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MULTI-STROKE CHARACTER RECOGNIZER

KONCEPCJA I ROZWINIĘCIE ROZPOZNAWANIA 
WIELOLINIOWEGO PISMA ODRĘCZNEGO  

NA PODSTAWIE LOGIKI ROZMYTEJ

A b s t r a c t

In this paper, the latest member of the FUzzy-BAsed character Recognizer (FUBAR) algorithm family 
with multi-stroke character support is presented. The paper summarizes the basic concept and development 
of multi-stroke FUBAR and compares the single-stroke, multi-stroke FUBAR algorithms with the most 
similar methods found in literature.
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S t r e s z c z e n i e

W niniejszym artykule opisano najnowsze rozwiązanie z rodziny algorytmów rozpoznawania pisma 
odręcznego na podstawie logiki rozmytej, wspomagające wykrywanie wieloliniowych liter. W artykule 
przedstawiono podstawowe pojęcia oraz rozwój autorskiego algorytmu opartego na logice rozmytej, 
a także porównano go – zarówno w wersji dla jednoliniowych oraz wieloliniowych liter – z podobnymi 
metodami znalezionymi w literaturze.

Słowa kluczowe:  systemy rozmyte, rozmyte siatki, rozpoznawanie pisma na podstawie logiki rozmytej
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1. Introduction

The classification problem is a well researched area covering several methods and 
applications [1, 2]. Character recognition is a multi-dimensional subfield in classification 
problems, which has also been investigated and researched for a long time by academics and 
industrial partners as well.

Most of the recognition methods in literature are using various computational 
intelligence methods and other special solutions to reach high accuracy recognition with 
a low computational cost [3, 4]. Despite the high accuracy, these methods are not always 
usable (on devices with limited hardware resources) for on-line (real-time) handwriting 
recognition as a result of their high computational complexity and processing time. It is 
very important to find a recognition engine, which is able to process the input strokes 
within a short time period with an acceptable level of accuracy even on devices with 
limited resources such as tablets.

LaLomia defined the user acceptance threshold at 97% [5], however, most multi-stroke 
character recognition methods known from the literature that are applicable for 26 symbols 
are well below that, on the other hand, with a strict set of symbols (16 gestures) the $N 
recognizer reached 96.7% [3].

In this paper, we present a new attempt to recognize multi-stroke letters (26 symbols) 
with a rather good recognition rate (however definitely below LaLomia’s 97% threshold).  
As a starting point, the FUBAR algorithm that was very successful for single-strokes is used, 
with extensions and modifications towards multi-stroke symbols (up to 3 strokes).

After the introduction, basic concept of the FUBAR algorithms [6, 7] is overviewed.  
In Section 3, the design and development of the new method with the capability of recognizing 
multi-stroke symbols is presented. In Section 4, results are presented and the average accuracy 
of the single-stroke and multi-stroke FUBAR algorithms are compared, for the case of the 
same methods with a hierarchical rule-bases [8, 9]. The results are summarized and future 
directions are discussed in the last section.

2. Concept of the FUBAR Algorithm Family

2.1. Features, Goals and Limitations of FUBAR

During the design of the concept of FUBAR methods, four key important features were 
identified as the necessary but not sufficient condition for modern and acceptable recognition 
engines, which are the following:
1. Acceptable accuracy: The algorithm must reach the user acceptance threshold.
2. Efficiency: The designed methods must fit to the user’s requirements in response time 

and even in hardware with limited resources such as tablets. This means that complex 
geometrical transformations and other complex mathematical functions should be 
avoided.

3. Flexibility of the alphabet: The model of the alphabet must be easily modifiable to support 
various alphabets and context-sensitive recognition.

4. Learning: The designed system should be able to learn user-specific writing styles.
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These features were considered as main goals to achieve; all the used techniques and the 
model of the designed system were selected based on their properties and abilities to reach 
the listed goals.

The focus during the development was on the recognition engine itself in order to reduce 
the influences caused by other sub-problems of the recognition process such as segmentation. 
The designed recognition engine is on-line (the algorithm uses digital ink information to 
describe strokes) and personalized (it recognizes the handwriting of a specific person).

2.2. Input Handling and Processing

The FUBAR method collects the positions of the digital pen used during the writing 
process (a three-dimensional continuous input signal is shown in Fig. 1), which is represented 
by a list of two-dimensional coordinates in chronological order.

Fig. 1. The multi-dimensional input stroke from various aspects

The received stroke contains empty spaces (it is non continuous) depending on the 
writing speed and the BUS and CPU usage due to hardware and bandwidth limitations. It is 
more difficult to process the stored stroke as a result of the stochastic properties of the point 
distribution.

For further processing, the input stroke should be re-sampled, which provides a low-level 
anti-aliasing for the stroke and an almost equal distance between the sampled points of the 
stroke as seen in Fig. 2.
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2.3. Character-Feature Extraction

The next step of the FUBAR method is feature extraction. The method use two kinds of 
features: (1) the width/height ratio of the stroke; and (2) the average number of points in rows 
and columns of a grid drawn around the stroke.

The first FUBAR algorithm used general grids with sharp borders, but the method reached 
a low average recognition rate as a result of the italic writing style of the test subjects as seen 
in Fig. 3.

Fig. 2. Comparing the original and re-sampled input stroke

Fig. 3. Strokes with normal and italic writing style in a grid

Other similar recognizers are using mathematical transformations such as rotation 
to resolve the italic writing style problem, this increases the complexity of the algorithm.  
In the FUBAR algorithms, a fuzzy grid [6] is used, where the columns and rows of the grid 
are defined by fuzzy sets [10] to keep low the computational cost of the method. The points 
of a stroke may belong to more than one row or column with various membership values as 
seen in Fig. 4.

Fig. 4. A fuzzy grid example
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2.4. Inference

In FUBAR algorithms, a discrete Takagi-Sugeno method [11] is used for the inference 
phase. The fuzzy sets in the initial rule-base of the system were determined statistically from 
previously collected samples.

The rule-base represents the alphabet; each character is defined by a single rule. The 
antecedent of the rules consists of the previously collected stroke-features, while the 
consequent part of the rule defines the degree of matching between the features of the input 
stroke and the character represented by the given rule.

The algorithm returns the character assigned to the rule with the highest matching 
value.

Fig. 5. Concept of FUBAR algorithms

After the inference step, the system is able to change the initial rule-base according to 
the features of the input stroke, this gives the ability to learn user specific writing styles. The 
learning phase was disabled during the tests to avoid its influence on the results caused by the 
heuristic properties of the used algorithm.

3. Multi-Stroke Character Support of FUBAR

3.1. Motivation and Concept

The first members of the FUBAR algorithm family supported only single-stroke symbols, 
but the handling of multi-stroke characters was the next step in the development of the 
recognition engine.
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The designed method is independent from the order or the number of sub-strokes 
representing a multi-stroke character, but the basic shape must be identical to the model stored 
in the rules. This provides freedom to the users and the possibility to use any permutations of 
the sub-strokes representing the character with the same look.

The algorithm merges together each input sub-stroke to represent a multi-stroke character, 
which means that it will be represented by a single list of x and y coordinates in chronological 
order like a single-stroke character; this merged stroke is used during the same steps of 
recognition as described in the previous section.

3.2. Determining the Initial Rule Base

In the first members of FUBAR, the parameters extracted from a collection of 60 single-
stroke character samples were used to determine the rule-base for the fuzzy system. The 
quartiles of the character-features were used to calculate the break points of the trapezoidal 
shaped fuzzy sets. The same method was used during the determination of the initial rule-
base for the multi-strokes to have a better basis for the comparison of the algorithms.

3.3. Reducing Computational Complexity with Hierarchical Rule Base

There are many papers dealing with the use of hierarchical rule-bases in fuzzy systems in 
different areas [8, 9]. The use of hierarchical fuzzy rule-bases could reduce the computational 
cost of the single-stroke FUBAR method by decreasing the number of the evaluated rules. 
The details of building the hierarchical rule structure by rule input parameters for the single- 
-stroke alphabet were presented in [12].

In the multi-stroke FUBAR algorithm, the number of sub-strokes representing a character 
is also used during the inference. Only those rules are evaluated, which have exactly the 
same number of sub-strokes as the input character has. This means that each character must 
be written with a predetermined number of sub-strokes, which is a limitation compared to 
the original multi-stroke FUBAR with a flat rule-base, but the number of the evaluated rules 
were significantly reduced.

4. Results

Both single-stroke and multi-stroke FUBAR algorithms were tested using the same 
context and conditions. A training set with 60 samples per character from various test 
subjects was used to determine the initial rule-base by calculating (using the quartiles of 
the dataset as breakpoints of trapezoid membership functions) the fuzzy sets in antecedents 
of the rules describing the ‘template symbols’ (the knowledge is stored as a single fuzzy 
rule per characters, also known as the template symbol). Another 120 samples per character 
(validation set) were used to determine the average accuracy of the methods.

The best result for the multi-stroke FUBAR was achieved by the algorithm using a 3 × 4 
fuzzy grid; the letter-wise average recognition rates are listed and compared with the results 
of the similar single-stroke FUBAR method (with both flat and hierarchical rule-bases) in 
Table 1.
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T a b l e  1

Letter-wise average recognition rates of various FUBAR algorithms

Symbol

FUBAR algorithms with various properties

Single-Stroke  
FUBAR with 6 × 4 

fuzzy grid

Multi-Stroke 
FUBAR with 3 × 4 

fuzzy grid

6 × 4 Single-Stroke 
FUBAR with 

hierarchical rule-base

3 × 4 Multi-Stroke 
FUBAR with 

hierarchical rule-base
A 100 96.1111 100 96.1111
B 92.7778 89.4444 92.7374 89.4444
C 97.7778 76.6667 97.7654 76.6667
D 98.8889 96.6667 98.8827 96.6667
E 98.8889 92.2222 97.2067 92.2222
F 100 96.1111 100 96.1111
G 100 97.2222 100 97.2222
H 100 95.5556 100 95.5556
I 100 98.3333 100 98.3333
J 100 97.7778 100 97.7778
K 99.4444 96.6667 99.4413 96.6667
L 100 98.3333 100 98.3333
M 100 96.1111 100 96.1111
N 100 96.6667 96.0894 96.6667
O 93.8889 92.7778 93.8548 92.7778
P 100 92.7778 100 92.7778
Q 100 97.7778 100 97.7778
R 100 87.7778 100 87.7778
S 100 97.7778 100 97.7778
T 100 96.1111 100 96.1111
U 100 93.3333 97.2067 93.3333
V 100 88.3333 98.3240 88.3333
W 100 92.2222 100 92.2222
X 98.3333 89.4444 98.3240 89.4444
Y 100 91.1111 99.4413 91.1111
Z 100 85 100 85

Average 99.23 93. 4 98.82 93.4

All the mistakes made by single-stroke FUBAR were related to false-positive results.  
It was caused by the overlap of fuzzy sets describing rule input parameters; the membership 
values of some input variables could not been distinguished between different (true and false-
positive) symbols (similarly to over fitting). 

The results have been analyzed in depth including the search for the reason of the false 
results in the multi-stroke FUBAR. The mistakes of the multi-stroke FUBAR were caused 
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by inconclusive results. All rules had 0 as the degree of matching for the input, which means 
that it could not find a rule with parameters (describing a letter) similar to the input. Each 
recognition process returning with an error could be traced back to the fuzzy sets describing 
the rule antecedents. The sources of all the false results in the multi-stroke system were 
pointing at uncovered areas in the antecedents of the fuzzy rules. This means that there was at 
least one antecedent in each rule with a 0 membership degree for at least one input parameter. 
This could be solved by tuning the fuzzy sets, covering a wider range over the universal set of 
the given dimensions or by using a sample based model identification technique like a meta-
heuristic optimization algorithm.

The single-stroke FUBAR could reach 99.23% accuracy with the initial rule-base on 
the validation set, which is well over the user acceptance threshold of 97% [5]. The average 
recognition rate of the single-stroke FUBAR with a hierarchical rule-base was below 
the accuracy of the same method using flat a rule-base. The 0.41% drop in the average 
recognition rate was caused by the used meta-level rules in the hierarchy. The meta-rules are 
determining which (predefined) subset of the rules should be evaluated in the given case. The 
used parameter for the meta-rules was the average fuzzified number of points in the third row 
of the fuzzy grid drawn around the symbol. This influence of the meta-rules could be ruled 
out or minimized by defining more complex meta-rules, which are able to select the subset 
more accurately.

Both multi-stroke FUBAR methods with flat and hierarchical rule-bases reached 
the same 93.4% average recognition rate. This result is below the 97% user acceptance 
threshold and the results of the $N recognizer [3], but still better, than the accuracy of the 
Graffiti 2 [4]. In the multi-stroke FUBAR the input parameters of meta-level rules were 
the number of the sub-strokes representing the characters; the number of sub-strokes is 
strictly specific for the letters compared to the parameter used in the single-stroke FUBAR. 
This is why the results with the multi-stroke system did not change like it did in the single-
stroke system. It is important to highlight that the results for multi-stroke FUBAR (both 
flat and hierarchical) could be higher with a better initial rule-base (or an algorithm which 
identifies it).

5. Conclusions and Future Work

It was shown that after the new FUBAR algorithm was able to recognize multi-stroke 
alphabets also with a 93.4% average recognition rate. The results indicate that the accuracy 
should be further increased by the redefinition of the initial rule-base.

Finally in this work, a similar method with the multi-stroke alphabet support using 
a hierarchical rule-base was presented. The topology of the hierarchy was built based on the 
number of used strokes. The modified system reached the same accuracy as the original one 
with the flat rule-base, but in this case, the computational cost of the recognition process was 
considerably reduced by the limited number of rules to evaluate.

The accuracy of the FUBAR method is moderate compared to the average recognition 
rate of the modified Palm Graffiti with limited multi-stroke support (known as Graffiti 2) was 
studied by Költringer and Grechenig in [4] and the $N multi-stroke recognizer introduced by 
Anthony and Wobbrock in [3].
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The Graffiti 2 reached only 86.03% accuracy, while 96.7% average recognition rate was 
achieved for only 16 different single-stroke symbols with the $N recognizer. Both the single- 
-stroke and multi-stroke versions of FUBAR performed well over the results of Graffiti 2. 
The $N algorithm reached a better average recognition rate compared to the FUBAR method, 
but the number of symbols was much less and the symbols used during the evaluation of the 
system were single-stroke. The results are shown in Fig. 6.

This paper was supported by the Hungarian Scientific Research Fund (Hungarian abbreviation: OTKA) 
K105529, K108405 and TÁMOP-4.2.2.A-11/1/KONV-2012-0012.
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