FAQ
Jagiellonian University logo

Anti-cryptosporidial activity of Camellia sinensis (green tea extract) in experimentally infected immunocompromised mice

Publication date: 2022

Acta Protozoologica, 2022, Volume 61, pp. 23 - 34

https://doi.org/10.4467/16890027AP.22.002.16205

Authors

,
Eman S. El-Wakil
Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
All publications →
,
Eman Ali Mohamed
Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
All publications →
,
Eman Ahmed El-Wakil
Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Giza, Egypt
All publications →
,
Tarek S. AbouShousha
Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
All publications →
Neimat Mousa Amer
Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
All publications →

Titles

Anti-cryptosporidial activity of Camellia sinensis (green tea extract) in experimentally infected immunocompromised mice

Abstract

Cryptosporidium parvum, an Apicomplexan parasite, is an important cause of diarrheal disease, especially in immunodeficient hosts. Nevertheless, there is no entirely successful therapeutic agent against cryptosporidiosis to date. Hence, this study aims to test the potential prophylactic and therapeutic effect of Camellia sinensis (green tea extract) in dexamethasone immunosuppressed mice versus the nowadays used drug, Nitazoxanide (NTZ). Parasitological and molecular methods were used to characterize Cryptosporidium oocysts before infection. Fifty bred female Swiss Albino mice were divided into 5 groups; group I (GI)(GTP): immunosuppressed and prophylactically treated with green tea extract for 5 days prior to infection, group II (GII)(GTT): immunosuppressed, infected with Cryptosporidium parvum and treated with green tea extract, group III (GIII)(NT): immunosuppressed, infected and treated with NTZ, group IV (GIV)(PC): immunosuppressed and infected (Positive control), group V (GV)(NC): immunosuppressed and non-infected (Negative control). Furthermore, parasitological examination for oocysts in the stool, and histopathological examination for the small intestine and liver specimens were performed for the study groups. Cryptosporidium oocysts used for induction of infection proved to be Cryptosporidium parvum genotype 2. Moreover, a significant oocyst reduction in fecal samples correlated with an improvement of histopathological changes in the small intestinal and liver tissues in GI(GTP), GII (GTT) and GIII(NT) groups. Besides, the GII(GTT) group showed the best improvement in parasitological and histopathological parameters among the test groups. This study revealed that Camellia sinensis (green tea extract) has potential activity against cryptosporidiosis and could serve as a promising prophylactic and therapeutic anti-cryptosporidial agent.

References

Download references

Abdelmaksoud H., El-Ashkar A., Elgohary S., El-Wakil E. (2020) Potential therapeutic and prophylactic effects of Asafoetida in murine cryptosporidiosis. J. Parasit. Dis44: 646–653

Abdou A., Harba N., Afifi A., Elnaidany N. (2013) Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia. Int. J. Infect. Dis17: e593–e600

Aboulaila M., Yokoyama N., Igarashi I. (2010) Inhibitory effects of (-)-epigallocatechin-3-gallate from green tea on the growth of Babesia parasites. Parasitology 137: 785–791

Abubakar I., Aliyu S., Arumugam C., Usman N., Hunter P. (2007) Treatment of cryptosporidiosis in immunocompromised individuals: systematic review and metaanalysis. Br. J. Clin. Pharmacol63: 387–393

AbuEl-Ezz N.T., Khalil F.A., Shaapan R.M. (2011) Therapeutic effect of onion (Allium cepa) and cinnamon (Cinnamomum zeylanicum) oils on cryptosporidiosis in experimentally infected mice. Glob. Vet7: 179–183

Arrowood M. (1997) In: Fayer, editor. Cryptosporidium and cryptosporidiosis. New York: CRC Press; 43–64

Arrowood M., Donaldson K. (1996) Improved purification methods for calf-derived Cryptosporidium parvum oocysts using discontinuous sucrose and cesium chloride gradients. J. Eukaryot, Microbiol43: 89S–89S

Ashigbie P., Shepherd S., Steiner K., Amadi B., Aziz N., Manjunatha U., Spector J., Diagana T., Kelly P. (2021) Use-case scenarios for an anti-Cryptosporidium therapeutic. PLoS Negl. Trop. Dis. 15: e0009057

Atia M., Abdul Fattah M., Abdel Rahman H., Mohammed F., Al-Ghandour A. (2016) Assessing the efficacy of nitazoxanide in treatment of cryptosporidiosis using PCR examination. J. Egypt. Soc. Parasitol. 46: 683–692

Baishanbo A., Gargala G., Duclos C., François A., Rossignol J. F., Ballet J. J., Favennec L.(2006) Efficacy of nitazoxanide and paromomycin in biliary tract cryptosporidiosis in an immunosuppressed gerbil model. J. Antimicrob. Chemother57: 353–355

Benamrouz S., Guyot K., Gazzola S., Mouray A., Chassat T., Delaire B., Chabe M., Gosset P., Viscogliosi E., Dei-Cas E., Creusy C., Conseil V., Certad G. (2012) Cryptosporidium parvum infection in SCID Mice Infected with only one oocyst: qPCR assessment of parasite replication in tissues and development of digestive cancer. PLoS ONE 7: e51232

Boehm K., Borrelli F., Ernst E., Habacher G., Hung S., Milazzo S., Horneber M. (2009) Green tea  Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews. 3, doi: 10.1002/14651858.CD005004

Cabada M. M., White Jr., A. C. (2010) Treatment of cryptosporidiosis: do we know what we think we know? Curr. Opin. Infect. Dis23: 494–499

Caccio S., Widmer G. (2014) Cryptosporidium: Parasite and Disease. Springer, Wien, Heidelberg, New York, Dordrecht, London

Caccio S., Thompson R., McLauchlin J. et al. (2005) Unravelling Cryptosporidium and Giardia epidemiology. Trends Parasitol. 21: 430–437

Drury R., Wallington E. (1980) Carleton’s Histological Technique. 5th ed. Oxford, New York, Toronto: Oxford University Press 5: 41–54

Edeoga H., Okwu D., Mbaebie B. (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 4: 685–688

El-Sayed N. M., Fathy G. M. (2019) Prophylactic and therapeutic treatments’effect of moringa oleifera methanol extract on cryptosporidium infection in immunosuppressed mice. AntiInfect Agents. 17: 130–137

El-Wakil E., Salem A., Al-Ghandour A. (2021) Evaluation of possible prophylactic and therapeutic effect of mefloquine on experime tal cryptosporidiosis in immunocompromised mice. J. Parasit. Dis45: 380-393. https://doi.org/10.1007/s12639-020-01315-4

Feng Y., Ryan U., Xiao, L. (2018) Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol. 34: 997–1011; https://doi.org/10.1016/j.pt.2018.07.009

Fichtenbaum C., Zackin R., Feinberg J., Benson C., Griffiths J., AIDS Clinical Trials Group New Works Concept Sheet Team 064 (2000) Rifabutin but not clarithromycin prevents cryptosporidiosis in persons with advanced HIV infection. Aids 14: 2889–2893

Gaafar M. R. (2012) Efficacy of Allium sativum (garlic) against experimental cryptosporidiosis. AJM48: 59–66

Garcia L. S. (2007) Clinically important human parasites: Intestinal protozoa: Cryptosporidium spp. In: Diagnostic Medical Parasitology. Garcia LS 5th ed ASM press Washington DC 2: 771–812

Gargala G. (2008) Drug treatment and novel drug target against Cryptosporidium. Parasite 15: 275–281. https://doi.org/10.1051/parasite/2008153275

Ghareeb M., Shoeb H., Madkour H., Refaey L., Mohamed M., Saad A(2014) Antioxidant and cytotoxic activities of Tectona grandis Linn leaves. Int. J. Phytopharm. 5: 143–157

Ghareeb M., Mohamed T., Saad A., Refahy L., Sobeh M., Wink M. (2018a) HPLC-DAD-ESI-MS/MS analysis of fruits from Firmiana simplex (L.) and evaluation of their antioxidant and antigenotoxic properties. J. Pharm. Pharmacol70: 133–142

Ghareeb M., Sobeh M., Rezq S., El-Shazly A., Mahmoud M., Wink M. (2018b) HPLC-ESI-MS/MS profiling of polyphenolics of a leaf extract from Alpinia zerumbet (Zingiberaceae) and its anti-inflammatory, anti-nociceptive, and antipyretic activities in vivo. Molecules 23: 3238

Ghareeb M., Sobeh M., El-Maadawy W., Mohammed H., Khalil H., Botros S., Wink M. (2019) Chemical profiling of polyphenolics in Eucalyptus globulus and evaluation of its hepato-renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 8: 415

Guida M., Esteva M., Camino A., Flawia M., Torres H et al. (2007) Trypanosoma cruzi: in vitro and in vivo anti-proliferative effects of epigallocatechin gallate (EGCg). Exp. Parasitol117: 188–194

Hanschei T., Melo Cristino J., Salgado M. (2008) Screening of auramine stained smears of all fecal samples is a rapid and inexpensive way to increase the detection of coccidial infections. Int. J. Infect. Dis12: 47–50

Harborne J. B. (1993) Phytochemistry. Academic Press, London, 89–131

Henriksen S., Pohlenz J. (1981) Staining of cryptosporidia by a modified Ziehl-Neelsen technique. Acta Vet. Scand. 22: 594

Holmberg S., Moorman A., Von Bargen J., Palella F., Loveless M., Ward D. (1998) HIV outpatient study (hops) investigators possible effectiveness of clarithromycin and rifabutin for cryptosporidiosis chemoprophylaxis in HIV disease. JAMA279: 384–386

Hosking B., Watson T., Leathwick D. (1996) Multigeneric resistance to oxfendazole by nematodes in cattle. Vet. Rec138: 67–68

Inacio J., Canto-Cavalheiro M., Almeida-Amaral E. (2013) In vitro and in vivo effects of (-)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J. Nat. Prod. 76: 1993–1996

Innes E., Chalmers R., Wells B., Pawlowic M. C. (2020) A one health approach to tackle cryptosporidiosis: A review. Trends Parasitol. 36: 290–303

Jigisha A., Nishant R., Navin K., Pankaj G. (2012) Green tea: a magical herb with miraculous outcomes. Int. Res. J. Pharm3: 139–14

Júnior J., Morais S., Gomez C., Molas C., Rolon M., Boligon A., Athayde M., Oliveira C., Tintino S., Coutinho H. (2016) Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast “Cerrado”. Saudi J. Biol. Sci. 23: 434–440

Kayser O., Kiderlen A., Croft S. (2003) Natural products as antiparasitic drugs. Parasitol. Res. 90 Suppl 2: S55–62

Kochman J., Jakubczyk K., Antoniewicz J., Mruk H., Janda K. (2021) Health benefits and chemical composition of matcha green tea: A review. Molecules 26: 85

Li X., Brasseur P., Agnamey P., Leme´teil D., Favennec L., Ballet J., Rossignol J. al. (2003) Long-lasting anticryptosporidial activity of nitazoxanide in an immunosuppressed rat model. Folia Parasitol50:19–22

MacPherson D., McQueen R. (1993) Cryptosporidiosis: multiattribute evaluation of six diagnostic methods. J. Clin. Microbiol31: 198–202

Mammeri M., Chevillot A., Thomas M., Polack B., Julien C., Marden J., et al. ( 2018) Efficacy of chitosan, a natural polysaccharide, against Cryptosporidium parvum in vitro and in vivo in neonatal mice. Exp Parasitol194: 1–8

Marzook N., Sateriale A. (2020) Crypto-Currency: Investing in new models to advance the study of Cryptosporidium infection and immunity. Front. Cell Infect. Microbiol10: 1–7

Moawad H., Hegab M.H., Badawey M.S., Ashoush S.E., Ibrahim S.M., Ali A.A.( 2021) Assessment of chitosan nanoparticles in improving the efficacy of nitazoxanide on cryptosporidiosis in immunosuppressed and immunocompetent murine models. J. Parasit. Dis. 45: 606-619. http://dx.doi.org/10.1007/s12639-020-01337-y. PMid:34475640

Paget G., Barnes J. (1964) Evaluation of drug activities. In: Laurence DR Backarach AL (eds.) Pharmacometrics London and New York: Academic Press.

Peat J., Barton B. (2005) Medical statistics. A guide to data analysis and critical appraisal. First edition. Wiley-Blackwell 113–119

Reese N., Current W., Ernst J., Bailey W. (1982) Cryptosporidiosis of man and calf: a case report and results of experimental infections in mice and rats. Am. J. Trop. Med. Hyg31: 226–229

Reygaert W. (2018) Green tea catechins: Their use in treating and preventing infectious diseases. Biomed Res. Inst. doi: 10.1155/2018/9105261

Shaker E., Al-Shaibani K., jameel Al-abodi H. (2018) Effect of alcohol extract of green tea plant Camellia sinensis as a therapeutic treatment of parasite Entamoeba histolytica. Plant Arch. 18: 953–959

Sobeh M., Mahmoud M., Hasan R., Abdelfattah M., Sabry O., Ghareeb M., El-Shazly A., Wink M. (2018) Tannin-rich extracts from Lannea stuhlmannii and Lannea humilis (Anacardiaceae) exhibit hepatoprotective activities in vivo via enhancement of the anti-apoptotic protein Bcl-2. Sci. Rep. 8: 9343

Sofowora A. (1993). Medicinal plants and traditional medicine in Africa. Spectrum Books Ltd, Ibadan, Nigeria, 289–300

Spano F, Puri C, Ranucci L, Putignani L, Crisanti A. ( 1997a) Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology 114: 427-437. https://doi.org/10.1017/S0031182096008761

Spano F., Putignani L., McLauchlin J., Casemore D., Crisanti A. (1997b) PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiol. Lett. 150: 209–217. https://doi.org/10.1016/S0378-1097(97)00115-8  

Sparks H., Nair G., Castellanos-Gonzalez A., White A. C. (2015) Treatment of Cryptosporidium: what we know, gaps, and the way forward. Curr. Trop. Med. Rep2:181–187

Steinmann J., Buer J., Pietschmann T., Steinmann E. (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol168: 1059–1073 34 E. S. El-Wakil et al.

Taha N. M., Yousof H. A., El-Sayed S. H., Younis A. I., Negm M. S. ( 2017) Atorvastatin repurposing for the treatment of cryptosporidiosis in experimentally immunosuppressed mice. Exp Parasitol181: 57–69. http://dx.doi.org/10.1016/j.exppara.2017.07.010. PMid:28764965

Tarazona R., Blewett D., Carmona D. (1998) Cryptosporidium parvum infection in experimentally infected mice: Infection dynamics and effect of immunosuppression. Folia Parasitol45: 101–107

Thipubon P., Tipsuwan W., Uthaipibull C., Santitherakul S., Srichairatanakool S. (2015) Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice. Asian Pac. J. Trop. Biomed5: 932–936

Trease G., Evans W. (1983) Pharmacognosy, 12th Ed. Bailliere Tindall, London, 21–22

Trease G., Evans W. (1989) Pharmacognosy, 13th Ed. Bailliere Tindall, London, 1989, 176–180

Vigueira P., Ray S., Martin B., Ligon M., Paul K. (2012) Effects of the green tea catechin (−)-epigallocatechin gallate on Trypanosoma brucei. Int. J. Parasitol: Drugs Drug Resist. 2: 225–229

Ware M., Keely S., Villegas E. (2013) Development and evaluation of an off-the-slide genotyping technique for identifying Giardia cysts and Cryptosporidium oocysts directly from US EPA Method 1623slides. J. Appl. Microbiol18, doi:10.1111/jam.12223

Waters W. R., Harp J. A. (1996) Cryptosporidium parvum infection in T-cell receptor (TCR)-alpha- and TCR-delta-deficient mice. Infect. Immun64: 1854–18577(5), 785–791

Weber R., Bryan R., Bishop H., Wahlquist S., Sullivan J., Juranek D. (1991) Threshold of detection of Cryptosporidium oocysts in human stool specimens: evidence for low sensitivity of current diagnostic methods. J. Clin. Microbiol. 29: 1323–1327

Yu J., Lee S., Park W. (2009) Comparative sensitivity of PCR primer sets for detection of Cryptosporidium parvum. Korean J. Parasitol47: 293–297. https://doi.org/10.3347/KJP.2009. 47. 3.293.

Zaglool D., Mohamed A., Khodari Y. et al. (2013) Crypto-Giardia antigen rapid test versus conventional modified Ziehl-Neelsen acid fast staining method for diagnosis of cryptosporidiosis. Asian Pac. J. Trop. Med. 6: 212–215

Zhu G., Yin J., Cuny G. (2021) Current status and challenges in drug discovery against the globally important zoonotic cryptosporidiosis. Animal Diseases 1, 3. https://doi.org/10.1186/s44149-021-00002-y.

Information

Information: Acta Protozoologica, 2022, Volume 61, pp. 23 - 34

Article type: Original article

Authors

Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt

Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt

Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Giza, Egypt

Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt

Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt

Published at: 2022

Article status: Open

Licence: CC BY  licence icon

Percentage share of authors:

Eman S. El-Wakil (Author) - 20%
Eman Ali Mohamed (Author) - 20%
Eman Ahmed El-Wakil (Author) - 20%
Tarek S. AbouShousha (Author) - 20%
Neimat Mousa Amer (Author) - 20%

Article corrections:

-

Publication languages:

English