FAQ
Polish Academy of Arts and Sciences logo

Iterative Approach to the Area Collapse Algorithm for 2D Geometric Objects Representing Long Engineering Structures

Publication date: 01.12.2023

Geoinformatica Polonica, 2023, Vol. 22 (2023), pp. 61 - 67

https://doi.org/10.4467/21995923GP.23.005.18604

Authors

Michał M. Buczek
AGH University of Science and Technology, Adama Mickiewicza 30, 30-059 Cracow, Poland
All publications →

Titles

Iterative Approach to the Area Collapse Algorithm for 2D Geometric Objects Representing Long Engineering Structures

Abstract

Nowadays the amount of gathered raw data emphasizes the importance of further data processing done by skilled engineers aided by computer algorithms. Researchers develop new algorithms for the automated determination of geometrical features, such as symmetry and main axes, skeleton lines, etc. This paper presented a new algorithm to compute an unbranched axis. It was based on the Curve of Minimal Radii (CMR) algorithm, and it overcomes its significant limitations depending on the shape of the input data. To define the accuracy of the results the threshold parameter was introduced. The described approach is more comprehensive than CMR in terms of the object shape. The tests were conducted on several planar objects, and the results were compared with the original CMR axes and Medial Axis.

References

Download references

1. Lakshmi, J.K.; Punithavalli, M. A Survey on Skeletons in Digital Image Processing. in 2009 International Conference on Digital Image Processing, 2009.

2. Tagliasacchi, A.; Delame T.; Spagnuolo, M.; Amenta, N.; Telea, A. 3D skeletons: A state‐of‐the‐art report. in Computer Graphics Forum. Wiley Online Library, 2016.

3. Buczek, M.M. Area collapse algorithm computing new curve of 2D geometric objects. Geodesy and Cartography, 66(1), 2017, pp. 23–43.

4. Saha, P.K.; Borgefors G.; di Baja, G.S. A survey on skeletonization algorithms and their applications. Pattern recognition letters, 76, 2016, pp. 3–12.

5. Siddiqi, K.; Pizer, S. Medial representations: mathematics, algorithms and applications. Vol. 37. Springer Science & Business Media, 2008.

6. Whited, B.; Rossignac J. Ball-Morph: Definition, Implementation, and Comparative Evaluation. IEEE Transactions on Visualization and Computer Graphics, 17(6), 2011, pp. 757–769.

7. Yuan, J., Wang D.; Wu B.; Yan L.; Li R. Automatic road extraction from satellite imagery using LEGION networks. in 2009 International Joint Conference on Neural Networks, 2009.

8. Makem, J.E.; Fogg, H.J.; Mukherjee, N. Automatic feature recognition using the Medial Axis for structured meshing of automotive body panels. Computer-Aided Design, 124, 2020, pp. 102845.

9. Cornea, N.D.; Silver, D.; Min, P. Curve-skeleton properties, applications, and algorithms. IEEE Transactions on visualization and computer graphics, 13(3), 2007, pp. 530–548.

10. Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik, 133, 1908, pp. 97–178.

11. Brandt, J.W. Convergence and continuity criteria for discrete approximations of the continuous planar skeleton. CVGIP: Image Understanding, 59(1), 1994, pp. 116–124.

12. Blum, H. A transformation for extracting descriptors of shape, 1967.

13. Culver, T.; Keyser, J.; Manocha, D. Exact computation of the medial axis of a polyhedron. Computer Aided Geometric Design, 21(1), 2004, pp. 65–98.

14. Chin, F., Snoeyink, J., Wang. C.A. Finding the medial axis of a simple polygon in linear time. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

15. Aichholzer, O., Aurenhammer, F.; Alberts D.; Gärtner, B. A Novel Type of Skeleton for Polygons, in J.UCS The Journal of Universal Computer Science: Annual Print and CDROM Archive Edition Volume 1, Springer Berlin Heidelberg: Berlin, Heidelberg, 1995, pp. 752–761.

16. Aichholzer, O.; Aurenhammer F. Straight skeletons for general polygonal figures in the plane. in International computing and combinatorics conference, Springer, 1996.

17. Eftekharian, A.A.; Ilieş, H.T. Distance functions and skeletal representations of rigid and non-rigid planar shapes. Computer-Aided Design, 41(12), 2009, pp. 865–876.

18. Shapiro, V. Semi-analytic geometry with R-functions. Acta Numerica, 16, 2007, pp. 239–303.

19. Aigner, W.; Aurenhammer F.; Jüttler, B. On triangulation axes of polygons. Information Processing Letters, 115(1), 2015, pp. 45–51.

20. Tagliasacchi, A. Skeletal representations and applications. arXiv preprint arXiv:1301.6809, 2013.

21. Dey, T.K.; Sun, J. Defining and computing curve-skeletons with medial geodesic function. in Symposium on geometry processing, 2006.

Information

Information: Geoinformatica Polonica, 2023, Vol. 22 (2023), pp. 61 - 67

Article type: Original article

Titles:

English:

Iterative Approach to the Area Collapse Algorithm for 2D Geometric Objects Representing Long Engineering Structures

Polish:

Iteracyjne podejście w algortymie ścieniania obszarów dla obiektów 2D reprezentujących wydłużone budowle inżynierskie

Authors

AGH University of Science and Technology, Adama Mickiewicza 30, 30-059 Cracow, Poland

Published at: 01.12.2023

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Michał M. Buczek (Author) - 100%

Article corrections:

-

Publication languages:

English