Acanthamoeba polyphaga Trophozoite Binding of Representative Fungal Single Cell Forms
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEAcanthamoeba polyphaga Trophozoite Binding of Representative Fungal Single Cell Forms
Publication date: 2010
Acta Protozoologica, 2010, Volume 49, Issue 4, pp. 289 - 300
Authors
Acanthamoeba polyphaga Trophozoite Binding of Representative Fungal Single Cell Forms
Acanthamoeba polyphaga trophozoites bind yeast cells of Candida albicans isolates within a few hours, leaving few cells in suspension or still attached to trophozoite surfaces. The nature of yeast cell recognition, mediated by an acanthamoebal trophozoite mannose binding protein is confi rmed by experiments utilizing concentration dependent mannose hapten blocking. Similarly, acapsulate cells of Cryptococcus neoformans are also bound within a relatively short timescale. However, even after protracted incubation many capsulate cells of Cryptococcus remain in suspension, suggesting that the capsulate cell form of this species is not predated by acanthamoebal trophozoites.
Further aspects of the association of Acanthamoeba and fungi are apparent when studying their interaction with conidia of the biocontrol agent Coniothyrium minitans. Conidia which readily bind with increasing maturity of up to 42 days, were little endocytosed and even released. Cell and conidial surface mannose as determined by FITC-lectin binding, fl ow cytometry with associated ligand binding analysis and hapten blocking studies demonstrates the following phenomena. Candida isolates and acapsulate Cryptococcus expose most mannose, while capsulate Cryptococcus cells exhibit least exposure commensurate with yeast cellular binding or lack of trophozoites. Conidia of Coniothyrium, albeit in a localized fashion, also manifest surface mannose exposure but as shown by Bmax values, in decreasing amounts with increasing maturity. Contrastingly such conidia experience greater trophozoite binding with maturation, thereby questioning the primacy of a trophozoite mannose-binding-protein recognition model.
Allen P. G., Dawidowicz E. A. (1990) Phagocytosis in Acanthamoeba: a mannose receptor is responsible for the binding and phagocytosis of yeast. J. Cellular Physiol. 145: 508–513
Barker J., Brown M. R. W., Collier P. J., Farrell I., Gilbert P. (1992) Relationship between Legionella pneumophila and Acanthamoeba polyphaga physiological status and susceptibility to chemical inactivation. Appl. Environ. Microbiol. 58: 2420–2425
Barker J., Lambert P. A., Brown M. R. W. (1993) Infl uence of intraamoebic and other growth conditions on the surface properties of Legionella pneumophila. Infect. Immun. 61: 3503–3510
Barker J., Humphrey T. J., Brown M. R. W. (1999) Survival of Escherichia coli 0157 in a soil protozoan: implications for disease. FEMS Microbiol. Lett. 173: 291–295
Biddick C. J., Rogers L. H., Brown T. J. (1984) Viability of pathogenic and non pathogenic free-living amoebae in long term storage at a range of temperatures. Appl. Environ. Microbiol. 48: 859–860
Casadevall A., Perfect J. R. (1998) Cryptococcus neoformans. American Society for Microbiology, Washington DC
Doering T. (1999) A unique α-1,3 mannosyltransferase of the pathogenic fungus Cryptococcus neoformans. J. Bacteriol. 181: 5482–5488
Elloway E. A. G., Armstrong R. A., Bird R. A., Kelly S. L., Smith S. N. (2004) Analysis of Acanthamoeba polyphaga surface carbohydrate exposure by FITC-lectin binding and fl uorescence evaluation. J. App. Microbiol. 97: 1319–1325
Fischer G., Schwalbe R., Moller M., Ostrowski R., Dott W. (1999) Species-specifi c production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39: 795–810
Foster A. J., Bird R. A., Kelly S. L., Nishimura K., Poyner D., Taylor S., Smith S. N. (2004) FITC-lectin avidity of Cryptococcus neoformans cell wall and capsular components. Mycologia 96: 1–8
Fraser I. P., Ezekowitz A. B. (1999) Mannose receptor and phagocytosis. In: Advances in Cellular and Molecular Biology of Membranes and Organelles, (Ed. S. Gordon). JAI Press, Stamford, 5: 87–101
Garate M., Cao Z., Bateman E., Panjwani N. (2004) Cloning and characterization of a novel mannose-binding protein of Acanthamoeba. J. Biol. Chem. 279: 29849–29856
Garate M., Cubillos I., Marchant J., Panjwani N. (2005) Biochemical characterization and functional studies of Acanthamoeba mannose-binding protein. Infect. Immun. 73: 5775–5781
Gooday G. W. (1995) Cell Walls. In: The Growing Fungus, (Eds. N. A. R. Gow, G. M. Gadd). Chapman and Hall, London, pp. 45–62
Gordon S. (2002) Pattern recognition receptors: doubling up for the innate immune response. Cell 111: 927–930
Haase G., Brakhage A. A. (2004) Melanized fungi infecting humans: function of melanin as a factor in pathogenesis. In: The Mycota: Human Fungal Pathogens XII, (Eds. J. E. Domer, G. S. Kobayashi). Springer, Berlin, pp. 67–87
Hobson R. P. (2000) The effects of diffusates from the spores of Aspergillus fumigatus and A. terreus on human neutrophils, Naegleria gruberi and Acanthamoeba castellanii. Med. Mycol. 38: 133–141
Khan N. A. (2009) Acanthamoeba: Biology and Pathogenesis. Caister Academic Press, Norfolk, UK
Leher H., Silvany R., Alizadeh H., Huang J., Niederkorn J. Y. (1998) Mannose induces the release of cytopathic factors from Acanthamoeba castellanii. Infect. Immun. 66: 5–10
McQuilken M. P., Mitchell S. J., Budge J. P., Whipps J. M., Fenlon J. S., Archer S. (1995) The effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in fi eld grown oilseed rape. Plant Pathol. 44: 883–896
McQuilken M. P., Gemmill J., Hill R. A., Whipps J. M. (2003) Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol. Lett. 219: 27–31
Nosanchuk J. D., Cleare W., Franzot S. P., Casadevall A. (1999) Amphotericin B and fl uconazole affect cellular charge, macrophage phagocytosis and cellular morphology of Cryptococcus neoformans at subinhibitory concentrations. Antimicrob. Agents Chemother. 43: 233–239
Odds F. C., Gow N. A. R., Brown A. J. P. (2006). Toward a molecular understanding of Candida albicans virulence. In: Molecular Principles of Fungal Pathogenesis, (Eds. J. Heitman, S. G. Filler, J. E. Edwards, A. P. Mitchell). American Society for Microbiology, Washington DC, pp. 305–319
Perfect J. R. (2006) Cryptococcus neoformans: a sugar coated killer. In: Molecular Principles of Fungal Pathogenesis, (Eds. J. Heitman, S. G. Filler, J. E. Edwards, A. P. Mitchell). American Society for Microbiology, Washington DC, pp. 281–303
Robertson M. D. (1991) Suppression of phagocytic cell responses by conidia and conidial products of Aspergillus fumigatus. In: The Fungal Spore and Disease Initiation in Plants and Animals, (Eds. G. T. Cole, H. V. Hoch). Plenum Press, New York, pp. 461–480
Rodriguez-Zaragoza S. (1994) Ecology of free-living amoebae. Crit. Rev. Microbiol. 20: 225–241
Rowbotham T. J. (1983) Isolation of Legionella pneumophila from clinical specimens via amoebae, and the interaction of those and other isolates with amoebae. J. Clin. Pathol. 36: 978–986
Sandys-Winsch C., Whipps J. M., Gerlagh M., Kruse M. (1993) World distribution of the sclerotial mycoparasite Coniothyrium minitans. Mycol. Res. 97: 1175–1178
Smith S. N., Chohan R., Armstrong R. A., Whipps J. M. (1998) Hydrophobicity and surface electrostatic charge of conidia of the mycoparasite Coniothyrium minitans. Mycol. Res. 102: 243–249
Smith S. N., Armstrong R. A., Barker M., Bird R. A., Chohan R., Hartell N. A., Whipps J. M. (1999) Determination of Coniothyrium minitans conidial and germling lectin avidity by fl ow cytometry and digital microscopy. Mycol. Res. 103: 1533–1539
Smith S. N., Armstrong R. A., Bird R. A., Chohan R., Hartell N. A., Poyner D. A. (2001) Characterization of FITC-conjugated lectin binding to Candida albicans. Mycologia 93: 422–431
Van Damme E. J. M., Peumans W. J., Pusztai A., Bardoz S. (1998) Handbook of Plant Lectins: properties and biomedical applications. John Wiley & Sons, Chichester
Vesper S. J., Vesper M. J. (2002) Stachylysin may be a cause of haemorrhaging in humans exposed to Stachybotrys chartarum. Infect. Immun. 70: 2065–2069
Visvesvara G. S. and Stehr-Green J. K. (1990) Epidemology of freeliving ameba infections. J. Protozool. 37: 25S–33S
Whipps J. M. and Gerlagh M. (1992) Biology of Coniothyrium minitans and its potential for use in biocontrol. Mycol. Res. 96: 897–907
Whipps J. M., Davies K. G. (2000) Success in biological control of plant pathogens and nematodes by microorganisms. In: Biological Control: Measures of Success, (Eds. G. Gurr, S. Wratten). Kluwer Academic Publishers, Dordrecht, pp. 231–269
Whipps J. M., McQuilken M. P. (2009) Biological control agents in plant disease control. In: Disease Control in Crops: Biological and Environmentally Friendly Approaches, (Ed. D. Walters). Wiley Blackwell Publishers, Oxford, pp. 27–61
Wingard L. B., Brody T. M., Larrier J., Schwartz A. (1991) Human Pharmacology: Molecular to Clinical.Wolfe Publishing, St Louis
Information: Acta Protozoologica, 2010, Volume 49, Issue 4, pp. 289 - 300
Article type: Original article
Aston University, Birmingham, UK
Aston University, Birmingham, UK
Aston University, Birmingham, UK
Aston University, Birmingham, UK
University of Warwick, Wellesborne, Warwick, UK
Published at: 2010
Received at: 03.04.2010
Accepted at: 15.07.2010
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 276
Number of downloads: 291