On the rational real Jacobian conjecture
Wybierz format
RIS BIB ENDNOTEOn the rational real Jacobian conjecture
Data publikacji: 09.2014
Universitatis Iagellonicae Acta Mathematica, 2013, Tom 51, s. 7-15
Autorzy
On the rational real Jacobian conjecture
1. Bass H., Connell E. H., Wright D., The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.), 7(2) (1982), 287–330.
2. Bia-lynicki-Birula A., Rosenlicht M., Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc., 13 (1962), 200–203.
3. Byrnes C. I., Lindquist A., A note on the Jacobian conjecture, Proc. Amer. Math. Soc., 136(9) (2008), 3007–3011.
4. Campbell L. A., A condition for a polynomial map to be invertible, Math. Ann., 205 (1973), 243–248.
5. Campbell L. A., Rational Samuelson maps are univalent, J. Pure Appl. Algebra, 92 (1994), 227–240.
6. Campbell L. A., Remarks on the real Jacobian conjecture and Samuelson maps, Appl. Math. Lett., 10 (1997), 1–3.
7. Campbell L. A., The asymptotic variety of a Pinchuk map as a polynomial curve, Appl. Math. Lett., 24(1) (2011), 62–65.
8. Campbell L. A., Pinchuk maps and function fields, J. Pure Appl. Algebra, 218(2) (2014), 297–302.
9. van den Essen A., Polynomial automorphisms and the Jacobian conjecture, volume 190 of Progress in Mathematics, Birkh¨auser Verlag, Basel, 2000.
10. Gale D., Nikaidˆo H., The Jacobian matrix and global univalence of mappings, Math. Ann., 159 (1965), 81–93.
11. Gwo´zdziewicz J., A geometry of Pinchuk’s map, Bull. Polish Acad. Sci. Math., 48(1) (2000), 69–75.
12. Jelonek Z., A geometry of polynomial transformations of the real plane, Bull. Polish Acad. Sci. Math., 48(1) (2000), 57–62.
13. Jelonek Z., Geometry of real polynomial mappings, Math. Z., 239(2) (2002), 321–333.
14. Keller O. H., Ganze Cremona-Transformationen, Monatshefte der Mathematischen Physik, 47 (1939), 299–306.
15. Kurdyka K., Rusek K., Polynomial-rational bijections of Rn , Proc. Amer. Math. Soc., 102 (1988), 804–808.
16. Kurdyka K., Rusek K., Surjectivity of certain injective semialgebraic transformations of Rn , Math. Z., 200 (1988), 141–148.
17. Parthasarathy T., On Global Univalence Theorems, volume 977 of Lecture Notes in Mathematics, Springer Verlag, New York, 1983.
18. Peretz R., The variety of asymptotic values of a real polynomial ´etale map, Journal of Pure and Applied Algebra, 106 (1996), 102–112.
19. Peretz R., The geometry of the asymptotics of polynomial maps, Israel J. Math., 105 (1998), 1–59.
20. Pinchuk S. A counterexample to the strong real Jacobian conjecture, Math. Z., 217(1) (1994), 1–4.
21. Razar M., Polynomial maps with constant Jacobian, Israel Journal of Mathematics, 32 (2–3) (1979), 97–106.
22. Vitushkin A. G., Computation of the Jacobian of a rational transformation of C2 and some applications, Mat. Zametki, 66(2) (1999), 308–312.
23. Wright D. On the Jacobian conjecture, Illinois J. of Math., 25(3) (1981), 423–440.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2013, Tom 51, s. 7-15
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
On the rational real Jacobian conjecture
On the rational real Jacobian conjecture
Publikacja: 09.2014
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 2001
Liczba pobrań: 1745