Microbial Respiration of Organic Carbon in Freshwater Microcosms: The Potential for Improved Estimation of Microbial CO2 Emission from Organically Enriched Freshwater Ecosystems
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEMicrobial Respiration of Organic Carbon in Freshwater Microcosms: The Potential for Improved Estimation of Microbial CO2 Emission from Organically Enriched Freshwater Ecosystems
Publication date: 28.11.2016
Acta Protozoologica, 2016, Volume 55, Issue 3, pp. 189 - 196
https://doi.org/10.4467/16890027AP.16.018.5750Authors
Microbial Respiration of Organic Carbon in Freshwater Microcosms: The Potential for Improved Estimation of Microbial CO2 Emission from Organically Enriched Freshwater Ecosystems
Respiratory CO2 emissions from laboratory freshwater microcosms enriched with organic C (glucose and amino acids) and kept in the dark at 24°C were compared to control microcosms without C enrichment for two different freshwater pond sources. The purpose was to estimate experimentally the rate of respiratory CO2 emission from organically polluted freshwater ecosystems compared to non-enriched water. Experiment One, used pond water collected at the Lamont-Doherty Earth Observatory campus; and Experiment Two used pond water, inoculated with natural detritus, obtained from North Carolina. At peak respiration, the net efflux of CO2 (enriched minus control) to the atmosphere was ~ 90 nmol min–1 L–1 (Day 7, Experiment One) and ~ 240 nmol min–1 L–1 (Day 3, Experiment Two). The corresponding net efflux of C to the atmosphere was 25 nmol C min–1 L–1 (Day 7, Experiment One) and 65 nmol C min–1 L–1 (Day 3, Experiment Two). Peak CO2 emissions from the organic-enriched microcosms expressed as μmol m–2 s–1 (as more typically reported for natural bodies of water) were 0.20 for Experiment One, and 0.42 for Experiment Two, at a surface layer depth of approx. 20 cm, i.e. the microcosm depth. There was a relatively large correlation between respiratory CO2 emission and bacterial densities in the organic-C enriched microcosms (r = 0.76), but a smaller correlation (r = 0.32) in the non-enriched, control microcosm. Further broad scale research, robustly sampling natural bodies of organically polluted water, is needed to confirm and better establish the results of the research reported here using microcosms.
Alonzo-Sáez L., Sánchez O., Gasol J. M. (2012) Bacterial uptake of low molecular weight organics in the subtropical Atlantic: Are major phylogenetic groups different? Limnol. Oceanogr. 57: 798–808
Anderson O. R. (2014) Bacterial and heterotrophic nanoflagellate densities and C-biomass estimates along an Alaskan tundra transect with prediction of respiratory CO2 efflux. J. Eukaryot. Microbiol. 61: 11–16
Anderson O. R. (2016) The role of heterotrophic microbial communities in estuarine C budgets and the biogeochemical C cycle with implications for global warming: research opportunities and challenges. J. Eukaryot. Microbiol. 63: 394–409
Anderson O. R., Gorrell T., Bergen A., Kruzansky R., Levandowsky M. (2001) Naked amoebae and bacteria in an oil-impacted salt marsh community. Microb. Ecol. 42: 474–481
Baines S. B., Pace M. L. (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater ecosystems. Limnol. Oceanogr. 36: 1078–1090
Beaver J. R., Crisman T. L. (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17: 111–136
Berninger U.-G., Finlay B. J., Kuuppo-Leinikki P. (1991) Protozoan control of bacterial abundances in freshwater. Limnol. Oceanogr. 36: 139–147
Bjørnsen P. K., Riemann B., Horsted S. J., Nielsen T. G., Pock-Sten J. (1988) Trophic interactions between hteterotrophic nanoflagellates and bacterioplankton in manipulated seawater enclosures. Limnol. Oceanogr. 33: 409–420
Bloem J., Bär-Gilissen M.-J. B. (1989) Bacterial activity and protozoan grazing potential in a stratified lake. Limnol. Oceanogr. 34: 297–309
Bong C. W., Lee C. W. (2011) The contribution of heterotrophic nanoflagellate grazing towards bacterial mortality in tropical waters: comparing estuaries and coastal ecosystems. Mar. Freshwater Res. 62: 414–420
Broecker W. S. (1975) Climate change: are we on the brink of a pronounced global warming? Science 189: 460
Caron D. (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb. Ecol. 13: 203–218
Carpenter S. R., Stanley E. H., Vander Zanden M. J. (2011) State of the World’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36: 75–99
Carvalho R., Duarte P. (2013) Carbon fluxes in a coastal area of northern Portugal. Limnetica, 32: 229–244
Casper P., Maberly S. C., Hall G. H., Finlay B. J. (2000) Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochem. 49: 1–19
Chen B., Liu H., Landry M. R., Chen M., Sun J., Shek L., Chen X., Harrison P. J. (2009) Estuarine nutrient loading affects phytoplankton growth and microzooplankton grazing at two contrasting sites in Hong Kong coastal waters. Mar. Ecol. Prog. Ser. 379: 77–90
Chróst R. J., Münster U., Rai H., Albrecht D., Witzel P. K., Overbeck J. (1989) Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res. 11: 223–242.
Cole J. J., Kinne O. (2013) Freshwater Ecosystems and the Carbon Cycle. Olendorf/Luhe: International Ecology Institute
Cole J. J., Findlay S., Pace M. L. (1988) Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.
Cole J. J., Prairie Y. T., Caraco N. F, McDowell W. H., Tranvik L. J., Striegl R. G., Duarte C. M., Kortelainen P., Downing J. A., Middelburg J. J., Melack J. (2007) Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–164
Confer D. R., Logan B. E., Aiken B. S., Kirchman D. L. (1995) Measurement of dissolved free and combined amino acids in unconcentrated wastewaters using high performance liquid chromatography. Water Environ. Res. 67: 118–125.
Crawford C. C., Hobbie J. E., Webb K. L. (1974) The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563
Dai Y., Yang Y., Wu Z., Feng Q., Xie S., Liu Y. (2016) Spatiotemporal variation in planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic levels. Appl. Microbiol. Biotech. 100: 4161–4175
Daniel I., DeGrandpre M., Farias, L. (2013) Greenhouse gas emissions from the Tubul-Raqui estuary (central Chile). Estuar. Coast. Shelf Sci. 134: 31–44
Davidson T. A., Audit J., Svenning J.-C., Lauridsen T. L., Søndergaard M., Landkildehus F., Larsen S. E., Jeppesen E. (2015) Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Global Change Biol. 21: 4449–4463
del Giorgio P. A., Cole J. J., Cimbleris A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385: 148–151
del Giorgio P. A., Gasol J. I. M., Vaque D., Mura P., Agusti S., Duarte C. M. (1996) Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41: 1169–1179
Edwards D. R., Daniel T. C. 1992. Environmental impacts of on-farm poultry waste disposal – A review. Bioresource Technol. 41: 9–33
Frankignoulle M., Abril G., Borges A., Bourge I., Canon C., DeLille B.,
Friedlingstein P., Houghton R. A., Marland G., Hackler J., Boden T. A., Conway T. J., Canadell J. G., Raupach M. R., Ciais P., Le Quéré C. (2010) Update on CO2 emissions. Nature Geoscience 3: 811–812
Grasset C., Abril G., Guillard L., Delolme C., Bornette G. (2016) Carbon emission along a eutrophication gradient in temperate riverine wetlands: effect of primary productivity and plant community composition. Freshwater Biol. doi:10.1111/fwb.12780
Hanson R. B., Snyder J. (1980) Glucose exchanges in a salt marsh-estuary: Biological activity and chemical measurements. Limnol. Oceanogr. 25: 633–642.
Hobbie J. E., Daley R. J., Jasper S. (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Microbiol. 33: 1225–1228
Iriarte A., de Madariaga I., Diez-Garagarza F., Revilla M., Orive E.
Islam Md. I., Khan S., Tanaka M. 2004. Waste loading in shrimp and fish processing effluents: potential source of hazards to the coastal and nearshore environments. Mar. Pollut. Bull. 49: 103–110
Jiang L. Q., Cai W. J., Wang Y. C. (2008) A comparative study of carbon dioxide degassing in river – and marine dominated estuaries. Limnol. Oceanogr. 53: 2603–2615
Karl T. R., Trenberth K. E. (2003) Modern global climate change. Science 302: 1719–1723
Kahn L., Wayman C. (1964) Amino acids in raw sewage and sewage effluents. Water Pollut. Control 36: 1368–1371
Kuuppo-Leinikki P. (1990) Protozoan grazing on planktonic bacteria and its impact on bacterial population. Mar. Ecol. Prog. Ser. 63: 227–238
Liu H., Zhang Q., Katul G. G., Cole J. J., Chapin III, F. S., MacIntyre S. (2016) Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir. Environ. Res. Lett. 11: 064001
Meon B., Amon R. M. W. Heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic rivers Ob, Yenisei and the adjacent Kara Sea. Aquat. Microb. Ecol. 37: 121–135
Qin B. Q., Gao G., Zhu G. W., Zhang Y. L., Song Y. Z., Tang X. M., Deng J. M. (2013) Lake eutrophication and its ecosystem response. Chinese Sci. Bull. 58: 961–970
Painter H. A., Viney M. (1959) Composition of a domestic sewage. J. Biochem. Microbiol. 1: 143–162
Pollard P. C., Ducklow H. (2011) Ultrahigh bacterial production in a eutrophic subtropical Australian river: Does viral lysis short-circuit the microbial loop? Limnol. Oceanogr. 56: 1115–1129
Richey J. E., Melack J. M., Aufdenkampe A. K., Ballester V. M., Hess L. L. (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617–620
Sarma V., Viswanadham R., Rao G. D., Prasad V. R., Kumar B. S. K., Naidu S. A., Kumar N. A., Rao D. B., Sridevi T., Krishna M. S., Reddy N. P. C., Sadhuram Y., Murty T. V. R. (2012) Carbon dioxide emissions from Indian monsoonal estuaries, Geophys. Res. Lett. 39: 1–5
Schrier-Uijl A. P., Veraart A. J., Leffelaar P. A., Berendse F., Veenendaal E. M. (2011) Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochem. 102: 265–279
Scully Jr., F. E., Howell G. D., Penn H. H., Mazina K., Johnson J. D. (1988) Small molecular weight organic amino nitrogen compounds in treated municipal waste water. Environ. Sci. Technol. 22: 1186–1190
Seekell D. A., Carr J. A., Gudasz C., Karlsson J. (2014) Upscaling carbon dioxide emissions from lakes. Geophys. Res. Lett. 41: 7555–7559
Shiah F.-K., Ducklow H. W. (1994) Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Mar. Ecol. Prog. Ser. 103: 297–308.
Smith E. M. (1998) Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community. Aquat. Microb. Ecol. 16: 27–35
Smith V. H., Tilman G. D., Nekola J. C. (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100: 179–196
Solomon S., Plattner G.-K., Knuti R., Friedlingstein P. (2009) Irreversible climate change due to carbon dioxide emissions. Nat. Acad. Sci. Proc. 106: 1704–1709
Subrahmanyam P. V. R., Sastry A., Prabhakara R., Pillai C. (1960) Amino acids in sewage sludges. Water Pollut. Control 32: 344–350
Valliéres C, Retamal L., Ramlal P., Osburn C. L. Vincent W. F. (2008) Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean. J. Marine Syst. 74: 756–773
Wilkinson G. M., Buelo C. D., Cole J. J., Pace M. L. (2016) Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes. Geophys. Res. Lett. 43: 1996–2003
Williams P. J. leB. (1981) Microbial contribution to overall marine plankton metabolism: direct measures of respiration. Oceanol. Acta 4: 359–364
Zimmermann R., Iturriaga R., Becker-Birck J. (1978) Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36: 926–935
Information: Acta Protozoologica, 2016, Volume 55, Issue 3, pp. 189 - 196
Article type: Original article
Biology, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A.
Published at: 28.11.2016
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
English