), pp. 113 - 120
https://doi.org/10.4467/21995923GP.24.009.20901Authors
TLS measurement automation – case study SITEPLANNER
Surveys using LiDAR technology have become very popular over the past several years due to their high accuracy, speed of acquisition and completeness of space capture. Due to the progressive ease of use, these measurements are increasingly being carried out by less skilled field workers. On the other hand, however, more and more knowledge and ‘know-how’ is emerging in the processing stages of the data collected in the field. If both parts of this process are properly organised and supported by technology, satisfactory results can be obtained at the level of efficiency gains in both field work and automatic LiDAR data processing. This analysis presents the results of the work on the SITEPLANNER application developed by 3Deling.
1. Buczek, M., Paszek, M., Szafarczyk, A. Application of Laser Scanning for Creating Geological Documentation. E3S Web Conf. (doi:10.1051/e3sconf/20183504001), 2018; volume 35, pp. 1–8.
2. Szafarczyk, A., Gawałkiewicz, R. Defining the Cubature Changes of Historic St. Kinga Chamber in Bochnia Salt Mine, Using Laser Scanning Technology. E3S Web Conf. (doi: 10.1051/e3sconf/20183504006), 2018; volume 35, pp. 1–8.
3. Blachowski, J., Wajs, J. Walerysiak, N. Becker, M. Monitoring of Post-Mining Subsidence Using Airborne and Terrestrial Laser Scanning Approach. Arch. Min. Sci. (doi:10.24425/ams.2024.151444), 2024; volume 69, pp. 431–446.
4. Kwoczyńska, B., Gudz, P. Application of TLS and UAV Data Integration to Special Object Modelling. Geomatics, Landmanagement Landsc. (doi:10.15576/gll/2023.4.329), 2024; volume 4, pp. 329–341.
5. Kardoš, M., Sačkov, I., Tomaštík, J., Basista, I., Borowski, Ł., Ferenčík, M. Elevation Accuracy of Forest Road Maps Derived from Aerial Imaging, Airborne Laser Scanning and Mobile Laser Scanning Data. Forests (doi:10.3390/f15050840), 2024; volume 15, pp.1–15.
6. Szafarczyk, A., Toś, C. The Use of Green Laser in LiDAR Bathymetry: State of the Art and Recent Advancements. Sensors (doi:10.3390/s23010292), 2023; volume 23.
7. Kogut, T., Tomczak, A., Słowik, A., Oberski, T. Seabed Modelling by Means of Airborne Laser Bathymetry Data and Imbalanced Learning for Offshore Mapping. Sensors (doi:10.3390/s22093121), 2022; volume 22.
8. Vosselman, G., Maas, H.G. Airborne and Terrestrial Laser Scanning; Vosselman, G., Maas, H.-G., Eds.; Whittles (ISBN 9781904445876), 2010.
9. Besl, P.J., McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. (doi:10.1109/34.121791), 1992; volume 14, pp. 239–256.
10. Skanowanie Laserowe, Niezbędnik Miesięcznika Geodeta, 2022; volume 1.
11. Pavelka, K. Photogrammetry, Laser Scanning and Hbim for Construction Diagnostic. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – ISPRS Arch (doi:10.5194/isprs-archives-XLVI-5-W1-2022-171-2022), 2022; volume 46, pp. 171–176.
12. Wu, C., Yuan, Y., Tang, Y., Tian, B. Application of Terrestrial Laser Scanning (Tls) in the Architecture, Engineering and Construction (Aec) Industry (https://doi.org/10.3390/s22010265), 2022; volume 22, pp. 1–32.
13. Markiewicz, J. Evaluation of 2D Affine — Hand-Crafted Detectors for Feature-Based TLS Point Cloud Registration. Reports Geod. Geoinformatics (doi:10.2478/rgg-2024-0008), 2024; volume 117, pp. 69–88.
14. Warchoł, A. Analysis of Possibilities to Registration TLS Point Clouds without Targets on the Example of the Castle Bridge in Rzeszów. Int. Multidiscip. Sci. GeoConference Surv. Geol. Min. Ecol. Manag. SGEM (doi:10.5593/sgem2015/b11/s4.094), 2015; pp. 737–742.
15. Mitka, B., Klapa, P., Gniadek, J. Use of Terrestrial Laser Scanning for Measurements of Wind Power Stations. Geomatics Environ. Eng. (doi:10.7494/geom.2019.13.1.39), 2019; volume 13, pp. 39–49.
16. Klapa, P., Mitka, B. Application of Terrestrial Laser Scanning to the Development and Updating of the Base Map. Geod. Cartogr. (doi:10.1515/geocart-2017-0002), 2018; volume 66, pp. 59–71.
17. Skrzypczak, I., Oleniacz, G., Leśniak, A., Zima, K., Mrówczyńska, M., Kazak, J.K. Scan-to-BIM Method in Construction: Assessment of the 3D Buildings Model Accuracy in Terms Inventory Measurements. Build. Res. Inf. (doi:10.1080/09613218.2021.2011703), 2022; volume 50, pp. 859–880.
18. Krok, G., Kraszewski, B., Stereńczak, K. Application of Terrestrial Laser Scanning in Forest Inventory – an Overview of Selected Issues. For. Res. Pap. (doi:10.2478/frp-2020-0021), 2020; volume 81, pp. 175–194.
19. Eysn, L., Pfeifer, N., Ressl, C., Hollaus, M., Grafl, A., Morsdorf, F. A Practical Approach for Extracting Tree Models in Forest Environments Based on Equirectangular Projections of Terrestrial Laser Scans. Remote Sens. (doi:10.3390/rs5115424), 2013; volume 5, pp. 5424–5448.
20. Balestra, M., Chiappini, S., Vitali, A., Tonelli, E., Malandra, F., Galli, A., Urbinati, C., Malinverni, E.S., Pierdicca, R. Integration of geomatic techniques for the 3D representation and monitoring of a veteran chestnut tree. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives. 2022; volume 43, pp. 833–839.
21. Ge, X., Hu, H., Wu, B. Image-Guided Registration of Unordered Terrestrial Laser Scanning Point Clouds for Urban Scenes. IEEE Trans. Geosci. Remote Sens. (doi:10.1109/TGRS.2019.2925805), 2019; volume 57, pp. 9264–9276.
Information: Geoinformatica Polonica, 2024, Vol. 23 (2024), pp. 113 - 120
Article type: Original article
Titles:
Department of Geodesy and Geomatics, Faculty of Environmental Engineering, Geomatics and Renewable Energy,
Kielce University of Technology
3Deling Sp. z o.o.
Poland
3Deling Sp. z o.o.
Poland
Published at: 19.12.2024
Article status: Open
Licence: CC BY
Article financing:
Percentage share of authors:
Article corrections:
-Publication languages:
English