Anti-cryptosporidial activity of Camellia sinensis (green tea extract) in experimentally infected immunocompromised mice
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEAnti-cryptosporidial activity of Camellia sinensis (green tea extract) in experimentally infected immunocompromised mice
Publication date: 2022
Acta Protozoologica, 2022, Volume 61, pp. 23 - 34
https://doi.org/10.4467/16890027AP.22.002.16205Authors
Anti-cryptosporidial activity of Camellia sinensis (green tea extract) in experimentally infected immunocompromised mice
Cryptosporidium parvum, an Apicomplexan parasite, is an important cause of diarrheal disease, especially in immunodeficient hosts. Nevertheless, there is no entirely successful therapeutic agent against cryptosporidiosis to date. Hence, this study aims to test the potential prophylactic and therapeutic effect of Camellia sinensis (green tea extract) in dexamethasone immunosuppressed mice versus the nowadays used drug, Nitazoxanide (NTZ). Parasitological and molecular methods were used to characterize Cryptosporidium oocysts before infection. Fifty bred female Swiss Albino mice were divided into 5 groups; group I (GI)(GTP): immunosuppressed and prophylactically treated with green tea extract for 5 days prior to infection, group II (GII)(GTT): immunosuppressed, infected with Cryptosporidium parvum and treated with green tea extract, group III (GIII)(NT): immunosuppressed, infected and treated with NTZ, group IV (GIV)(PC): immunosuppressed and infected (Positive control), group V (GV)(NC): immunosuppressed and non-infected (Negative control). Furthermore, parasitological examination for oocysts in the stool, and histopathological examination for the small intestine and liver specimens were performed for the study groups. Cryptosporidium oocysts used for induction of infection proved to be Cryptosporidium parvum genotype 2. Moreover, a significant oocyst reduction in fecal samples correlated with an improvement of histopathological changes in the small intestinal and liver tissues in GI(GTP), GII (GTT) and GIII(NT) groups. Besides, the GII(GTT) group showed the best improvement in parasitological and histopathological parameters among the test groups. This study revealed that Camellia sinensis (green tea extract) has potential activity against cryptosporidiosis and could serve as a promising prophylactic and therapeutic anti-cryptosporidial agent.
Abdelmaksoud H., El-Ashkar A., Elgohary S., El-Wakil E. (2020) Potential therapeutic and prophylactic effects of Asafoetida in murine cryptosporidiosis. J. Parasit. Dis. 44: 646–653
Abdou A., Harba N., Afifi A., Elnaidany N. (2013) Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia. Int. J. Infect. Dis. 17: e593–e600
Aboulaila M., Yokoyama N., Igarashi I. (2010) Inhibitory effects of (-)-epigallocatechin-3-gallate from green tea on the growth of Babesia parasites. Parasitology 137: 785–791
Abubakar I., Aliyu S., Arumugam C., Usman N., Hunter P. (2007) Treatment of cryptosporidiosis in immunocompromised individuals: systematic review and metaanalysis. Br. J. Clin. Pharmacol. 63: 387–393
AbuEl-Ezz N.T., Khalil F.A., Shaapan R.M. (2011) Therapeutic effect of onion (Allium cepa) and cinnamon (Cinnamomum zeylanicum) oils on cryptosporidiosis in experimentally infected mice. Glob. Vet. 7: 179–183
Arrowood M. (1997) In: Fayer, editor. Cryptosporidium and cryptosporidiosis. New York: CRC Press; 43–64
Arrowood M., Donaldson K. (1996) Improved purification methods for calf-derived Cryptosporidium parvum oocysts using discontinuous sucrose and cesium chloride gradients. J. Eukaryot, Microbiol. 43: 89S–89S
Ashigbie P., Shepherd S., Steiner K., Amadi B., Aziz N., Manjunatha U., Spector J., Diagana T., Kelly P. (2021) Use-case scenarios for an anti-Cryptosporidium therapeutic. PLoS Negl. Trop. Dis. 15: e0009057
Atia M., Abdul Fattah M., Abdel Rahman H., Mohammed F., Al-Ghandour A. (2016) Assessing the efficacy of nitazoxanide in treatment of cryptosporidiosis using PCR examination. J. Egypt. Soc. Parasitol. 46: 683–692
Baishanbo A., Gargala G., Duclos C., François A., Rossignol J. F., Ballet J. J., Favennec L.(2006) Efficacy of nitazoxanide and paromomycin in biliary tract cryptosporidiosis in an immunosuppressed gerbil model. J. Antimicrob. Chemother. 57: 353–355
Benamrouz S., Guyot K., Gazzola S., Mouray A., Chassat T., Delaire B., Chabe M., Gosset P., Viscogliosi E., Dei-Cas E., Creusy C., Conseil V., Certad G. (2012) Cryptosporidium parvum infection in SCID Mice Infected with only one oocyst: qPCR assessment of parasite replication in tissues and development of digestive cancer. PLoS ONE 7: e51232
Boehm K., Borrelli F., Ernst E., Habacher G., Hung S., Milazzo S., Horneber M. (2009) Green tea Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews. 3, doi: 10.1002/14651858.CD005004
Cabada M. M., White Jr., A. C. (2010) Treatment of cryptosporidiosis: do we know what we think we know? Curr. Opin. Infect. Dis. 23: 494–499
Caccio S., Widmer G. (2014) Cryptosporidium: Parasite and Disease. Springer, Wien, Heidelberg, New York, Dordrecht, London
Caccio S., Thompson R., McLauchlin J. et al. (2005) Unravelling Cryptosporidium and Giardia epidemiology. Trends Parasitol. 21: 430–437
Drury R., Wallington E. (1980) Carleton’s Histological Technique. 5th ed. Oxford, New York, Toronto: Oxford University Press 5: 41–54
Edeoga H., Okwu D., Mbaebie B. (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 4: 685–688
El-Sayed N. M., Fathy G. M. (2019) Prophylactic and therapeutic treatments’effect of moringa oleifera methanol extract on cryptosporidium infection in immunosuppressed mice. AntiInfect Agents. 17: 130–137
El-Wakil E., Salem A., Al-Ghandour A. (2021) Evaluation of possible prophylactic and therapeutic effect of mefloquine on experime tal cryptosporidiosis in immunocompromised mice. J. Parasit. Dis. 45: 380-393. https://doi.org/10.1007/s12639-020-01315-4
Feng Y., Ryan U., Xiao, L. (2018) Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol. 34: 997–1011; https://doi.org/10.1016/j.pt.2018.07.009
Fichtenbaum C., Zackin R., Feinberg J., Benson C., Griffiths J., AIDS Clinical Trials Group New Works Concept Sheet Team 064 (2000) Rifabutin but not clarithromycin prevents cryptosporidiosis in persons with advanced HIV infection. Aids 14: 2889–2893
Gaafar M. R. (2012) Efficacy of Allium sativum (garlic) against experimental cryptosporidiosis. AJM. 48: 59–66
Garcia L. S. (2007) Clinically important human parasites: Intestinal protozoa: Cryptosporidium spp. In: Diagnostic Medical Parasitology. Garcia LS 5th ed ASM press Washington DC 2: 771–812
Gargala G. (2008) Drug treatment and novel drug target against Cryptosporidium. Parasite 15: 275–281. https://doi.org/10.1051/parasite/2008153275
Ghareeb M., Shoeb H., Madkour H., Refaey L., Mohamed M., Saad A(2014) Antioxidant and cytotoxic activities of Tectona grandis Linn leaves. Int. J. Phytopharm. 5: 143–157
Ghareeb M., Mohamed T., Saad A., Refahy L., Sobeh M., Wink M. (2018a) HPLC-DAD-ESI-MS/MS analysis of fruits from Firmiana simplex (L.) and evaluation of their antioxidant and antigenotoxic properties. J. Pharm. Pharmacol. 70: 133–142
Ghareeb M., Sobeh M., Rezq S., El-Shazly A., Mahmoud M., Wink M. (2018b) HPLC-ESI-MS/MS profiling of polyphenolics of a leaf extract from Alpinia zerumbet (Zingiberaceae) and its anti-inflammatory, anti-nociceptive, and antipyretic activities in vivo. Molecules 23: 3238
Ghareeb M., Sobeh M., El-Maadawy W., Mohammed H., Khalil H., Botros S., Wink M. (2019) Chemical profiling of polyphenolics in Eucalyptus globulus and evaluation of its hepato-renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 8: 415
Guida M., Esteva M., Camino A., Flawia M., Torres H et al. (2007) Trypanosoma cruzi: in vitro and in vivo anti-proliferative effects of epigallocatechin gallate (EGCg). Exp. Parasitol. 117: 188–194
Hanschei T., Melo Cristino J., Salgado M. (2008) Screening of auramine stained smears of all fecal samples is a rapid and inexpensive way to increase the detection of coccidial infections. Int. J. Infect. Dis. 12: 47–50
Harborne J. B. (1993) Phytochemistry. Academic Press, London, 89–131
Henriksen S., Pohlenz J. (1981) Staining of cryptosporidia by a modified Ziehl-Neelsen technique. Acta Vet. Scand. 22: 594
Holmberg S., Moorman A., Von Bargen J., Palella F., Loveless M., Ward D. (1998) HIV outpatient study (hops) investigators possible effectiveness of clarithromycin and rifabutin for cryptosporidiosis chemoprophylaxis in HIV disease. JAMA. 279: 384–386
Hosking B., Watson T., Leathwick D. (1996) Multigeneric resistance to oxfendazole by nematodes in cattle. Vet. Rec. 138: 67–68
Inacio J., Canto-Cavalheiro M., Almeida-Amaral E. (2013) In vitro and in vivo effects of (-)-epigallocatechin 3-O-gallate on Leishmania amazonensis. J. Nat. Prod. 76: 1993–1996
Innes E., Chalmers R., Wells B., Pawlowic M. C. (2020) A one health approach to tackle cryptosporidiosis: A review. Trends Parasitol. 36: 290–303
Jigisha A., Nishant R., Navin K., Pankaj G. (2012) Green tea: a magical herb with miraculous outcomes. Int. Res. J. Pharm. 3: 139–14
Júnior J., Morais S., Gomez C., Molas C., Rolon M., Boligon A., Athayde M., Oliveira C., Tintino S., Coutinho H. (2016) Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast “Cerrado”. Saudi J. Biol. Sci. 23: 434–440
Kayser O., Kiderlen A., Croft S. (2003) Natural products as antiparasitic drugs. Parasitol. Res. 90 Suppl 2: S55–62
Kochman J., Jakubczyk K., Antoniewicz J., Mruk H., Janda K. (2021) Health benefits and chemical composition of matcha green tea: A review. Molecules 26: 85
Li X., Brasseur P., Agnamey P., Leme´teil D., Favennec L., Ballet J., Rossignol J. al. (2003) Long-lasting anticryptosporidial activity of nitazoxanide in an immunosuppressed rat model. Folia Parasitol. 50:19–22
MacPherson D., McQueen R. (1993) Cryptosporidiosis: multiattribute evaluation of six diagnostic methods. J. Clin. Microbiol. 31: 198–202
Mammeri M., Chevillot A., Thomas M., Polack B., Julien C., Marden J., et al. ( 2018) Efficacy of chitosan, a natural polysaccharide, against Cryptosporidium parvum in vitro and in vivo in neonatal mice. Exp Parasitol. 194: 1–8
Marzook N., Sateriale A. (2020) Crypto-Currency: Investing in new models to advance the study of Cryptosporidium infection and immunity. Front. Cell Infect. Microbiol. 10: 1–7
Moawad H., Hegab M.H., Badawey M.S., Ashoush S.E., Ibrahim S.M., Ali A.A.( 2021) Assessment of chitosan nanoparticles in improving the efficacy of nitazoxanide on cryptosporidiosis in immunosuppressed and immunocompetent murine models. J. Parasit. Dis. 45: 606-619. http://dx.doi.org/10.1007/s12639-020-01337-y. PMid:34475640
Paget G., Barnes J. (1964) Evaluation of drug activities. In: Laurence DR Backarach AL (eds.) Pharmacometrics London and New York: Academic Press.
Peat J., Barton B. (2005) Medical statistics. A guide to data analysis and critical appraisal. First edition. Wiley-Blackwell 113–119
Reese N., Current W., Ernst J., Bailey W. (1982) Cryptosporidiosis of man and calf: a case report and results of experimental infections in mice and rats. Am. J. Trop. Med. Hyg. 31: 226–229
Reygaert W. (2018) Green tea catechins: Their use in treating and preventing infectious diseases. Biomed Res. Inst. doi: 10.1155/2018/9105261
Shaker E., Al-Shaibani K., jameel Al-abodi H. (2018) Effect of alcohol extract of green tea plant Camellia sinensis as a therapeutic treatment of parasite Entamoeba histolytica. Plant Arch. 18: 953–959
Sobeh M., Mahmoud M., Hasan R., Abdelfattah M., Sabry O., Ghareeb M., El-Shazly A., Wink M. (2018) Tannin-rich extracts from Lannea stuhlmannii and Lannea humilis (Anacardiaceae) exhibit hepatoprotective activities in vivo via enhancement of the anti-apoptotic protein Bcl-2. Sci. Rep. 8: 9343
Sofowora A. (1993). Medicinal plants and traditional medicine in Africa. Spectrum Books Ltd, Ibadan, Nigeria, 289–300
Spano F, Puri C, Ranucci L, Putignani L, Crisanti A. ( 1997a) Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology 114: 427-437. https://doi.org/10.1017/S0031182096008761
Spano F., Putignani L., McLauchlin J., Casemore D., Crisanti A. (1997b) PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiol. Lett. 150: 209–217. https://doi.org/10.1016/S0378-1097(97)00115-8
Sparks H., Nair G., Castellanos-Gonzalez A., White A. C. (2015) Treatment of Cryptosporidium: what we know, gaps, and the way forward. Curr. Trop. Med. Rep. 2:181–187
Steinmann J., Buer J., Pietschmann T., Steinmann E. (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol. 168: 1059–1073 34 E. S. El-Wakil et al.
Taha N. M., Yousof H. A., El-Sayed S. H., Younis A. I., Negm M. S. ( 2017) Atorvastatin repurposing for the treatment of cryptosporidiosis in experimentally immunosuppressed mice. Exp Parasitol. 181: 57–69. http://dx.doi.org/10.1016/j.exppara.2017.07.010. PMid:28764965
Tarazona R., Blewett D., Carmona D. (1998) Cryptosporidium parvum infection in experimentally infected mice: Infection dynamics and effect of immunosuppression. Folia Parasitol. 45: 101–107
Thipubon P., Tipsuwan W., Uthaipibull C., Santitherakul S., Srichairatanakool S. (2015) Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice. Asian Pac. J. Trop. Biomed. 5: 932–936
Trease G., Evans W. (1983) Pharmacognosy, 12th Ed. Bailliere Tindall, London, 21–22
Trease G., Evans W. (1989) Pharmacognosy, 13th Ed. Bailliere Tindall, London, 1989, 176–180
Vigueira P., Ray S., Martin B., Ligon M., Paul K. (2012) Effects of the green tea catechin (−)-epigallocatechin gallate on Trypanosoma brucei. Int. J. Parasitol: Drugs Drug Resist. 2: 225–229
Ware M., Keely S., Villegas E. (2013) Development and evaluation of an off-the-slide genotyping technique for identifying Giardia cysts and Cryptosporidium oocysts directly from US EPA Method 1623slides. J. Appl. Microbiol. 18, doi:10.1111/jam.12223
Waters W. R., Harp J. A. (1996) Cryptosporidium parvum infection in T-cell receptor (TCR)-alpha- and TCR-delta-deficient mice. Infect. Immun. 64: 1854–18577(5), 785–791
Weber R., Bryan R., Bishop H., Wahlquist S., Sullivan J., Juranek D. (1991) Threshold of detection of Cryptosporidium oocysts in human stool specimens: evidence for low sensitivity of current diagnostic methods. J. Clin. Microbiol. 29: 1323–1327
Yu J., Lee S., Park W. (2009) Comparative sensitivity of PCR primer sets for detection of Cryptosporidium parvum. Korean J. Parasitol. 47: 293–297. https://doi.org/10.3347/KJP.2009. 47. 3.293.
Zaglool D., Mohamed A., Khodari Y. et al. (2013) Crypto-Giardia antigen rapid test versus conventional modified Ziehl-Neelsen acid fast staining method for diagnosis of cryptosporidiosis. Asian Pac. J. Trop. Med. 6: 212–215
Zhu G., Yin J., Cuny G. (2021) Current status and challenges in drug discovery against the globally important zoonotic cryptosporidiosis. Animal Diseases 1, 3. https://doi.org/10.1186/s44149-021-00002-y.
Information: Acta Protozoologica, 2022, Volume 61, pp. 23 - 34
Article type: Original article
Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Giza, Egypt
Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
Published at: 2022
Article status: Open
Licence: CC BY
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 526
Number of downloads: 590