Microzooplankton in a Warming Arctic: A Comparison of Tintinnids and Radiolarians from Summer 2011 and 2012 in the Chukchi Sea
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEMicrozooplankton in a Warming Arctic: A Comparison of Tintinnids and Radiolarians from Summer 2011 and 2012 in the Chukchi Sea
Publication date: 2014
Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 101 - 113
https://doi.org/10.4467/16890027AP.14.010.1447Authors
Microzooplankton in a Warming Arctic: A Comparison of Tintinnids and Radiolarians from Summer 2011 and 2012 in the Chukchi Sea
The Chukchi Sea was sampled in August of 2011, a year of near-normal sea ice among recent years, and again in August 2012, a year of all time record low sea ice. We exploited this sampling to test the hypothesis that different sea ice conditions are associated with differences in abundances or species composition of microzooplankton through an examination of tintinnids and radiolarians. From 18 stations in 2011, and 19 stations in 2012, organisms were enumerated in plankton net tow material, and chlorophyll determinations made (total and ≤ 20 μm) from discrete depth samples. We found that the low sea ice conditions of 2012 were associated with higher chlorophyll concentrations (both total and the ≤ 20 μm size fraction), compared to 2011. However, tintinnid ciliates and radiolarians were much lower in concentration, by about an order of magnitude, compared to 2011. In both years the radiolarian assemblage was dominated by Amphiselma setosa. The species composition of the tintinnid ciliates was similar in the two years, but there were distinct differences in the relative abundances of certain species. The 2012, low sea ice assemblage, was dominated by small forms in contrast to 2011, when large species were the most abundant. We present these findings in detail and discuss possible explanations for the apparent differences in the microzooplankton communities associated with distinct sea ice conditions in the Chukchi Sea.
Aberle N., Bauer B., Lewandowska A., Gaedke U., Sommer U. (2012) Warming induces shifts in microzooplankton phenology and reduces time lags between phytoplankton and protozoan production. Mar. Biol. 159: 2441–2453
Bathmann U. V., Peinert R., Noji T. T., Bodungen B. V. (1990) Pe,lagic origin and fate of sedimenting particles in the Norwegian Sea. Prog. Oceanogr. 24: 117–125
Bjørklund K. R., Kruglikova S. B. (2003) Polycystine radiolarians in surface sediments in the Arctic Ocean basins and marginal seas. Mar. Micropaleo. 49: 231–273
Bjørklund K. R., Kruglikova S. B., Andersen O. R. (2013) Modern incursions of tropical radiolaria into the Arctic Ocean. J. Micro,paleo. 31: 139–158
Boltovskoy D., Vivequin S. M., Swanberg N. R. (1991) Vertical dis,tribution of tintinnids and associated microplankton in the upper layer of the Barents Sea. Sarsia 76: 141–151
Boltovskoy D., Vivequin S. M., Swanberg N. R. (1995) Tintinnids and other micrplankton from the Greenland Sea: Abundance and distribution in the marginal ice zone (May–June 1989). P.S.Z.N.I. Mar. Ecol. 16: 117–131
Calbet A., Landry M. R. (2004) Phytoplankton growth, microzoo,plankton grazing, and carbon cycling in marine systems. Lim,nol. Oceanogr. 40: 51–57
Campbel R. G., Sherr E. B., Ashjian C. J., Plourde S., Sherr B. F., Hil V., Stockwell D. A. (2009) Mesozooplankton prey prefer,ence and grazing impact in the western Arctic Ocean. Deep-Sea Res. II 56: 1274–1289
Caron D. A., Hutchins D. A. (2013) The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plank. Res. 35: 235–252
Chen B., Landry M. R., Huang B., Liu H. (2012) Does warming enhance the effect of microzooplankton grazing on marine phy,toplankton in the ocean? Limnol. Oceanogr. 57: 519–526
Comeau A. M., Li W. K. W., Tremblay J.-E., Carmack E. C., Love,joy C. (2011). Arctic ocean microbial community structure be,fore and after the 2007 record sea ice minimum. PLoS ONE 6: e27492
Dolan J. R. (2010) Morphology and ecology in tintinnid ciliates of the marine plankton: Correlates of lorica dimensions. Acta Pro,tozool. 49: 235–344
Dolan J. R., Pierce R. W. (2013) Diversity and distributions of tin,tinnid ciliates. In: Biology and ecology of tintinnid ciliates: Models for marine plankton, (Eds. J .R. Dolan, D. J. S. Mon,tagnes, S. Agatha, D. W. Coats, D. K. Stoecker). Wiley–Black,well, Oxford, 214–243
Dolan J. R., Landry M. R., Ritchie M. E. (2013) The species-rich assemblages of tintinnids (marine planktonic protists) are struc,tured by mouth size. ISME J 7: in press
Doney S. C., Ruckelshaus M., Duffy J. E., Barry J. P., Chan F., English C. A., Galindo H. M., Grebmeier J. M., Hollowed A. B., Knowlton N., Polovina J., Rabalais N. N., Sydeman W. J., Tal,ley L. D. (2012) Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4: 11–37
Grebmeier J. M. (2012) Shifting patterns of life in the Pacific Arctic and Sub-Arctic seas. Ann. Rev. Mar. Sci. 4: 63–78
Hunt G. L., Coyle K. O., Eisner L. B., Farley E. V., Heintz R. A., Mueter F., Napp J. M., Overland J. E., Ressler P. H., Salo S., Stabeno P. J. (2011) Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Os,cillating Control Hypothesis. ICES J. Mar. Sci. 68: 1230–1243
Jensen F. and Hansen B. W. (2000) Ciliates and heterotrophic dino,flagellates in the marginal ice zone of the central Barents Sea during spring. J. Mar. Biol. Assoc. UK. 80: 45–54
Kinnard C., Zdanowicz C. M., Fisher D. A., Isaksson E., de Vernat A., Thompson L. G. (2011) Reconstructed changes in Arctic sea ice cover over the past 1,450 years. Nature 479: 509–513
Kofoid C. A. and Campbell A. S. (1929) A Conspectus of the Ma,rine and Freshwater Ciliata Belonging to the suborder Tintin,noinea, with Despcriptions of New Species Principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904–1905. University of California Publications in Zoology 34: 1–403
Kofoid C. A., Campbell A. S. (1939) The Tintinnoinea of the East,ern Tropical Pacific. Bulletin of the Museum of Comparative Zoology at Harvard College 84: 1–473
Lee S. H., Whitledge T. E., Kang S. H. (2007) Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont. Shelf Res. 27: 2231–2249
Levinsen H., Nielsen T. G., Hansen B. W. (1999) Plankton commu,nity structure and carbon cycling on the western coast of Green,land during the stratified summer situation. II. Heterotrotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol. 16: 217–232
Matsuno K., Yamaguchi A., Hirawake T., Imai I. (2011) Year to year changes of the mesozooplankton community in the Chukchi Sea during summers of 1991, 1992, and 2007, 2008. Pol. Biol. 34: 1349–1360
Matsuoka A. (2007) Living radiolarian feeding mechanisms: New light on past marine ecosystems. Swiss J. Geosci. 100: 273–279 Michel C., Bluhm B., Gallucci V., Gaston A. J., Gordillo F. J. L., Gradinger R., Hopcroft R., Jensen N., Mustonen T., Niemi A.,
Nielsen T. G. (2012) Biodiversity of arctic marine ecosystems and response to climate change. Biodiversity 13: 200–214
Montagnes D. J. S. (2013) Ecophysiology and behaviour of tintin,nids. In: Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, (Eds. J. R. Dolan, D. J. S. Montagnes, S. Ag,atha, D. W. Coats, D. K. Stoecker). Wiley–Blackwell, Oxford, 86–122
Montagnes D. J. S., Morgan G., Bissinger J. E., Atkinson D., Weisse T. (2008) Short-term temperature change may impact freshwater carbon flux: A microbial perspective. Glob. Change Biol. 14: 2823–2838
Montagnes D. J. S., Dower J. F., Figueiredo G. M. (2010) The pro,tozooplankton–ichthyoplankton trophic link: An overlooked as,pect of aquatic food webs. J. Eukaryot. Microbiol. 57: 223–228 Polyak L., Best K. M., Crawford K. A., Council E. A., St-Onge G. (2013) Quaternary history of sea ice in the western Arctic based on foraminifera? Quaternary Sci. Rev. 73: in press
Rose J. M., Caron D. A. (2007) Does low temperature constrain the growth rate of heterotrophic protists? Evidence and implica,tions for algal blooms in cold waters. Limnol. Oceanogr. 52: 886–895
Rose J. M., Fitzpatrick E., Wang A., Gast R. J., Caron D. A. (2013) Low temperature constrains growth rates but not short-term in,gestion rates of Antarctic ciliates. Pol. Biol. 36: 645–659
Rubao J., Jin M., Varp Ø. (2013) Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob. Chang Biol. 19: in press
Solignac S., Seidenkrantz M.-S., Jessen C., Kuijpers A., Gunvald A. K., Olsen J. (2011) Late-holocene sea surface conditions off,shore Newfoundland based on dinoflagellate cysts. Holocene 21: 539–552
Sherr E. B., Sherr B. F., Hartz A. J. (2009) Microzooplankton graz,ing impact in the Western Arctic Ocean. Deep-Sea Res. II 56: 1264–1273
Sherr E. B., Sherr B. F., Ross C. (2013) Microzooplankton grazing impact in the Bering Sea during spring sea ice conditions. Deep,Sea Res. II, in press
Vazquez-Dominguez E., Vaqué D. Gasol J. P. (2012) Temperature effects on the hetertrophic bacteria, heterotrophic nanoflagel,lates, and the microbial top predators of the N.W. Mediterra,nean. Aquat. Microb. Ecol. 67: 107–121
Verity P. G., Wassmann P., Ratkova T. N., Andreassen I. J., Nordby E. (1999) Season patterns in composition and biomass of auto,troophic and heterotrophic nano,and microplankton communi,ties on the north Norwegian shelf. Sarsia 84: 265–277
Wassman P. (2011) Arctic marine ecosystems in an era of rapid climate change. Prog. Oceanogr. 90: 1–17
Wassmann P., Peinert R., Smetacek V. (1991) Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. Pol. Res. 10: 209–228
Wang M., Overland J. E. (2009) An sea ice free summer Arctic within 30 years? Geophys. Res. Ltrs 36: L07502
Wang M., Overland J. E., Stabeno P. (2012) Future climate of the Bering and Chukchi Seas projected by global climate models. Deep-Sea Res. II 65–70: 46–57
Weckström K., Massé G., Collinsn L. G., Hanhijärvi S., Boulou,bassi I., Sicre M.-A., Seidenkrantz M.-S., Schmidt S., Andersen T J., Andersen M. L., Hill B., Kuijpers A. (2013) Evaluation of the sea ice proxy IP25 against observational and diatom proxy data in the SW Labrador Sea. Quaternary Sci. Rev. 73: in press
Information: Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 101 - 113
Article type: Original article
Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-sur-Mer, France; CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-sur-Mer, France
Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
Published at: 2014
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 2220
Number of downloads: 2048