Subsolution theorem for the complex Hessian equation
Wybierz format
RIS BIB ENDNOTESubsolution theorem for the complex Hessian equation
Data publikacji: 05.06.2012
Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 69-88
https://doi.org/10.4467/20843828AM.12.003.1124Autorzy
Subsolution theorem for the complex Hessian equation
We prove the subsolution theorem for a complex Hessian equation in a smoothly bounded strongly m-pseudoconvex domain in Cn.
1. Bedford E., Taylor B. A., The Dirichlet problem for a complex Monge–Amp`ere equation, Invent.
Math., 37 (1976), 1–44. 2. Bedford E., Taylor B. A., A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1–40.
3. Błocki Z., Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, No. 5 (2005), 1735–1756.
4. Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261–301.
5. Cegrell U., Pluricomplex energy, Acta Math., 180, No. 2 (1998), 187–217. 6. Cegrell U., The general definition of the complex Monge–Amp`ere operator, Ann. Inst. Fourier (Grenoble), 54 (2004), 159–179.
7. Demailly J. P., Potential theory in several complex variable, Lecture notes, ICPAM, Nice, 1989.
8. Demailly J. P., Complex analytic and differential geometry, available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html, (September 2009).
9. Dinew S., An inequality for mixed Monge–Amp`ere measures, Math. Zeit., 262 (2009), 1–15.
10. Dinew S., Ko-lodziej S., A priori estimates for the complex Hessian equations, preprint arXiv:1112.3063.
11. G˚arding L., An inequality for hyperbolic polynomials, J. Math. Mech., 8 (1959), 957–965.
12. H¨ormander L., Notions of convexity, Birkhauser, Boston, 1994.
13. Kołodziej S., The range of the complex Monge–Amp`ere operator II, Indiana U. Math. J., 44, No. 3 (1995), 765-782.
14. Kołodziej S., The complex Monge–Amp`ere equation and pluripotential theory, Memoirs Amer. Math. Soc., 178 (2005).
15. Li S.-Y., On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math., 8 (2004), 87–106.
16. Trudinger N. S., Wang X.-J., Hessian measures II, Ann. of Math., 150 (1999), 579–604.
17. Wang X.-J., The k-Hessian equation, Lect. Not. Math., 1977 (2009).
Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 69-88
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Subsolution theorem for the complex Hessian equation
Subsolution theorem for the complex Hessian equation
Instytut Matematyki, Uniwersytet Jagielloński, Kraków, Polska
Publikacja: 05.06.2012
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 1907
Liczba pobrań: 1267