Ultrastructural Studies on a Model Tintinnid - Schmidingerella meunieri (Kofoid and Campbell, 1929) Agatha and Strüder-Kypke, 2012 (Ciliophora). I. Somatic Kinetids with Unique Ultrastructure
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEUltrastructural Studies on a Model Tintinnid - Schmidingerella meunieri (Kofoid and Campbell, 1929) Agatha and Strüder-Kypke, 2012 (Ciliophora). I. Somatic Kinetids with Unique Ultrastructure
Publication date: 11.01.2019
Acta Protozoologica, 2018, Volume 57, Issue 3, pp. 195 - 214
https://doi.org/10.4467/16890027AP.18.015.10091Authors
Ultrastructural Studies on a Model Tintinnid - Schmidingerella meunieri (Kofoid and Campbell, 1929) Agatha and Strüder-Kypke, 2012 (Ciliophora). I. Somatic Kinetids with Unique Ultrastructure
Molecular phylogenies of Oligotrichea currently do not contain all genera and families and display topologies which are often incongruent with morphological findings. In ciliates, the somatic kinetids are rather conserved, i.e., their ultrastructures, particularly the fibrillar associates, often characterise the main groups, except for the choreotrichids. Four different kinetid types are found in protargolstained choreotrichids and used for reconstructing the taxon’s evolution (the “Kinetid Transformation Hypothesis”). Proof for this hypothesis requires transmission electron microscopic studies, which are very rare in the choreotrichids and oligotrichids. Such an approach provides insights into the ultrastructural variability of somatic kinetids in spirotrichs and may also detect apomorphies characterising certain choreotrichid families. In the model tintinnid Schmidingerella meunieri, the ultrastructure of the three kinetid types in the somatic ciliature is studied in cryofixed cells. The data support the “Kinetid Transformation Hypothesis” regarding tintinnids with a ventral kinety. This first detailed study on kinetids in tintinnids and choreotrichids in general reveals totally new kinetid types in ciliates: beyond the three common associates, they are characterised by two or three conspicuous microtubular ribbons extending on the kinetids’ left sides. These extraordinary ribbons form together with the overlapping postciliary ribbons a unique network in the cortex of the anterior cell portion. The evolutionary constrains which might have fostered the development of such structures are discussed for the Oligotrichea, the choreotrichids, and tintinnids as their first occurrence is currently uncertain. Additionally, the kinetids in tintinnids, aloricate choreotrichids, oligotrichids, hypotrichs, and euplotids are compared.
Agatha S. (2004) Evolution of ciliary patterns in the Oligotrichida (Ciliophora, Spirotricha) and its taxonomic implications. Zoology 107: 153–168
Agatha S. (2011) Updated hypothesis on the evolution of oligotrichid ciliates (Ciliophora, Spirotricha, Oligotrichida) based on somatic ciliary patterns and ontogenetic data. Eur. J. Protistol. 47: 51–56
Agatha S., Strüder-Kypke M. C. (2007) Phylogeny of the order Choreotrichida (Ciliophora, Spirotricha, Oligotrichea) as inferred from morphology, ultrastructure, ontogenesis, and SSrRNA gene sequences. Eur. J. Protistol. 43: 37–63
Agatha S., Strüder-Kypke M. C. (2012) Reconciling cladistic and genetic analyses in choreotrichid ciliates (Ciliophora, Spirotricha, Oligotrichea). J. Eukaryot. Microbiol. 59: 325–350
Agatha S., Strüder-Kypke M. C. (2014) What morphology and molecules tell us about the evolution of Oligotrichea (Alveolata, Ciliophora). Acta Protozool. 53: 77–90
Chaaban S., Brouhard G. J. (2017) A microtubule bestiary: structural diversity in tubulin polymers. Mol. Biol. Cell 28: 2924–2931
Dave D., Wloga D., Sharma N., Gaertig J. (2009) DYF-1 Is required for assembly of the axoneme in Tetrahymena thermophila. Eukaryot. Cell 8: 1397–1406
Deitmer J. W., Machemer H., Martinac B. (1984) Motor control in three types of ciliary organelles in the ciliate Stylonychia. J. Comp. Physiol. A 154: 113–120
Echevarria M. L., Wolfe G. V., Strom S. L., Taylor A. R. (2014) Connecting alveolate cell biology with trophic ecology in the marine plankton using the ciliate Favella as a model. FEMS Microbiol. Ecol. 90: 18–38
Echevarria M. L., Wolfe G. V., Taylor A. R. (2016) Feast or flee: bioelectrical regulation of feeding and predator evasion behaviors in the planktonic alveolate Favella sp. (Spirotrichia). J. Exp. Biol. 219: 445–456
Ehrenberg C. G. (1830) Organisation, Systematik und geographisches Verhältnis der Infusionsthierchen. Zwei Vorträge, in der Akademie der Wissenschaften zu Berlin gehalten in den Jahren 1828 und 1830. Druckerei der Königlichen Akademie der Wissenschaften, Berlin: 1–108 + Plate I–VIII
Eisler K. (1988) Electron microscopical observations on the ciliate Furgasonia blochmanni Fauré-Fremiet, 1967. Part I: An update on morphology. Eur. J. Protistol. 24: 75–93
Eisler K. (1989) Electron microscopical observations on the ciliate Furgasonia blochmanni Fauré-Fremiet, 1967. Part II: Morphogenesis and phylogenetic conclusions. Eur. J. Protistol. 24: 181–199
Fauré-Fremiet E. (1924) Contribution à la connaissance des infusoires planktoniques. Bull. biol. Fr. Belg. Suppl. 6: 1–171
Fauré-Fremiet E., Ganier M.-C. (1970) Structure fine du Strombidium sulcatum Cl. et L. (Ciliata Oligotrichida). Protistologica 6: 207–223
Fleury A., Iftode F., Deroux G., Fryd-Versavel G. (1985) Unité et diversité chez les hypotriches (Protozoaires Ciliés): II – Éléments d’ultrastructure comparée chez divers represéntants du sous-ordre des Euhypotrichina. Protistologica 21: 505–524
Foissner W., Moon-van der Staay S. Y., van der Staay G. W. M., Hackstein J. H. P., Krautgartner W.-D., Berger H. (2004) Reconciling classical and molecular phylogenies in the stichotrichines (Ciliophora, Spirotrichea), including new sequences from some rare species. Eur. J. Protistol. 40: 265–281
Gentekaki E., Kolisko M., Boscaro V., Bright K. J., Dini F., Di Giuseppe G., Gong Y., Miceli C., Modeo L., Molestina R. E., Petroni G., Pucciarelli S., Roger A. J., Strom S. L., Lynn D. H. (2014) Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Mol. Phylogenet. Evol. 78: 36–42
Gerassimova Z., Seravin L. (1976) Ectoplasmic fibrillar system of Infusoria and its role for the understanding of their phylogeny. Zool. Zh. 55: 645–656
Görtz H.-D. (1982) The behavior and fine structure of the dorsal bristles of Euplotes minuta, E. aediculatus, and Stylonychia mytilus (Ciliata, Hypotrichida). J. Protozool. 29: 353–359
Grim J. N. (1987) The kinetid structures of the choreotrichous ciliate Strobilidium velox and an assessment of its evolutionary lineage. J. Protozool. 34: 117–123
Grimes G. W., Adler J. A. (1976) The structure and development of the dorsal bristle complex of Oxytricha fallax and Stylonychia pustulata. J. Protozool. 23: 135–143
Gruber M. S., Strüder-Kypke M., Agatha S. (2018) Redescription of Tintinnopsis everta Kofoid and Campbell 1929 (Alveolata, Ciliophora, Tintinnina) based on taxonomic and genetic analyses – discovery of a new complex ciliary pattern. J. Eukaryot. Microbiol. 65: 484–504
Guillard R. R. L. (1975) Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals, (Eds. W. L. Smith, M. H. Chanley). Plenum Press, New York, London, 29–60
Hedin H. (1976) Microtubules and microfilaments in the tintinnid ciliate Ptychocylis minor Jörgensen. Zoon 4: 3–10
Kilburn C., Winey M. (2008) Basal bodies. Curr. Biol. 18: R56–R57
Kim S. Y., Yang E. J., Gong J., Choi J. K. (2010) Redescription of Favella ehrenbergii (Claparède and Lachmann, 1858) Jörgensen, 1924 (Ciliophora: Choreotrichia), with phylogenetic analyses based on small subunit rRNA gene sequences. J. Eukaryot. Microbiol. 57: 460–467
Kofoid C. A., Campbell A. S. (1929) A conspectus of the marine and fresh-water Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz Expedition to the eastern tropical Pacific 1904–1905. Univ. Calif. Publs Zool. 34: 1–403
Laval-Peuto M., Brownlee D. C. (1986) Identification and systematics of the Tintinnina (Ciliophora): evaluation and suggestions for improvement. Ann. Inst. océanogr., Paris 62: 69–84
Lenzi P., Rosati G. (1993) Ultrastructural study of Euplotidium itoi (Ciliata Hypotrichida). Eur. J. Protistol. 29: 453–461
Lynn D. H. (1981) The organization and evolution of microtubular organelles in ciliated protozoa. Biol. Rev. 56: 243–292
Lynn D. H. (1996) My journey in ciliate systematics. J. Eukaryot. Microbiol. 43: 253–260
Lynn D. H. (2008) The Ciliated Protozoa. Characterization, Classification, and Guide to the Literature. Springer
Lynn D. H. (2017) Ciliophora. In: Handbook of the Protists, (Eds. J. M. Archibald, A. G. B. Simpson, C. H. Slamovits). 2nd ed. Springer International Publishing: 1, 679–730
Lynn D. H., Kolisko M. (2017) Molecules illuminate morphology: phylogenomics confirms convergent evolution among ‘oligotrichous’ ciliates. Int. J. Syst. Evol. Microbiol. 67: 3676–3682
Meunier A. (1919) Microplankton de la mer Flamande: les Tintinnides et caetera. Mém. Mus. r. Hist. nat. Belg. 8: 1–59 + Plates XXII, XXIII
Modeo L., Petroni G., Bonaldi M., Rosati G. (2001) Trichites of Strombidium (Ciliophora, Oligotrichida) are extrusomes. J. Eukaryot. Microbiol. 48: 95–101
Modeo L., Petroni G., Rosati G., Montagnes D. J. S. (2003) A multidisciplinary approach to describe protists: redescriptions of Novistrombidium testaceum Anigstein 1914 and Strombidium inclinatum Montagnes, Taylor, and Lynn 1990 (Ciliophora, Oligotrichia). J. Eukaryot. Microbiol. 50: 175–189
Modeo L., Petroni G., Lobban C. S., Verni F., Vannini C. (2013) Morphological, ultrastructural, and molecular characterization of Euplotidium rosati n. sp (Ciliophora, Euplotida) from Guam. J. Eukaryot. Microbiol. 60: 25–36
Montagnes D. J. S. (1996) Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241–254
Morelli A., Giambelluca A., Lenzi P., Rosati G., Verni F. (1996) Ultrastructural features of the peculiar filter-feeding hypotrich ciliate Uronychia transfuga. Micron 27: 399–406
Petz W., Foissner W. (1992) Morphology and morphogenesis of Strobilidium caudatum (Fromentel), Meseres corlissi n. sp., Halteria grandinella (Müller), and Strombidium rehwaldi n. sp., and a proposed phylogenetic system for oligotrich ciliates (Protozoa, Ciliophora). J. Protozool. 39: 159–176
Petz W., Song W., Wilbert N. (1995) Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddell Sea, Antarctica. Stapfia 40: 1–223
Raikov I. B., Gerassimova-Matvejeva Z. P., Puytorac P. de (1975) Cytoplasmic fine structure of the marine psammobiotic ciliate Tracheloraphis dogieli Raikov. I. Somatic infraciliature and cortical organelles. Acta Protozool. 14: 17–42
Rajter L., Vďačný P. (2018) Selection and paucity of phylogenetic signal challenge the utility of alpha-tubulin in reconstruction of evolutionary history of free-living litostomateans (Protista, Ciliophora). Mol. Phylogenet. Evol. 127: 534–544
Ruffolo J. J., Jr. (1976) Fine structure of the dorsal bristle complex and pellicle of Euplotes. J. Morph. 148: 469–487
Santoferrara L. F., Alder V. V., McManus G. B. (2017) Phylogeny, classification and diversity of Choreotrichia and Oligotrichia (Ciliophora, Spirotrichea). Mol. Phylogenet. Evol. 112: 12–22
Small E. B., Lynn D. H. (1985) Phylum Ciliophora Doflein, 1901. In: An Illustrated Guide to the Protozoa, (Eds. J. J. Lee, S. H. Hutner, E. C. Bovee). Society of Protozoologists, Allen Press, Lawrence, Kansas, 393–575
Strom S. L., Wolfe G. V., Bright K. J. (2007) Responses of marine planktonic protists to amino acids: feeding inhibition and swimming behavior in the ciliate Favella sp. Aquat. Microb. Ecol. 47: 107–121
Wicklow B. J. (1983) Ultrastructure and cortical morphogenesis in the euplotine hypotrich Certesia quadrinucleata Fabre-Domergue, 1885 (Ciliophora, Protozoa). J. Protozool. 30: 256–266
Information: Acta Protozoologica, 2018, Volume 57, Issue 3, pp. 195 - 214
Article type: Original article
Department of Biosciences, University of Salzburg, Salzburg, Austria
Department of Biosciences, University of Salzburg, Salzburg, Austria
Department of Biosciences, University of Salzburg, Salzburg, Austria
Department of Organismic Biology, University of Salzburg, Salzburg, Austria
Published at: 11.01.2019
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
English