FAQ

Mobile remote monitoring system of water reservoirs

Publication date: 18.07.2017

Technical Transactions, 2017, Volume 7 Year 2017 (114), pp. 175 - 182

https://doi.org/10.4467/2353737XCT.17.118.6659

Authors

,
Andrzej Opaliński
Department of Applied Computer Science and Modelling, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, ZI-IF UJK Kielce
All publications →
Mirosław Głowacki
Department of Applied Computer Science and Modelling, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, ZI-IF UJK Kielce
All publications →

Titles

Mobile remote monitoring system of water reservoirs

Abstract

W artykule przedstawiono koncepcję, architekturę oraz testy mobilnego systemu monitoringu zbiorników wodnych. Jego głównymi elementami są zdalnie sterowana łódź oraz echosonda rejestrująca dodatkowo dane GPS. Opracowany system może być wykorzystywany w kilku konfiguracjach, umożliwiając realizację funkcjonalności takich jak generowanie map batymetrycznych lub bieżący monitoring dna zbiornika wodnego. Główne funkcjonalności systemu zostały przetestowane i zaprezentowane wraz rezultatami testów, ich analizą, wnioskami i planem dalszego rozwoju.

References

[1] Hakanson L., A manual of lake morphometry, Springer Science & Business Media, 2012.
[2] Paira, A. R., Drago, E. C., Origin, evolution, and types of floodplain water bodies, [in:] The Middle Paraná River, Springer Berlin Heidelberg, 2007, 53–81.
[3] Ng, S. L., Sin, F. S., A diatom model for inferring sea level change in the coastal waters of Hong Kong, Journal of Paleolimnology, 2003, 30(4), 427–440.
[4] Sobek, S., Nisell, J., Fölster, J., Predicting the volume and depth of lakes from map-derived parameters, Inland Waters, 2011, 1(3), 177–184.
[5] Joyeux, J. C., & Ward, A. B., Constraints on coastal lagoon fisheries, Advances in Marine Biology, 1998, 34, 73–199.
[6] Drago, E. C., The physical dynamics of the river–lake floodplain system, [in:] The Middle Paraná River Springer Berlin Heidelberg, 2007, 83–122.
[7] Moreno-Amich R., Garcia-Berthou E., Hydrobiologia, 1989, 185: 83. DOI: 10.1007/BF00006070.
[8] Roman C., Singh H., A Self‐Consistent Bathymetric Mapping Algorithm, Journal of Field Robotics, 2007, 24(1‐2), 23–50.
[9] Regulski K., Szeliga D., Kusiak J., Data Exploration Approach Versus Sensitivity Analysis
for Optimization of Metal Forming Processes, Key Engineering Materials, Vol. 611–612, 2014, s. 1390–1395.
[10] Gao J., Bathymetric mapping by means of remote sensing: methods, accuracy and limitations, Progress in Physical Geography, 33(1), 2009, 103–116.
[11] Tripathi N. K., Rao A. M., Bathymetric mapping in Kakinada Bay, India, using IRS-1D LISS-III data, International Journal of Remote Sensing, 23(6), 2002, 1013–1025.

Information

Information: Technical Transactions, 2017, Volume 7 Year 2017 (114), pp. 175 - 182

Article type: Original article

Titles:

Polish:

Mobile remote monitoring system of water reservoirs

English:

Mobile remote monitoring system of water reservoirs

Authors

Department of Applied Computer Science and Modelling, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, ZI-IF UJK Kielce

Department of Applied Computer Science and Modelling, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, ZI-IF UJK Kielce

Published at: 18.07.2017

Article status: Open

Licence: None

Percentage share of authors:

Andrzej Opaliński (Author) - 50%
Mirosław Głowacki (Author) - 50%

Article corrections:

-

Publication languages:

English

View count: 1533

Number of downloads: 1079

<p> Mobile remote monitoring system of water reservoirs</p>