Tomasz Pirowski
Geoinformatica Polonica, Vol. 18 (2019), 2019, s. 45 - 55
https://doi.org/10.4467/21995923GP.19.003.10887Cykl artykułów zawiera porównanie możliwości wykorzystania do dazymetrycznego szacowania rozmieszczenia ludności informacji przestrzennej o zabudowie z trzech źródeł, charakteryzujących się różną dokładnością przestrzenną, tematyczną i czasową: dane z projektów Corine Land Cover (CLC) i Urban Atlas (UA) oraz klasyfikacji obiektowej (OBIA) danych RapidEye. Eksperyment przeprowadzono na obszarze Krakowa, wykorzystując dane statystyczne ze 141 jednostek urbanistycznych miasta.
W pierwszych dwóch częściach cyklu zaprezentowano przeliczanie populacji w oparciu o CLC, UA (Pirowski i Timek, 2018) oraz OBIA, w tym jej skorygowany wynik poprzez połączenie z UA (Pirowski i in., 2018). Łącznie uzyskano 12 map zaludnienia Krakowa. Poddano dyskusji obliczone błędy średnie RMSE i MAPE oraz wagi zagęszczenia ludności dla każdej kategorii zabudowy mieszkalnej.
W trzeciej części cyklu uzyskane wyniki poddane zostały szczegółowej analizie dzięki specjalnie przygotowanej przez autorów, wysokorozdzielczej referencyjnej mapie ludności dzielnicy Bronowice (północno-zachodni obszar miasta). Szczegółowo opisano przyjętą metodykę jej opracowania, w tym komplementarne wykorzystanie interpretacji ortofotomapy ze zdjęć lotniczych oraz ogólnodostępnych baz danych (Geoportal, OpenStreetMap, GoogleStreetView). Zaproponowano autorski parametr MMAPE, analizujący podobieństwo mapy referencyjnej Bronowic z mapami dazymetrycznymi, pozwalający statystycznie opisać ich wiarygodność i wykluczyć zjawisko ekwifinalności.
W wyniku przeprowadzonych badań wykryto błędny rozkład ludności dla wariantu opartego o klasyfikację obiektową z ustalaniem wag na drodze minimalizacji błędu MAPE. Spośród pozostałych eksperymentów trzy najlepsze wyniki uzyskały mapy wykorzystujące informacje o zabudowie z Urban Atlas (MMAPE100m = 19,3–22,1%). Komplementarne wykorzystanie OBIA i UA nie przyniosło efektu synergii – wyniki są gorsze niż dla UA (21,6–24,3%). Wysokie błędy odnotowano dla OBIA – warto jedynie odnotować lepszy wynik dla metody binarnej OBIA (MMAPE100m = 22,8%) niż dla metody binarnej CLC (MMAPE100m = 24,3%).
Na tym etapie badań rekomenduje się do przeliczania ludności stosować dane UA. Metody klasyfikacji obiektowej nie są wiarygodnym źródłem danych o rodzajach zabudowy, niezbędnym dla metod powierzchniowo-wagowych. Stosowanie OBIA jest możliwe w metodzie binarnej i daje rezultaty zbliżone do korzystania z CLC.
W czwartej części planuje się weryfikację map zaludnienia wykorzystując siatkę kilometrową GUS, udostępnioną przez urząd w 2017 roku, dla całej Polski. Na bazie wielowariantowych testów i dwuetapowej weryfikacji autorzy planują podać ograniczenia proponowanej metody przeliczania ludności oraz opracować ranking map.
Tomasz Pirowski
Geoinformatica Polonica, Vol. 17 (2018), 2018, s. 53 - 64
https://doi.org/10.4467/21995923GP.18.005.9162Cykl artykułów zawiera porównanie możliwości wykorzystania do kartowania ludności danych z trzech źródeł, o różnej dokładności przestrzennej, tematycznej i czasowej: dane z projektów Corine Land Cover (CLC) i Urban Atlas (UA) oraz wynik klasyfikacji obiektowej (OBIA) danych RapidEye. Zawarta na mapach pokrycia i użytkowania terenu nformacja o występowaniu zabudowy stanowiła zmienną ograniczającą w dazymetrycznej metodzie kartowania ludności. Kategorie związane z typami zabudowy pozwoliły na wprowadzenie zmiennych powiązań, różnicujących zagęszczenie ludności. Te zabiegi umożliwiły wielowariantowe opracowanie map przestrzennego występowania ludności na poziomie wyższym niż pierwotne jednostki spisowe.
Eksperyment przeprowadzono na obszarze Krakowa, wykorzystując dane statystyczne ze 141 jednostek urbanistycznych (j.u.) miasta. Generowanie map ludności przeprowadzono w kilku wariantach, dokonując podziałów zabudowy w zależności od jej charakterystyki i funkcji. Wyniki przeliczania ludności na nowe jednostki przestrzenne odniesiono na etapie weryfikacji do danych o ludności podanych przez GUS w siatce kilometrowej oraz do specjalnie przygotowanej przez autorów szczegółowej mapy ludności obejmującej fragment Krakowa. Zastosowana podwójna weryfikacja pozwoliła na uszeregowanie według jakości uzyskanych map populacji oraz podanie granicznych dokładności przestrzennych ich komórkowej reprezentacji.
W pierwszej części cyklu zaprezentowano zarys stanu wiedzy o kartowaniu ludności i zasadach przeliczania populacji metodą dazymetryczną. Opisano obszar badań, scharakteryzowano wykorzystane w badaniach dane przestrzenne i statystyczne. Przedstawiono prace związane z przeliczeniem populacji w oparciu o CLC i UA, uzyskując łącznie 6 map rozkładu ludności Krakowa. Wielowariantowy proces przeliczania i ustalania poprawnych wag dla różnych typów zabudowy scharakteryzowano poprzez podanie dla jednostek urbanistycznych, sprzed realizacji warunku Toblera, wartości średniego błędu kwadratowego (RMSE) oraz średniego absolutnego błędu procentowego (MAPE). W oparciu o te parametry kartowanie ludności metodą powierzchniowo-wagową, bazującą na danych UA, uznano za najlepszą (MAPE 66%, RMSE 3442os./j.u.), podczas gdy na danych CLC błędy te wyniosły: MAPE 168%, RMSE 5690 os./j.u.
W kolejnych częściach cyklu przedstawione zostanie przeliczanie populacji z zastosowaniem klasyfikacji obiektowej. Opisana zostanie metodyka weryfikacji wyników w oparciu o fotointepretacyjną mapę ludności oraz siatkę kilometrową GUS. Przeprowadzona będzie dyskusja nad zasadnością stosowania miar optymalizacyjnych RMSE i MAPE. Podany zostanie ranking metod oraz rekomendacje poprawiające wyniki redystrybucji ludności w oparciu o CLC, UA i OBIA.
Tomasz Pirowski
Geoinformatica Polonica, Vol. 17 (2018), 2018, s. 65 - 75
https://doi.org/10.4467/21995923GP.18.006.9163Cykl artykułów zawiera porównanie możliwości wykorzystania do kartowania ludności informacji o strefach zabudowy z trzech źródeł: z projektu Corine Land Cover (CLC), z projektu Urban Atlas (UA) oraz z wyniku klasyfikacji obiektowej (OBIA) danych RapidEye. Źródła te charakteryzują się różną dokładnością przestrzenną i tematyczną oraz różną metodologią wyodrębniania zabudowy. Eksperyment przeprowadzono na obszarze Krakowa, wykorzystując dane statystyczne ze 141 jednostekurbanistycznych miasta.
W pierwszej części cyklu zaprezentowano przeliczanie populacji w oparciu o bazy danych Corine Land Cover (CLC) oraz Urban Atlas (UA). W drugiej części przedstawiono metodykę kartowania stref zabudowy, z podziałem na kilka jej kategorii, za pomocą klasyfikacji obiektowej (OBIA). Klasyfikacje przeprowadzono na czterech zmozaikowanych obrazach satelitarnych RapidEye. Opracowana mapa stanowi podstawę do dazymetrycznego przeliczenia ludności w trzech wariantach: binarnym, oraz dwóch powierzchniowo-wagowych, gdzie proporcje zagęszczenia ludności dla różnych kategorii zabudowy obliczane są poprzez minimalizację błędu kwadratowego (RMSE) i procentowego (MAPE) w jednostkach spisowych. Uzyskane wyniki rozkładu ludności wskazują na potrzebę określenia funkcji zabudowy. Dlatego dodatkowo wykonano eksperymenty łączące wyniki OBIA z mapą LULC projektu UA. Z eksperymentów wynika, że z testowanych sześciu wariantów kartowania ludności najlepszym jest metoda powierzchniowo-wagowa oparta o OBIA+UA (RMSE=4270os., MAPE=75%.). Metoda binarna oparta o OBIA+UA notuje wyniki na poziomie RMSE=4540os., MAPE =108% Wyniki z zastosowaniem OBIA, bez korekcji funkcji zabudowy przy pomocy UA, są błędne (RMSE: od 5958–7987os., MAPE: 2262%–6612%).
W kolejnych częściach cyklu publikacji zostaną porównane dotychczas uzyskane wyniki: trzy mapy oparte o CLC, trzy mapy oparte o UA, sześć map opartych o OBIA/ OBIA+UA. Do weryfikacji map populacji zostanie użyta szczegółowa mapa referencyjna dzielnicy Bronowice oraz kilometrowa siatka GUS. Przeprowadzona będzie dyskusja związana ze stosowaniem parametrów RMSE i MAPE w procesie optymalizacji wyników. Opracowany zostanie ranking metod oraz rekomendacje zmierzające do uzyskania poprawy wyników przeliczania ludności w oparciu o CLC, UA i OBIA.
Tomasz Pirowski
Geoinformatica Polonica, Vol. 18 (2019), 2019, s. 57 - 69
https://doi.org/10.4467/21995923GP.19.004.10888Artykuł jest kontynuacją i podsumowaniem cyklu publikacji związanych z dazymetrycznym szacowaniem rozmieszczenia ludności Krakowa. Przeliczanie ludności z pierwotnych jednostek spisowych oparto na danych o zabudowie z trzech źródeł, z projektu Corine Land Cover (CLC), z projektu Urban Atlas (UA) oraz z klasyfikacji obiektowej (OBIA) danych RapidEye. Eksperyment przeprowadzono wykorzystując archiwalne dane statystyczne z roku 2009 ze 141 jednostek urbanistycznych (j.u.) miasta.
W pierwszych dwóch częściach cyklu (Pirowski i Timek, 2018; Pirowski i in., 2018) zaprezentowano przeliczanie populacji na bazie map CLC, UA oraz OBIA, łącznie uzyskując 12 map zaludnienia Krakowa. Przedstawiono uzyskane rozkłady błędów, poddano dyskusji obliczone wagi zagęszczenia ludności dla każdej kategorii zabudowy mieszkalnej. W trzeciej części cyklu (Pirowski i Berka, 2019) opracowane wyniki poddane zostały szczegółowej analizie poprzez odniesienie się do referencyjnej, wysokorozdzielczej mapy zaludnienia dzielnicy Bronowice (północno-zachodni obszar miasta).
W niniejszej publikacji, kończącej cykl, zweryfikowano mapy zaludnienia w oparciu o siatkę kilometrową GUS, będącą agregacją danych Narodowego Spisu Powszechnego Ludności i Mieszkań z 2011, udostępnioną przez Urząd w 2017 roku. Porównano wyniki weryfikacji wysokorozdzielczej prowadzonej na dzielnicy Bronowice z weryfikacją na danych GUS. W siatce GUS uzyskano najlepsze wyniki dla metod powierzchniowo-wagowych UA (RMSE 908–917 osób; MAPE 42–46%). Za błędne uznano szacowanie rozmieszczenia ludności przy użyciu danych OBIA (RMSE 1115–2073 os.; MAPE 121–184%). Po korekcie OBIA poprzez dane UA uzyskano znaczącą poprawę wyników dla metod powierzchniowo-wagowych (RMSE 930–1067 osób; MAPE 53–68%), jednak poziom błędów był nadal wyższy niż dla samej UA, co eliminuje metodę OBIA z zastosowań praktycznych w tym obszarze.
Stwierdzono zależność pomiędzy notowanymi błędami RMSE i MAPE w j.u. na etapie doboru wag a notowanymi błędami RMSE i MAPE w siatce GUS, odpowiednio R2(RMSE) = 91%, R2(MAPE) = 65%. Zatem wykryta korelacja wskazuje, że niskie błędy uzyskane na etapie doboru wag przekładają się na wiarygodne szacowanie liczby ludności. Proponowana metodyka doboru wag ogranicza subiektywizm metody, opierając się na minimalizacji RMSE i MAPE w pierwotnych jednostkach spisowych. Wadą metody jest konieczność definiowania warunków brzegowych doboru wag, w przypadku uzyskiwania nierzeczywistych wag oraz możliwość wystąpienia ekwifinalności, trudnej do wykrycia przy braku dodatkowych danych referencyjnych.