FAQ

Subsolution theorem for the complex Hessian equation

Data publikacji: 05.06.2012

Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 69-88

https://doi.org/10.4467/20843828AM.12.003.1124

Autorzy

Ngoc Cuong Nguyen
Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska
Kontakt z autorem
Wszystkie publikacje autora →

Pobierz pełny tekst

Tytuły

Subsolution theorem for the complex Hessian equation

Abstrakt

We prove the subsolution theorem for a complex Hessian equation in a smoothly bounded strongly m-pseudoconvex domain in Cn.

Bibliografia

1. Bedford E., Taylor B. A., The Dirichlet  problem for a complex Monge–Amp`ere equation, Invent. 

Math., 37 (1976), 1–44. 2. Bedford E., Taylor B. A., A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1–40.

3. Błocki Z., Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, No. 5 (2005), 1735–1756.

4. Caffarelli L., Nirenberg L., Spruck J., The Dirichlet  problem for nonlinear second order elliptic  equations, III: Functions  of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261–301.

5. Cegrell U., Pluricomplex energy, Acta Math., 180, No. 2 (1998), 187–217. 6. Cegrell U., The general definition  of the complex Monge–Amp`ere  operator, Ann. Inst. Fourier (Grenoble), 54 (2004), 159–179.

7. Demailly J. P., Potential theory in several complex variable, Lecture notes, ICPAM, Nice, 1989.

8. Demailly J. P., Complex analytic and differential  geometry, available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html, (September 2009).

9. Dinew S., An inequality for mixed Monge–Amp`ere  measures,  Math.  Zeit., 262 (2009), 1–15.

10. Dinew S., Ko-lodziej S., A priori  estimates for the complex Hessian equations, preprint arXiv:1112.3063.

11. G˚arding L., An inequality for hyperbolic polynomials, J. Math. Mech., 8 (1959), 957–965.

12. H¨ormander L., Notions of convexity, Birkhauser, Boston, 1994.

13. Kołodziej S., The range of the complex Monge–Amp`ere operator II, Indiana U. Math. J., 44, No. 3 (1995), 765-782.

14. Kołodziej S., The complex Monge–Amp`ere  equation and pluripotential  theory, Memoirs Amer. Math. Soc., 178 (2005).

15. Li S.-Y., On the Dirichlet  problems for symmetric function equations of the eigenvalues of the  complex Hessian, Asian J. Math., 8 (2004), 87–106.

16. Trudinger N. S., Wang X.-J., Hessian measures II, Ann. of Math., 150 (1999), 579–604.

17. Wang X.-J., The k-Hessian equation, Lect. Not. Math., 1977 (2009).

Informacje

Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 69-88

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Angielski:

Subsolution theorem for the complex Hessian equation

Polski:

Subsolution theorem for the complex Hessian equation

Autorzy

Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska

Publikacja: 05.06.2012

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Ngoc Cuong Nguyen (Autor) - 100%

Korekty artykułu:

-

Języki publikacji:

Angielski

Liczba wyświetleń: 1907

Liczba pobrań: 1267

<p> Subsolution theorem for the complex Hessian equation</p>

Subsolution theorem for the complex Hessian equation

cytuj

Pobierz PDF Pobierz

pobierz pliki

RIS BIB ENDNOTE