FAQ
Jagiellonian University logo

Microzooplankton in a Warming Arctic: A Comparison of Tintinnids and Radiolarians from Summer 2011 and 2012 in the Chukchi Sea

Publication date: 2014

Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 101 - 113

https://doi.org/10.4467/16890027AP.14.010.1447

Authors

,
John R. Dolan
Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-sur-Mer, France; CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-sur-Mer, France
All publications →
,
Eun Jin Yang
Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
All publications →
,
Tae Wan Kim
Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
All publications →
Sung-Ho Kang
Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
All publications →

Titles

Microzooplankton in a Warming Arctic: A Comparison of Tintinnids and Radiolarians from Summer 2011 and 2012 in the Chukchi Sea

Abstract

The Chukchi Sea was sampled in August of 2011, a year of near-normal sea ice among recent years, and again in August 2012, a year of all time record low sea ice. We exploited this sampling to test the hypothesis that different sea ice conditions are associated with differences in abundances or species composition of microzooplankton through an examination of tintinnids and radiolarians. From 18 stations in 2011, and 19 stations in 2012, organisms were enumerated in plankton net tow material, and chlorophyll determinations made (total and ≤ 20 μm) from discrete depth samples. We found that the low sea ice conditions of 2012 were associated with higher chlorophyll concentrations (both total and the ≤ 20 μm size fraction), compared to 2011. However, tintinnid ciliates and radiolarians were much lower in concentration, by about an order of magnitude, compared to 2011. In both years the radiolarian assemblage was dominated by Amphiselma setosa. The species composition of the tintinnid ciliates was similar in the two years, but there were distinct differences in the relative abundances of certain species. The 2012, low sea ice assemblage, was dominated by small forms in contrast to 2011, when large species were the most abundant. We present these findings in detail and discuss possible explanations for the apparent differences in the microzooplankton communities associated with distinct sea ice conditions in the Chukchi Sea.

References

Download references

Aberle N., Bauer B., Lewandowska A., Gaedke U., Sommer U. (2012) Warming induces shifts in microzooplankton phenology and reduces time lags between phytoplankton and protozoan production. Mar. Biol. 159: 2441–2453

Bathmann U. V., Peinert R., Noji T. T., Bodungen B. V. (1990) Pe,lagic origin and fate of sedimenting particles in the Norwegian Sea. Prog. Oceanogr. 24: 117–125

Bjørklund K. R., Kruglikova S. B. (2003) Polycystine radiolarians in surface sediments in the Arctic Ocean basins and marginal seas. Mar. Micropaleo. 49: 231–273

Bjørklund K. R., Kruglikova S. B., Andersen O. R. (2013) Modern incursions of tropical radiolaria into the Arctic Ocean. J. Micro,paleo. 31: 139–158

Boltovskoy D., Vivequin S. M., Swanberg N. R. (1991) Vertical dis,tribution of tintinnids and associated microplankton in the upper layer of the Barents Sea. Sarsia 76: 141–151

Boltovskoy D., Vivequin S. M., Swanberg N. R. (1995) Tintinnids and other micrplankton from the Greenland Sea: Abundance and distribution in the marginal ice zone (May–June 1989). P.S.Z.N.I. Mar. Ecol. 16: 117–131

Calbet A., Landry M. R. (2004) Phytoplankton growth, microzoo,plankton grazing, and carbon cycling in marine systems. Lim,nol. Oceanogr. 40: 51–57

Campbel R. G., Sherr E. B., Ashjian C. J., Plourde S., Sherr B. F., Hil V., Stockwell D. A. (2009) Mesozooplankton prey prefer,ence and grazing impact in the western Arctic Ocean. Deep-Sea Res. II 56: 1274–1289

Caron D. A., Hutchins D. A. (2013) The effects of changing climate on microzooplankton grazing and community structure: drivers, predictions and knowledge gaps. J. Plank. Res. 35: 235–252

Chen B., Landry M. R., Huang B., Liu H. (2012) Does warming enhance the effect of microzooplankton grazing on marine phy,toplankton in the ocean? Limnol. Oceanogr. 57: 519–526

Comeau A. M., Li W. K. W., Tremblay J.-E., Carmack E. C., Love,joy C. (2011). Arctic ocean microbial community structure be,fore and after the 2007 record sea ice minimum. PLoS ONE 6: e27492

Dolan J. R. (2010) Morphology and ecology in tintinnid ciliates of the marine plankton: Correlates of lorica dimensions. Acta Pro,tozool. 49: 235–344

Dolan J. R., Pierce R. W. (2013) Diversity and distributions of tin,tinnid ciliates. In: Biology and ecology of tintinnid ciliates: Models for marine plankton, (Eds. J .R. Dolan, D. J. S. Mon,tagnes, S. Agatha, D. W. Coats, D. K. Stoecker). Wiley–Black,well, Oxford, 214–243

Dolan J. R., Landry M. R., Ritchie M. E. (2013) The species-rich assemblages of tintinnids (marine planktonic protists) are struc,tured by mouth size. ISME J 7: in press

Doney S. C., Ruckelshaus M., Duffy J. E., Barry J. P., Chan F., English C. A., Galindo H. M., Grebmeier J. M., Hollowed A. B., Knowlton N., Polovina J., Rabalais N. N., Sydeman W. J., Tal,ley L. D. (2012) Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4: 11–37

Grebmeier J. M. (2012) Shifting patterns of life in the Pacific Arctic and Sub-Arctic seas. Ann. Rev. Mar. Sci. 4: 63–78

Hunt G. L., Coyle K. O., Eisner L. B., Farley E. V., Heintz R. A., Mueter F., Napp J. M., Overland J. E., Ressler P. H., Salo S., Stabeno P. J. (2011) Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Os,cillating Control Hypothesis. ICES J. Mar. Sci. 68: 1230–1243

Jensen F. and Hansen B. W. (2000) Ciliates and heterotrophic dino,flagellates in the marginal ice zone of the central Barents Sea during spring. J. Mar. Biol. Assoc. UK. 80: 45–54

Kinnard C., Zdanowicz C. M., Fisher D. A., Isaksson E., de Vernat A., Thompson L. G. (2011) Reconstructed changes in Arctic sea ice cover over the past 1,450 years. Nature 479: 509–513

Kofoid C. A. and Campbell A. S. (1929) A Conspectus of the Ma,rine and Freshwater Ciliata Belonging to the suborder Tintin,noinea, with Despcriptions of New Species Principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904–1905. University of California Publications in Zoology 34: 1–403

Kofoid C. A., Campbell A. S. (1939) The Tintinnoinea of the East,ern Tropical Pacific. Bulletin of the Museum of Comparative Zoology at Harvard College 84: 1–473

Lee S. H., Whitledge T. E., Kang S. H. (2007) Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont. Shelf Res. 27: 2231–2249

Levinsen H., Nielsen T. G., Hansen B. W. (1999) Plankton commu,nity structure and carbon cycling on the western coast of Green,land during the stratified summer situation. II. Heterotrotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol. 16: 217–232

Matsuno K., Yamaguchi A., Hirawake T., Imai I. (2011) Year to year changes of the mesozooplankton community in the Chukchi Sea during summers of 1991, 1992, and 2007, 2008. Pol. Biol. 34: 1349–1360

Matsuoka A. (2007) Living radiolarian feeding mechanisms: New light on past marine ecosystems. Swiss J. Geosci. 100: 273–279 Michel C., Bluhm B., Gallucci V., Gaston A. J., Gordillo F. J. L., Gradinger R., Hopcroft R., Jensen N., Mustonen T., Niemi A.,

Nielsen T. G. (2012) Biodiversity of arctic marine ecosystems and response to climate change. Biodiversity 13: 200–214

Montagnes D. J. S. (2013) Ecophysiology and behaviour of tintin,nids. In: Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton, (Eds. J. R. Dolan, D. J. S. Montagnes, S. Ag,atha, D. W. Coats, D. K. Stoecker). Wiley–Blackwell, Oxford, 86–122

Montagnes D. J. S., Morgan G., Bissinger J. E., Atkinson D., Weisse T. (2008) Short-term temperature change may impact freshwater carbon flux: A microbial perspective. Glob. Change Biol. 14: 2823–2838

Montagnes D. J. S., Dower J. F., Figueiredo G. M. (2010) The pro,tozooplankton–ichthyoplankton trophic link: An overlooked as,pect of aquatic food webs. J. Eukaryot. Microbiol. 57: 223–228 Polyak L., Best K. M., Crawford K. A., Council E. A., St-Onge G. (2013) Quaternary history of sea ice in the western Arctic based on foraminifera? Quaternary Sci. Rev. 73: in press

Rose J. M., Caron D. A. (2007) Does low temperature constrain the growth rate of heterotrophic protists? Evidence and implica,tions for algal blooms in cold waters. Limnol. Oceanogr. 52: 886–895

Rose J. M., Fitzpatrick E., Wang A., Gast R. J., Caron D. A. (2013) Low temperature constrains growth rates but not short-term in,gestion rates of Antarctic ciliates. Pol. Biol. 36: 645–659

Rubao J., Jin M., Varp Ø. (2013) Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob. Chang Biol. 19: in press

Solignac S., Seidenkrantz M.-S., Jessen C., Kuijpers A., Gunvald A. K., Olsen J. (2011) Late-holocene sea surface conditions off,shore Newfoundland based on dinoflagellate cysts. Holocene 21: 539–552

Sherr E. B., Sherr B. F., Hartz A. J. (2009) Microzooplankton graz,ing impact in the Western Arctic Ocean. Deep-Sea Res. II 56: 1264–1273

Sherr E. B., Sherr B. F., Ross C. (2013) Microzooplankton grazing impact in the Bering Sea during spring sea ice conditions. Deep,Sea Res. II, in press

Vazquez-Dominguez E., Vaqué D. Gasol J. P. (2012) Temperature effects on the hetertrophic bacteria, heterotrophic nanoflagel,lates, and the microbial top predators of the N.W. Mediterra,nean. Aquat. Microb. Ecol. 67: 107–121

Verity P. G., Wassmann P., Ratkova T. N., Andreassen I. J., Nordby E. (1999) Season patterns in composition and biomass of auto,troophic and heterotrophic nano,and microplankton communi,ties on the north Norwegian shelf. Sarsia 84: 265–277

Wassman P. (2011) Arctic marine ecosystems in an era of rapid climate change. Prog. Oceanogr. 90: 1–17

Wassmann P., Peinert R., Smetacek V. (1991) Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. Pol. Res. 10: 209–228

Wang M., Overland J. E. (2009) An sea ice free summer Arctic within 30 years? Geophys. Res. Ltrs 36: L07502

Wang M., Overland J. E., Stabeno P. (2012) Future climate of the Bering and Chukchi Seas projected by global climate models. Deep-Sea Res. II 65–70: 46–57

Weckström K., Massé G., Collinsn L. G., Hanhijärvi S., Boulou,bassi I., Sicre M.-A., Seidenkrantz M.-S., Schmidt S., Andersen T J., Andersen M. L., Hill B., Kuijpers A. (2013) Evaluation of the sea ice proxy IP25 against observational and diatom proxy data in the SW Labrador Sea. Quaternary Sci. Rev. 73: in press

Zhang J., Spitz Y. H., Steele M., Ashjian C., Campbell R., Berline L., Matrai P. (2010) Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. J. Geophys. Res. 11: C10015

Information

Information: Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 101 - 113

Article type: Original article

Authors

Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-sur-Mer, France; CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-sur-Mer, France

Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea

Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea

Korea Polar Research Institute, KIOST, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea

Published at: 2014

Article status: Open

Licence: None

Percentage share of authors:

John R. Dolan (Author) - 25%
Eun Jin Yang (Author) - 25%
Tae Wan Kim (Author) - 25%
Sung-Ho Kang (Author) - 25%

Article corrections:

-

Publication languages:

English