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Abstract

A new family of goodness-of-fit test for the Cauchy distribution is proposed in the paper. Every
member of this family is affine invariant and consistent against any non Cauchy distribution.
Results of the Monte Carlo simulations performed to verify finite sample behaviour of the new
tests are presented.
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1. Introduction

Let X, X, ... be a sequence of i.i.d. random variables with distribution function 7. We
consider the problem of testing the hypothesis:

H,:FeF
against

H:FeF
where F is the family of the Cauchy distributions, i.e.

| (0)=, ()0} (o] eRx(0:5)

with
Fy(x)=1/2+n"arctanx.

The location parameter m is the median and the scale parameter ¢ represents half of the
interquartile range in this case. In recent years there were several papers devoted to this problem.
Giirtler and Henze [5] and Matsui and Takemura [9] considered the test statistics of the form

2
) D, = an 0, ()=, (1) w(t)dt,
where ¢ is the empirical characteristic function
1 n
=— ) explitY,
L 2l
of the standardized with suitable estimators data

2) Y, =(X,~m,)/6,, j=1..n,

¢,(1) = exp(-t]) is the theoretical characteristic function of the standard Cauchy distribution
and w(z) is the weight function. The weight w(¢) = exp(—\Aj¢|) considered in [5, 9] results with
simply and closed form of the test statistics, namely

2 A 2n

n\ = -

nj,k:l7\,2+(Yj ) ,1 1+7\4 +Y2 2+7w'

Gilirtler and Henze [5] showed that with the sample median and half of the interquartile range
as the estimators of location and scale, respectively, the test based on D , is consistent against
each alternative distribution having a unique median and unique upper and lower quartiles.
In this paper we propose another test statistics of the form (1). Since the most important
properties of a distribution are determined by the behaviour of the characteristic function in
a neighbourhood of zero, especially in the case of heavily tailed distribution like the Cauchy
one, one should use the weight putting more mass around zero. For this reason we will use
unbounded in zero weight function. With the weight

w(t)=exp(=A|z])/ ],
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where A >0 and y € (0; 1), the test statistic again has closed form, namely

D, .= 2r(1—1()(n(2+7»)H —22'1:((1 +0)+Y; )(H)/z cos((y—1)a1rctan(li:"}L B

Jj=1

n

_ Y -Y,
+l (k2 +(Y, —Yk)z)(y v cos((y—l)arctan[ ;K D
n A

Jok=

Since the family of the Cauchy distributions is closed with respect to the affine transformations
one is interested in affine invariant test. To obtain an affine invariant test statistic of the form
(1) it is enough to standardize the sample with equivariant estimators in (2), i.e. estimators
m,=m,(X,,..,X)and 6, =& ,(X,,....X ) such that for every a > 0 and b € R we have

, (aX,+b,..,aX,+b)=am, (X,,...X,)+b

and
6,(aX,+b,....,aX,+b)=as (X,,....X ).

The previous authors considered the sample median and half of the interquartile range [5],
the maximum likelihood estimators (MLE) and the EISE estimators [9]. Since the use of
EISE do not improve the power of the test complicating the calculations at the same time
we do not consider these estimators in this paper.

The paper is organized as follows. Section 2 contains a review of properties of estimators
proposed in [10] by Pudetko. In Sections 3 and 4 there are main results of the paper,
e.i. theorems concerning the weak convergence of D,,, when the sample comes from the
Cauchy distribution, its limit distribution and the consistency of corresponding test against
each non-Cauchy alternative distribution. Section 5 presents the results of the numerical
simulations performed to verify the finite sample behaviour of the new test.

2. Estimators of the parameters of the Cauchy distribution

The choice of the parameters used to standardize the data in (2) is very important to the
performance of the test. In this paper besides MLE and order estimators (sample median
and half of the quartile range) we will use estimators proposed by Pudetko in [10]. These
estimators are defined as argument ém = (7, 6,) minimizing' the distance

sa(e)=IR—d|(p”(t|)t]ie(”z '

n’

! Estimators defined as argument minimizing
[0, (6)=u () sl

were proposed independently by [6] and [11] but these authors considered bounded weight func-
tion w.
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where ¢, is the empirical characteristic function, ¢,(f) = €™ °" is the characteristic function
of the Cauchy distribution with the median m and the interquartile range 2c. In [10] was
showed that 6, may be equivalently defined by

0, o =argmin2I'(-o)c” [2" 1——Z:cos “Z cos(aZ, )j

/ 1

where I' is the Gamma function and Z =arctan((X,— m)/c): As it was showed in [10] the family
of the above estimators can be continuously closed by taking for a = 0 the ML estimators

6 —argmax(logc——Zlog(c +(X;—m) )j

j=1

Estimators 6 are affine equivariant, strongly consistent, asymptotically normally
distributed w1th the covariance matrix

2600 20 _( ! jfz,

a—1)° 3-20)B(2-0,2—a)

where B is the Beta function and /, is the 2 x2 identity matrix and have the following
Bahadur representation

Jni,, :%Zl (X,)+0, (1),

3 "
Jn(8,,-5,) =ﬁ;e (X,)+0, (1),
with
I (x)= 2 cos"* zsin((1-a.)z),
L(x)= 22 - (2a " —cos"™ zcos((1-a)z)).

3. Asymptotic behaviour of the proposed test statistic

The following useful representation of D, can be obtained by straightforward algebra

—26, 1] A1y

) D, =[.2,@r 2,
sl 1]
where
5) ZAn(t) IZ(cos(tX )+sin(ZX ;) — e "'(cos(tm )+sin(#m, )))
=

We will consider 2n(t) as arandom element in the Frechet space C(R) of continuous functions
on the real line endowed with the metric
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=1 p,(f8)
(6) p(f.8)= sz o (g)

where p (: ¢) = sup,., i) - ().

Now we formulate the following theorem on the convergence of the process Z
Theorem 1. Let X, X, ... be a sequence of independent, identically, Cauchy dlstributed
random variables. T hen there exists a centered Gaussian process Z in C(R) such that

. d
7 —Z in C(R),

““ d ”» A A . ~
where “— " denotes weak convergence. If m, and &, are the sample median and half of the
interquartile range, respectively, than the covariance kernel of Z is

K(s,t)=e" S‘+2e"" 'S[2st+ |st|+|s|+|t|—lJ
—e (1], (5)+21]J, (s) e (s, (1) +2| 5], (1)),

forallt,s € R, where

sm(sx)

H@=] T s, L=] T

cos(sx)

For the estimators éw we have
el | 4st ( 1 1
2
(a-1*{ 3-2a)B(2-a.,2—a)

2 (|t|62\s| r(z_a’2|s|)+|s|82m F(z_a92|t|) |S|—|t| 1flS>0
a—1{ r2-o) r2-o)

7 K, (s,)=14+
if 1-5<0.

In particular, for the maximum likelihood estimators we have
®) Ky (s,)=e " —(1+2(st+|st[))e ™.

Proof. In the case of the MLE, the sample median and half of the interquartile range
this theorem was proved in [5, 9] respectively. Here we prove the case of estimators 6 »
Let S < R. By C(S) we denote the space of real-valued continuous function on S with the
supremum norm. Using the Theorem of Csorgé and the notation therein (Section 3. of [3])
we will show that Z (%) is weakly convergent in C(S) to the zero mean Gaussian process with
the covariance kernel K (-, ). Assumptions (i)*, (ii)* and (vi) do not depend on the choice of
the estimators and were verified in [5].

Assumption (iv) is a consequence of the Bahadur representation of the estimators ém
presented in the previous section. In order to verify the Assumption (v) we estimate ‘
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sup("] (x.0, )"+|

ri<u

Dxl(x’er))")

2-a
< sup(1 max(|cos"™ zsin(z(1-a))|,|2* " —cos'* zcos(z(1-a))|
—-o

xl<u

+27* max(|cos”* zsin(z(2—a))|,|cos” ™ zcos(z(2—a)) \))

2-a

Q" +1)+27* <o

< 2
1

Hence, Z converges weakly in C(S) to the zero mean Gaussian process with the covariance
kernel of the form

K(s,t)y=e* "™+ H(s5,0,) EQ(X)I(X,) )H (2,0,)
~(H (1,8,),]_k(e.)I(x)dF, (0))~(H(5,8,),]_k(x.0l(x)dF, (x),

where

H(t,0)= ij(x,t)dveF(x,e).

By the direct calculation we have

H(t,0,)=(te™ ,—|t|e™)".

Let us now calculate next components of K(s, 7).

E(XDIX,)")=E(A " W(X,,0))(Aw(X,,0,)) ) =A"'CA™

:2(90): 2 2( 1 _1j127
(a-1*( 3-2a)B2-a.2—a)

thus,
H(s,0,)" E(I(X)I(X)) )H(1,0,)
— 2 ( 1 _ —ri=ls]
" (@)’ G-20)B2-0,2-a) lje (st+]st]).

2+ [ (cos(sx)+sin(sx))cos" zsin(z(1-a)) dxz
m(l-0) % Tox

[ ko9, (x)dlFy (x)=

27" [ g05tsin((1-a)sin(stanz)d
= Cos zSm(z(l—o))sm(stanz)az,
n(l-a)”0

[REDNOTAGE

227(1
o

2
n(l-a)

dx
1+x°
dx
1+x°

IR(COS(Sx)+sin(sx))

J‘R(cos(sx)+sin(sx))cosl"1 zsin(z(1-a))



3-a

I omcos(s tanz)dz — jn/zcos]"’zcos(z(l—a))cos(s tanz)dz

- n(l-a) n(l-a)’°

2 27 2
_ o j cos'“zcos(z(1-a))cos(stanz)dz,
(1-a) n(l—-a)°

(comp. [4] formula 3.723.2).
Hence,

(H(1.8,),]_k(x.5)I(x)dF, (x))

cos'" ™ zsin(z(1-a))sin(stan z)dz—|t|e ' ———e™
0 (I-a)

3-a

n(l—a)

3-a

7‘1‘ 3@ Im

n/2
+|t]e™ I . cos “zcos(z(1-a))cos(stan z)dz

k17

TE(l—OL)jO

. % | ¢ | e—\SHt\
(I-a)

] 2B ) _
=|t|e cos “zcos(z(1-o)Fstanz)dz

In the above integral there is minus when s - # > 0 and plus in another case.
In the case of s - £ > 0 using the formulas 3.718.6 and 9.224 of [4] we have

(H (2,6, ),JRk(x,s)l(x)dE) (x))
_20ele |51 w02 IS i 2|t]e
l-a re-ou) (I-a)
_ 2|t|e—\!\+\3\ F(z_a’2|s |) - 2|t|e—\s\—\t|
1-a r2-ou) (1-o)

:2|t|e"""5‘ (em 1“(2—oc,2|s|)_1 ’
l-a | TIQ-o)
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where W is the Whittaker function, and I'(, ") denotes the incomplete Gamma function. In

the second case (s - ¢ < 0) by formula 3.718.5 of Gradshteyn, Ryzhik [4] we obtain

CH(1,0,),[_k(r,9)I(x)dF, (x)) =0.

Thus K () is of the form (7).

Since the convergence of 2n in C(S) was showed for any compact set S < R; ZAn converges

to Z also in the Frechet space C(R) with the metric p (comp. [8], p. 62).
Now we present the theorem on the convergence of the test statistic D,
Theorem 2. Under the assumptions of Theorem 1 we have

22 NG e M a 72 (e M
9) D, =| "()#dt—m” = ZWe
o R |l| ’ R ‘IP

O
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Proof. Since
e M
I K(t,0)5— o e
and
e M
j K, (tt)| i dt <o,
by the Tonelli Theorem we have

e M

ED,,=[ Z°()° T
Thus, D, is finite with probability 1. By the following Taylor expansion
F(x,8,)~F(x,08,)=(8,~6,,V,F (x.6))),
where the form

Z,(0)=[ _k(xndn(F,(x)-F(x,6,))
= [ k(e,0)dNn(F,(x)=F (x,0,)+ | _k(r.)dn(F (x,0,)=F (x.0,))
=ij(x,t)dJZ(Fn(x)—F(x,eo»—NZ(én—eo>, [ x.0)dV F(x.6;))

= [ k(e.0)dNn(F, ()~ F (x,0,)~(—= Zl(X)H(ze »

+<%XI(X,),H0,GO)>—<JZ(@"—90),H<t,e’;)>
=z*(t)+<JZ(é ~0,).H(1,0,)~H(1,0))
ZI(X) Jn(®,-6,),H(1,0,))

njl

=Z,(0)+(n(®,—6,),H (1,0,) = H(1,6)))+(0, (1), H(1,6,)),

where Z " is the following process
. 1 <
Z,(y=] k(x.0)dn(F, (x)—Fo(x))—<TZI(X,),H(r,eo)>
n j=

= %Zn:(cos(t)(j )+sin(eX ) —e " —te 1 (X )+]t]e ", (X )
n j-

By straightforward calculations it is easy to show that the process Z, has zero mean function
and the same covariance kernel as the process Z and that Z, converges weakly to Z in C(S).
Since this convergence takes place for any compact set S = R, Z converge weakly do Z in
the Frechet space C(R).

Further in this proof the following convergences will be needed
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e M P

(10) [.@,0-7,0r° o dt—0,
an [0z (z)){ :Y %)dt—io
and

il oM P
(12) hza)

’ | [
In order to obtain (10) we calculate

Mr\

e
= [ (n(0,-0,).H(2,0,)~ H(1.6))) +(0, (1. H (1,0,))) *—

[REAGEAG)

—?»\tl

—’L\tl

—Zrm o | CHL(0.00) = H, (1,0, )(H (2,0, )~ H(t6)| 7
—Mt\

+2Zrmop(1)j (H,(6,8,)~H,(6,6))H (1,6, )| i

*Mt\

+ZoP(1)j H,(6,0)H,(1,8,)—

i,j=1 ||

wheret,, = \/;n”a,, andt, , = Jn (6,—1). H are bounded and continuous on the set S x ©, where
S < R is any compact set and © is closure of certain neighborhood of 0, the sequences 1 |
and t , are tight and H (¢, 0 ) — H (t; 0) converge to 0 with probability 1 for i = 1, 2; thus, in
the consequence, we obtain (10).

Convergence (11) can be obtained analogously.

Using the Taylor expansion

MM Z M) || (5 1),

where |6 — 1| <| 6, — 1] and the Schwarz inequality we estimate

—6, 1 -Am

dtj 7.1y’ |

—At3,
,e |13,

i

.t 2 o M3, 2
<A5, —1|(IRZ,, ()'e dt) IRWCJ: .
As it was showed in Giirtler i Henze [5] the sequence

(jRZj 0} e’*"‘a’t)l/2

[RAGE

13) <A|6, —1|j Z' (1)

dt
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is tight. Since 6, — 1 with probability 1, the last integral in (13) converge with probability 1
to 2I°(3 — 2y)/A* 2 and in the consequence we obtain (12).
Convergence
M\

|t |
can be proved analogously to Henze and Wagner ([7], proof of 2.17, pp. 10-12) By (10) and

(11) we have
. el 12 L el 12
ijn(t) i dr| - ijn(t) i dt

[I 2,0-Z@)* || - ] 5o,

(14) ij ()< o dt—)j' 72

thus

URZ (1) e ] U Z' (1) IT ! dtJ +0,(1),

and in consequence we have

A , i oMol
15) ijn(z) o dt= j Z, (1) ——dt+0,(1).
Finally, applying (12), (14), (15) and the Slutsky Lemma we obtain
. e 16, ( e —16,, | e*lcn\f\
Z (1) dt= () di—| Z () dt
IR l[" IR [ ¥ 2]
—Msnm —MI\
Z (@) 7 dt— RZn() 7 dt
J_ oM Mt\
+| Z @)
\ [ | |
hence
- it Mz\
A=Y
D,,, =6 ij ) dt—>j A0 || t=D, . 5

The covariance kernel of the process Z determine an integral operator on the space L(R)
—k(\s\ﬂtl)/Z

K:L(R)> f>[ K, (s, 0 f(6)— o dte [’ (R).

Theorem 1(iii) of Buescu ([1]) guarantees that the kernel of this operator has the representation
as absolutely and uniformly convergent series
A2

(16) K, (s.0)——7— e and),(S)d),(t),
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where 1, are eigenvalues of the operator K ordered nonincreasingly (1 >2>...>0), and ¢/. are
the corresponding eigenfunctions. Let us define the following stochastic process

a7 YO=2 8,0,

where N,, N,, is a sequence of independent random variables distributed according to the
standard normal low. Since the series (17) is convergent in mean, Y is centered Gaussian
process with the covariance function (16), there is the covariance function of the process

_A2
e
Z(t )ﬂT

Taking into account orthonormality of the eigenfunctions we obtain

e M \

D,,=[ Z(—

‘Y
‘ [ROXE jk(i\/nf%(t)N,-] dt=iﬂ1N ;

where £ denote equality of probability laws. Hence the limit distribution of statistics D,
the same as the distribution of Z n;N; 2.

4. Consistency

In order to obtain consistent goodness-of-fit test for the Cauchy distribution the following
procedure can be applied: first we estimate the parameters and then we compute the test
statistics and compare its value with critical value for fixed signicance level. In [10] it was
showed that estimators 9 cannot be computed if, and only if, #{k : X = m}/n > 2" for
some m. For Cauchy dlstrlbuted samples the probability of such event is equal to 0. Thus, in
that case the hypothesis /| should be rejected.

The following theorem guarantees consistency of the test based on the statistic D,,
against any non Cauchy alternative. Let us stress that this theorem does not impose any
restrictions on the alternative distribution. Theorem 2.3. of Giirtler and Henze [5] can be
proved analogously. In this way one can obtain consistency of test considered by Giirtler
and Henze [5] against any non Cauchy alternative without assumptions on uniqueness of the
median and interquartile range.

Theorem 3. Let X, X,, ... be a sequence of independent, identically distributed random
variables with common characteristic function ¢, m, and &, be any earlier considered
estimators. Than

18) hrygmf 1Dn M/ 1nf I | oot 6)— e""|

with probability 1.
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Let us notice that right-handside of (18) is equal to 0 if, and only if, ¢ is characteristic
function of the Cauchy distribution.

Proof. For positive constants 7' and K we will denote

R, =[-T/o,T/c]N[-K.,K].

Using substitution s = #/6, and applying the Minkowski inequality we estimate as
follows
2

—n  ds

|s["

2 N 1/2
~l-y —AG, s
Gt Te ulsl

—L——ds

isX
e
|s["

j _e*'hn\s\(p(s)

11, 8| =Gl

o(s)—e

2
. 12
26 e 16, ls|
e n -

n
|s["

I

~ 1/2
1 2 61T
~D,;.,> ( [, lo.)-o(f 2=—ds

|s[*
I..

2
ALy -G, 172
26, "e
n_dsJ
The first integral in the last inequality can be estimated in the following way

Thus, we obtain

19)

ity |s| —6,lsl

e ""o(s)—e

|s["

Al =16,k
20, '€
$)—o(s)| — ds
Ju Jon )0 =
min(7/6,,, 1
<2 sup [o, (9)-o()el [ —ds
seRs, k 0 |S|/
27"
< P, (5)=0(s)|

sup
SER(}” Ve
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Since the empirical characteristic function converges uniformly on any compact set with
probability 1 to characteristic function (comp. Cséorgé [2], Theorem. 2.1) the first integral
on the right-handsize of (19) converges to 0 with probability 1. Therefore we obtain

1 5 GlfyekaM
liminf —D inf i o —d.
7] nk y/(m )e@ Y R; (P(S) ¢ | |y s
oM
= inf e "ot/ c)—e dt.
(m,(y)s@j[*T,T]f{*O‘K,GK] ( ) ¢ |
Letting K and T to infinity completes the proof. i

5. Simulation results

In this section we present results of the numerical simulations performed to verify the
finite sample behaviour of the new test. Since the results of simulations presented in Giirtler
and Henze [5] show the advantage of the test based on the statistic D, , , with the sample
median and half of the interquartile range as estimators over other tests, we compare the
behaviour of the new test with the test considered by Giirtler and Henze.

Table 1 presents critical values for four dierent estimators and different values of
parameters y and A estimated from 10 000 samples (for » = 20 and n = 50) drawn from the
standard Cauchy distribution.

Table 2 and 3 present estimated powers of considered test for some alternatives for n =
20 and n = 50; respectively. In these tables N(0, 1) denotes standard normal distribution, ¢,
denotes Student distribution with n degrees of freedom, Log(0, 1) denotes logistic distribution,
U(0, 1) denotes uniform distribution over the interval (0, 1), La(0, 1) denotes the standard
Laplace distribution, . denotes chi-square distribution with n degrees of freedom, G and B
denotes Gamma and Beta distribution, respectively.

From this tables we draw a conclusion that using y > 0 in the statistic D , does not
influent signicantly on the test, while applying the new estimators 9 con51derably improves
the power of the test.

Table 1

Critical values on the significance level a = 0.1

n=20 n=350

eM 9ML 9.6 6 8 eM eML e .6 e 8
r=1 1.253 1.102 1.304 1.531 1.330 1.103 1.304 1.521
y=0 | A=25] 0.321 0.292 0.259 0.291 0.352 0.288 0.265 0.298
5 0.116 0.118 0.083 0.081 0.127 0.116 0.083 0.081
1 1.264 1.099 1.289 1.488 1.334 1.111 1.282 1.497
=2 0.480 0.428 0.411 0.469 0.519 0.424 0.413 0.473
1 1.394 1.256 1.300 1.468 1.485 1.246 1.307 1.483
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Table 2

Estimated powers for » = 20 on the significance level a = 0.1

Alternative
distribution

N, 1) 27 36 50 54 41 28 45 56 49 17 8 6

L, 8 11 17 18 10 7 11 14 12 4 3 2
z 16 23 34 37 25 16 26 33 30 10 4 3
t 21 28 42 45 33 21 35 44 40 13 6 4

Log(0,1) 19 26 39 42 29 19 32 40 35 12 5 4

U, 1) 76 83 91 92 87 79 93 96 89 61 46 38

La(0,1) 10 15 21 23 15 10 17 22 18 6 3 3

xfo 33 42 56 60 46 34 49 60 51 26 14 10

G(2,1) 48 50 67 70 54 42 57 69 54 38 24 18

B(2.5,1.5) 55 63 76 78 68 57 76 85 72 42 26 20

y=0.1 y=0.5

N(0,1) 27 36 50 55 32 32 48 55 38 31 48 57

Z, 9 12 16 19 9 8 13 17 10 7 12 15
£ 17 23 33 38 19 19 30 36 22 17 29 36
t 21 29 42 47 25 24 39 46 30 23 39 47

Log(0,1) 19 26 38 42 22 21 35 41 26 20 35 42

U, 1) 76 84 91 93 81 81 91 94 84 81 93 96

La(0,1) 11 14 21 23 12 11 19 22 14 10 18 22

Xlzo 32 42 55 61 37 38 53 61 42 37 54 64

G(2,1) 51 51 66 72 53 47 66 72 53 45 64 72

B(2.5,1.5) 53 63 76 80 59 59 76 81 64 59 78 85
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Table 3
Estimated powers for » = 50 on the significance level a = 0.1
y=0
dstbution o ho2s =3

O [ O | 06 | 05 | Ou | 6 | 65 | O | Oy | O | 0. | O,

NO,1) 79 88 96 98 94 96 98 99 97 97 98 98
t, 20 25 38 43 29 25 33 40 37 27 22 22

t 50 62 81 86 73 73 83 90 85 79 76 76

o 66 77 91 94 86 88 94 97 93 92 92 93
Log(0,1) 58 72 88 92 82 83 91 96 91 89 88 89
U, 1) 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
La(0,1) 22 32 50 58 43 42 59 70 58 47 51 56
xfo 89 92 98 99 97 99 | 100 | 100 | 99 98 99 99
G(2,1) 98 98 99 | 100 | 99 99 | 100 | 100 | 99 99 99 | 100
B(2.5,1.5) 99 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

y=0.1 vy=0.5
A=1 A=2 r=1

O | 0w | 06 | Os | Oy [ B | 06 | 05 | O | 0w | 05 | O

N0, 1) 82 89 96 98 91 94 98 99 93 96 98 98
t, 19 24 38 43 24 | 25 36 | 43 27 25 36 | 43

t 53 63 81 86 66 70 83 88 70 72 84 90

L, 68 78 91 94 80 84 93 96 84 87 94 97
Log(0,1) 62 72 88 92 75 79 90 94 79 82 92 96
uo,1) 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
La(0,1) 24 33 51 59 34 38 54 63 39 40 59 69
X120 91 94 98 99 96 96 99 100 | 99 99 100 | 100
G(2,1) 98 98 | 100 | 100 | 98 99 | 100 | 100 | 99 99 | 100 | 100
B(2.5,1.5) 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
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