FAQ

On the gradient of quasi-homogeneous polynomials

Data publikacji: 05.06.2012

Universitatis Iagellonicae Acta Mathematica, 2011, Tom 49, s. 45 - 57

https://doi.org/10.4467/20843828AM.12.003.0455

Autorzy

,
Alain Haraux
Université Pierre et Marie Curie, Paris, France
Wszystkie publikacje autora →
Tien Son Pham
Dalat University, Dalat, Vietnam
Wszystkie publikacje autora →

Tytuły

On the gradient of quasi-homogeneous polynomials

Abstrakt

Let K be the real or the complex field, and let f : Kn → K be a quasi-homogeneous polynomial with weight w := (w1;w2;...,wn) and degree d. Assume that rf(0) = 0. Łojasiewicz well known gradient inequality states that there exists an open neighbourhood U of the origin in Kn and two positive constants c and p < 1 such that for any x → U we have rf(x) > cf(x)p: We prove that if the set K - (f) of points where the Fedoryuk condition fails to hold is nite, then the gradient inequality holds true with p = 1-minj wj/d. It is also shown that if n = 2; then K-(f) is either empty or reduced to {0}.

Bibliografia

1. D'Acunto D., Kurdyka K., Explicit bounds for the  Lojasiewicz exponent in the gradient inequality for polynomials, Ann. Pol. Math., 87 (2005), 51-61.

2. Bochnak J., Risler J. J., Sur les exposants de  Lojasiewicz, Comment. Math. Helv., 50 (1975), 493-507.

3. Chadzyński J., Krasinski T., The gradient of a polynomial at in nity, Kodai Math. J., 26 (2003), 317-339.

4. Fedoryuk M. V., The asymptotics of a Fourier transform of the exponential function of a polynomial, Soviet Math. Dokl., 17 (1976), 486-490.

5. Gwoździewicz J., P loski A., On the gradient of a homogeneous polynomial, Univ. Iagel.Acta Math., 32 (1995), 25-28.

6. Gwoździewicz J., The  Lojasiewicz exponent of an analytic function at an isolated zero, Comment. Math. Helv., 74, No. 3 (1999), 364-375.

7. Gwoździewicz J., Spodzieja S., The  Lojasiewicz gradient inequality in a neighbourhood of the bre, Ann. Polon. Math., 87 (2005), 151-163.

8. Haraux A., Positively homogeneous functions and the  Lojasiewicz gradient inequality, Ann. Polon. Math., 87 (2005), 165-174.

9. Haraux A., Pha.m T. S., On the  Lojasiewicz exponents of quasi-homogeneous functions, preprints of the Laboratoire Jacques-Louis Lions, 2007, Univ. Pierre et Marie Curie, No. R07041 (http://www.ann.jussieu.fr/publications/2007/R07041.pdf).

10. Ha H. V., Nombres de  Lojasiewicz et singularites a l'in ni des polyn^omes de deux variables complexes, Comptes Rendus de l'Acad. des Sciences. Serie I. Mathematique, 311 (1990), 429-432.

11. Jelonek Z., On bifurcation points of a complex polynomial, Proceedings of the AMS, 131, No. 5 (2002), 1361-1367.

12. Kuo T. C., Parusinski A., Newton Polygon relative to an arc, in Real and Complex Singularities (S~ao Carlos, 1998), Chapman & Hall Res. Notes Math., 412 (2000), 76-93.

13. Kurdyka K., Orro P., Simon S., Semialgebraic Sard theorem for generalized critical values, J. Di. Geom., 56 (2000), 67-92.

14. Lojasiewicz S., Ensembles semi-analytiques, preprint IHES, 1965.

15. Parusiński A., On the bifurcation set of a complex polynomial with isolated singularities at innity, Compositio mathematica, 97 (1995), 369-384.

16. Pha.m Frederic, Vanishing homologies and the n variables saddlepoint method, Proc. Symp. Pure Math., 40, (1983) 310-333.

17. Ploski A., Tworzewski P., A separation condition for polynomial mappings, Bull. Pol. Acad. Sci., Math., 44, No. 3 (1996), 327-331.

18. Rabier P. J., On the Malgrange condition for complex polynomials of two variables, Manuscripta Math., 109 (2004), 493-509.

19. Rabier P. J., Ehresmann's rbrations and Palais-Smale conditions for morphisms of Finsler manifolds, Annals of Math., 146 (1997), 647-691.

20. Rodak T., The Fedoryuk Condition and the  Lojasiewicz exponent near a bre of a polynomial, Bull. Acad. Polon. Sci. Math., 52 (2004), 227-229.

21. Spodzieja S.,  Lojasiewicz inequality at in nity for the gradient of a polynomial, Bull. Acad. Polon. Sci. Math., 50 (2002), 273-281.

22. Spodzieja S., The  Lojasiewicz inequality at in nity for the gradient of a polynomial, Ann. Polon. Math., 87 (2005), 247-263.

Informacje

Informacje: Universitatis Iagellonicae Acta Mathematica, 2011, Tom 49, s. 45 - 57

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Angielski:

On the gradient of quasi-homogeneous polynomials

Polski:

On the gradient of quasi-homogeneous polynomials

Autorzy

Université Pierre et Marie Curie, Paris, France

Dalat University, Dalat, Vietnam

Publikacja: 05.06.2012

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Alain Haraux (Autor) - 50%
Tien Son Pham (Autor) - 50%

Korekty artykułu:

-

Języki publikacji:

Angielski

Liczba wyświetleń: 1741

Liczba pobrań: 1030

<p> On the gradient of quasi-homogeneous polynomials</p>