Blowup behavior of the Kahler–Ricci flow on Fano manifolds
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEBlowup behavior of the Kahler–Ricci flow on Fano manifolds
Data publikacji: 05.06.2013
Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 117 - 126
https://doi.org/10.4467/20843828AM.12.003.1127Autorzy
Blowup behavior of the Kahler–Ricci flow on Fano manifolds
We study the blowup behavior at infinity of the normalized Kahler-Ricci flow on a Fano manifold which does not admit Kahler-Einstein metrics. We prove an estimate for the Kahler potential away from a multiplier ideal subscheme, which implies that the volume forms along the flow converge to zero locally uniformly away from the same set. Similar results are also proved for Aubin's continuity method.
1. Aubin T., R´eduction du cas positif de l’´equation de Monge–Amp`ere sur les vari´et´es k¨ahl´eriennes compactes `a la d´emonstration d’une in´egalit´e, J. Funct. Anal., 57, No. 2 (1984), 143–153.
2. Cao H.-D., Deformation of K¨ahler metrics to K¨ahler-Einstein metrics on compact K¨ahler manifolds, Invent. Math., 81, No. 2 (1985), 359–372.
3. Chen X., Donaldson S. K., Sun S., K¨ahler–Einstein metrics and stability, Int. Math. Res. Not. IMRN, 2013, Art. ID rns279, 7 pp.
4. Chen X., Wang B., The K¨ahler Ricci flow on Fano manifolds (I), J. Eur. Math. Soc. (JEMS), 14, No. 6 (2012), 2001–2038.
5. Clarke B., Rubinstein Y., Ricci flow and the metric completion of the space of K¨ahler metrics, to appear in Amer. J. Math., arXiv:1102.3787.
6. Croke C. B., Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. E` cole Norm. Sup. (4), 13, No. 4 (1980), 419–435.
7. Collins T. C., Sz´ekelyhidi G., The twisted K¨ahler–Ricci flow, arXiv:1207.5441.
8. Demailly J.-P., Koll´ar J., Semi-continuity of complex singularity exponents and K¨ahler- Einstein metrics on Fano orbifolds, Ann. Sci. E´ cole Norm. Sup. (4), 34, No. 4 (2001), 525–556.
9. Donaldson S. K., Scalar curvature and stability of toric varieties, J. Differential Geom., 62, No. 2 (2002), 289–349.
10. Donaldson S. K., Sun S., Gromov–Hausdorff limits of K¨ahler manifolds and algebraic geometry, arXiv:1206.2609.
11. Han Q., Lin F., Elliptic partial differential equations, AMS 1997.
12. Li C., On the limit behavior of metrics in continuity method to K¨ahler–Einstein problem in toric Fano case, to appear in Compos. Math., arXiv:1012.5229.
13. Nadel A. M., Multiplier ideal sheaves and K¨ahler–Einstein metrics of positive scalar cur- vature, Ann. of Math. (2,) 132, No. 3 (1990), 549–596.
14. Nadel A. M., Multiplier ideal sheaves and Futaki’s invariant, in Geometric theory of singu- lar phenomena in partial differential equations (Cortona, 1995), 7–16, Cambridge Univ. Press, 1998.
15. Pali N., Characterization of Einstein–Fano manifolds via the K¨ahler–Ricci flow, Indiana Univ. Math. J., 57, No. 7 (2008), 3241–3274.
16. Phong D. H., Sˇeˇsum N., Sturm J., Multiplier ideal sheaves and the K¨ahler–Ricci flow, Comm. Anal. Geom., 15, No. 3 (2007), 613–632.
17. Phong D. H., Song J., Sturm J., Degeneration of K¨ahler–Ricci solitons on Fano manifolds, arXiv:1211.5849.
18. Phong D. H., Song J., Sturm J., Weinkove B., The K¨ahler–Ricci flow and the ∂ operator on vector fields, J. Differential Geom., 81, No. 3 (2009), 631–647.
19. Rubinstein Y. A., On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow, Trans. Amer. Math. Soc., 361, No. 11 (2009), 5839–5850.
20. SSˇeˇˇsum N., Tian G., Bounding scalar curvature and diameter along the K¨¨ahler Ricci flow (after Perelman), J. Inst. Math. Jussieu, 7, No. 3 (2008), 575–587.
21. Shi Y., Zhu X., An example of a singular metric arising from the blow-up limit in the continuity approach to K¨¨ahler–Einstein metrics, Pacific J. Math., 250, No. 1 (2011), 191–203.
22. Sz´´ekelyhidi G., Greatest lower bounds on the Ricci curvature of Fano manifolds, Compos. Math., 147, No. 1 (2011), 319–331.
23. Tian G., On K¨¨ahler–Einstein metrics on certain K¨¨ahler manifolds with C1 (M ) > 0, Invent. Math., 89, No. 2 (1987), 225–246.
24. Tian G., On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., 101, No. 1 (1990), 101–172.
25. Tian G., K¨¨ahler–Einstein metrics with positive scalar curvature, Invent. Math., 130, No. 1 (1997), 1–37.
26. Tian G., K-stability and K¨¨ahler-Einstein metrics, arXiv:1211.4669.
27. Tian G., Wang B., On the structure of almost Einstein manifolds, arXiv:1202.2912.
28. Tian G., Zhu X., Convergence of K¨¨ahler–Ricci flow, J. Amer. Math. Soc., 20, No. 3 (2007), 675–699.
29. Tosatti V., K¨¨ahler–Ricci flow on stable Fano manifolds, J. Reine Angew. Math., 640 (2010), 67–84.
30. Yau S.-T., On the Ricci curvature of a compact K¨¨ahler manifold and the complex Monge– Amp``ere equation, I, Comm. Pure Appl. Math., 31 (1978), 339–411.
31. Yau S.-T., Open problems in geometry, Proc. Sympos. Pure Math., 54 (1993), 1–28 (problem 65).
32. Ye R., The logarithmic Sobolev inequality along the Ricci flow, preprint, arXiv:math/0707.2424.
33. Zhang Q. S., A uniform Sobolev inequality under Ricci flow, Int. Math. Res. Not. IMRN, 2007, no. 17, Art. ID rnm056, 17 pp. and erratum in Int. Math. Res. Not. IMRN, 2007, No. 19, Art. ID rnm096, 4 pp.
Informacje: Universitatis Iagellonicae Acta Mathematica, 2012, Tom 50, s. 117 - 126
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Blowup behavior of the Kahler–Ricci flow on Fano manifolds
Blowup behavior of the Kahler–Ricci flow on Fano manifolds
Northwestern University
Publikacja: 05.06.2013
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 2687
Liczba pobrań: 1473