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a note on browkin’s and Cao’s cancellation algorithm 

uwagi o algorytmie sitowym browkina i Cao

Abstract
In this paper, we follow our generalisation of the cancellation algorithm described in our previous paper 
[a. Tomski, m. Zakarczemny, On some cancellation algorithms, nnTDm. 23, 2017, p. 101–114]. for f 
being a natural-valued function defined on s s, ≥1 we remove the divisors of all possible values of f in the 
points in which the sum of coordinates is less than or equal to n. The least non-cancelled number is called 
the  discriminator Df(n). We find formulas, or at least an estimation for this discriminator, in the case of 
a broad class of sequences. 
Keywords: discriminator, sequence, congruence, odious numbers, Thue-Morse sequence

Streszczenie
Kontynuujemy badania nad generalizacją algorytmu sitowego browkina i Cao, [a. Tomski, m. Zakarczemny, 
On some cancellation algorithms, nnTDm. 23, 2017, p. 101–114]. niech f będzie funkcją o wartościach 
w zbiorze liczb naturalnych, określoną na s s, ≥1. usuwamy dzielniki wszystkich możliwych wartości 
funkcji f, w punktach, w których suma współrzędnych nie przekracza n. najmniejszą niewykreśloną 
liczbę naturalną nazywamy dyskryminatorem Df(n). W artykule uogólniamy pojęcie dyskryminatora. 
Znajdujemy jawne wzory lub oszacowania na dyskryminator dla szerokiej klasy ciągów.
Słowa kluczowe: dyskryminator, ciąg, kongruencja, liczby wstrętne, ciąg Thue-Morse’a
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1. Introduction

Let
  D n m g g g ng ( ): min{ : ( ), ( ), ..., ( )� � 1 2 are different modulo m}  (1)

for some special injective function g : . →
The problem is to find Dg(n) for an at least sufficiently large n∈.
We call Dg(n) the discriminator of the function g as it gives the least modulus which 

discriminates the exact value of g, i.e. the n numbers g(1), g(2), …, g(n) are pairwise 
incongruent modulo Dg(n).

This idea was first introduced in [1] in the case of g(n) = n2 and through the years has 
remained an object of interest for many number theorists. The authors of [2] solved the 
problem for g(n) = nj where j∈ and n is sufficiently large. In [5], the Dickson discriminator 
problem was considered – this is to find Dg(n) for a Dickson polynomial of degree j ≥ 1, 
which is defined by the following formula:
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for some integer number a. Afterwards, [6] and [13] provided an asymptotic characterisation 
of Dg(n) for some special g x∈[ ] including cyclic polynomials. In turn, Zhi-Wei Sun found 
such examples of g that for any n, the value of Dg(n) is a prime.

Example 1.1. Let g(n) = n – (–1)n where g : . →  Then D n
n

ng ( ) , .�
��

��
�
��

�2
1

2
2

Proof. By straightforward verification, we get Dg(2) = 2 and Dg(3) = 4.
Let us assume that n ≥ 3. 
If 2m < n, then g(2m + 1) ≡ g(1) (mod 2m) and both 1, 2m + 1∈{1, 2, …, n}, 

so 2m ≠ Dg(n). If 2m + 1 ≤ n, then g(2m + 1) ≡ g(2) (mod 2m + 1) and both
2,2m + 1 ∈ {1, 2, …, n}, so 2m + 1 ≠ Dg(n). Hence, 

  D n
n n

n ng ( )
, if is even,

, if is odd.
�

�
�
�
� 1

 

We have two cases.
I. n is odd. If there exist n1, n2 ∈ {1, 2, …, n}, n1 < n2 such that

g(n2) ≡ g(n1) (mod n + 1), then g(n2) ≡ g(n1) (mod 2), n2 ≡ n1(mod 2), 

thus, g(n2) – g(n1) = n2 – n1. Therefore n n n� �1 2 1 ,  which is not possible. 
We have shown that g(1), g(2), …, g(n) are different modulo n + 1. 
Thus, Dg(n) ≤ n + 1 and in this case, we have Dg(n) = n + 1. 
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II. n is even. Analogically, if there exist n1, n2 ∈ {1, 2, …, n}, n1 < n2 such that  
g(n2) ≡ g(n1) (mod n), then n n n2 1− and we obtain contradiction again.

We have shown that g(1), g(2), …, g(n) are different modulo n.
Thus, Dg(n) ≤ n, so in this case, we have Dg(n) = n. 

To summarise, we obtain: D n
n

g ( ) .�
��

��
�
��

2
1

2   
Browkin and Cao [3] reformulated the problem (1) in terms of the following cancellation 

algorithm. For n ≥ 2 define the set:

  A n g s g r r s n g k l g l k l n k lg ( ): { ( ) ( ): } { ( ) ( ): ; , }.� � � � � � � � � � �1   (2) 

Cancel in   all numbers from the set: 

  { : for some ( )},d d a a A ng∈ ∈  

we are then interested in finding the least non-cancelled number.
To generalize, let f mm: , � �1be an arbitrary function and define the sets:

  V n f n n n n n n nf m m( ) { ( , , ..., ): },� � � �1 2 1 2  (3)

  � f fn d d a a V n( ) { : for some ( )}.� � �

 (4)

Definition 1.1. We define bf(n) as the least number in the set \ ( )∆ f n  being called 
the set of all non-cancelled numbers.

Remark. We would like to stress that for any n∈, the definitions of Dg(n) and bf(n) are 
not equivalent. To be precise, if g : → is an injective function, to find Dg(n) is the same 
task as to find bf(n) with f(n1, n2) = g(n1 + n2) – g(n1), see [3]. 

However, the question is whether, for some given function f having fixed number of 
variables, there is any injective function g, such that f(n1, n2) = g(n1 + n2) – g(n1).

In this case, we have bf(n) = Dg(n). 
Note that the sets of the divisors for both of the values 

g(n1 + n2) – g(n1) and g n n g n( ) ( )1 2 1� � are the same. 

Therefore, if for some n n g n n g n1 2 1 2 1 0, , ( ) ( ) ,� � � �  

we can then take f n n g n n g n( , ) ( ) ( ) .1 2 1 2 1� � �

For example, in the case g(n) = n – (–1)n, we take 

f n n n n n n( , ) ( ) ( )1 2 1 2 1 12 1� � � � � �

instead of n n n n
1 2 1 12 1� � � � �( ) ( ) .

The following table shows the connections between these two concepts.
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Table 1. Examples showing that bf(n) generalises Dg(n)

bf (n) with function f Dg(n) with function g

f n n n n n( , ) ( )1 2 1 2
2

1
2� � � g(r) = r2

f n n n n nk k( , ) ( )1 2 1 2 1� � � g(r) = rk, k ∈ N

f n n k kn n n( , )1 2
1 2 1� �� g(r) = kr, k ∈ N

f n n n n
n n( , ) ( ) ( )1 2 1 2 1 12 1� � � � � � g(r) = r – (–1)r

f(n) = nk –

f n n n n( , )1 2 1
2

2
2� � –

f n n n n n n( , , )1 2 3 1
2

2
2

3
2� � � –

 f(n1, n2, …, ns) = n1 … ns, s ∈ N –

f(n1, n2) = od(n1 + n2) – od(n1) g(r) = od(r)

Browkin and Cao considered standard linear and quadratic functions.
Tomski and Zakarczemny [11] and Zakarczemny [12] investigated the problem mainly 

in the case of various quadratic and cubic polynomials and also in the case of the products 
of some linear functions. Now, we provide the formula for bf(n) for new classes of functions.

Haque and Shallit found Dg(n) for so-called ‘evil’ or ‘odious’ numbers (see [14]); 
additionally, they counted the number of finite n-sequences which are their own discriminators. 

2. f(a) = a! 

Theorem. Let f f a a: , ( ) !. � � , We have bf(3) = 4 and: 

  bf(n) = min{p:p > n, p is a prime number} if n ≠ 3.  (5)
Proof. By straightforward verification, we may assume that n > 9. Let q, p be consecutive 

prime numbers such that q ≤ n < p. By Bertrand’s postulate, we have 2q > p. 
We note that p n!, hence p is not cancelled. 
It is sufficient to show that any natural m < p is cancelled. All the numbers 1, 2, …, n are 

cancelled. If we take any n < m < p, then m is a composite number. 
Let m = kl, where k, l > 1. We investigate two special cases:
I. Let k = l and k be a prime number, so p > k2 > n > 9, so k ≥ 5. We have:

  2
1
2

1
2

2k k p q n� � � � .  (6)

As k < 2k < n, we get that 2 2k n m n!, so !  and m is cancelled.
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II. In any other case, we may assume that m = kl, k > l > 1. We have:

  n q p kl k� � � �
1
2

1
2

.  (7)

As l < k < n we obtain kl n m n!, so !  and m is cancelled.

3. f(a) = a!!

Theorem. Let f f a a: , ( ) !!. � �  We have bf(7) = bf(8) = 9 and:

  b n m m n m p m p p af ( ) min{ : , or , is prime number}� � � �2  (8)
if n ≠ 7,8.

Proof. By straightforward verification, we may assume that n ≥ 25. Let: 

  T m m p m p p a= = ={ : or , is prime number}2  (9)

Let ( )tn n�
�

1  be an increasing sequence of elements of T. There exists i∈ such that:

  t n ti i� � �1 .  (10)

For i > 1, the following inequality holds:

  ti < 2ti–1. (11)

Equation (11) follows from Bertrand’s postulate, which states that for every x > 1 every 
interval (x, 2x) contains at least one prime number. We may assume that ti ≥ 26.

It is sufficient to show that any natural number m < ti is cancelled. 
Let us observe that m m!!, so all the numbers m ≤ n are cancelled.
If we take any m such that n < m < ti , then m ∈ (ti–1 , ti), so m ∉ T and m is a composite 

number. Let m = kl, where k, l > 1. We investigate two special cases:
I. Let k = l and k be a prime number, so ti > k2 > n ≥ 25, so k ≥ 7. We have: 

  3
1
2

1
2

2
1k k t t ni i� � � �� .  (12)

As k < 3k < n, we obtain 3 2k n!! if n is odd or 3 12k n( )!!−  if n is even. 

Therefore, m n m n!! or ( )!!−1  and m is cancelled.

II.  In any other case, we may assume that m = kl, k > l > 1.
We have the following cases:
a) If m is odd or 4 m , then we can assume that k l≡ (mod ).2 Thus, we have:

  n t t kl ki i� � � ��1
1
2

1
2

.  (13)

As l < k < n, we obtain kl n k l n kl n!! if (mod ) or ( )!!� � �2 1  if k l n� � �1 2(mod ).
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Therefore m n m n!! or ( )!!−1  and m is cancelled.

(b) If m = 2h and h is odd, then h is not a prime since m ∉ T. Thus, h = ab, a ≥ b ≥ 3.

We can take k = 2a and l = b. For l ≥ 5, we have:

  n t t kl ki i� � � ��1
1
2

1
2

.  (14)

As 2l < 2k < n, we obtain 4kl n!! if n is even or 4 1kl n( )!!−  if n is odd. 
For l = 3, we have:

  n t t kl ki i� � � ��1
1
2

1
2

.  (15)

Since 3k = kl > n ≥ 25, we may assume that k > 6. As 6 < k < n, we get that 6k n!! if n is 
even or 6 1k n( )!!−  if n is odd. Therefore, in both cases m n m n!! or ( )!!−1  and m is cancelled.
To sum up, any n < m < ti is cancelled, so bf(n) = ti for n ≥ 25. 

4. f(a) = a2a

Theorem 4.1. Let f : , →  we take the function f(a) = a2a.
Then 

  b n
n

m m n mf ( ) min{ : ,( , ) }.�
��

��
�
��
� � � � �2

1
2

1 2 1
 (16)

Proof. Let k n f a k a� � � � � and { , }. If ( ) ( ), then ( ) ,2 1 2 2 1 2 1k k k  
so n k a a n k� � � � � �1 2 1 2 1, thus and  is not cancelled. Therefore,

  b n kf ( ) .� �2 1  (17)

If 1≤ ≤ ≤h n h f h h n, then ( ), , so h is cancelled and b n nf ( ) .� �1
We consider two cases: 

1) If n k b n n
n

f� � � �
��

��
�
��
�2 1 2

1
2

1, then ( ) .

2) If n k b n n nf� � � � �2 1 1 2, then ( ) { , }. If h = n + 1 then

h k h f k k h n n� � � � �2
1
2

1
2

1, ( ), ( ) ,  so h is cancelled and

b n n
n

f ( ) .� � �
��

��
�
��
�2 2

1
2

1

We generalise this theorem to the following form.
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Theorem 4.2. Let f : →  and we fix b∈. We take the function f(a) = aba.
Then:

  b n m m n m bf ( ) min{ : ,( , ) },� � � � 1  (18)
if n > b.

Proof. Let m m m n m b0 1� � � �min{ : ,( , ) }.

If m f a a n m a0 0 01( ), then , som � � �  , thus a > n and m0 is not cancelled.

Therefore, bf(n) ≤ m0.
Let assume that n > b. From Bertrand’s postulate, it follows that we can find a prime 

number p such that n < p < 2n. Because p > b and p is a prime number, we obtain (p, b) = 1, so 
m0 ≤ p < 2n. Thus, m0 ≤ 2n–1.

If 1 ≤ h ≤ n, then h f h h n( ), ,≤ so h is cancelled.
If n + 1 ≤ h < m0 , then (h, b) = d > 1.

Let h = dl, where l ≥ 1, then h f l l
d

dl dl h m n( ), ( )� � � � � �
1 1

2
1
2

1
2

10  , so h is cancelled 

and bf(n) ≥ m0. Therefore, bf(n) = m0.

Remark 4.3.

Let f : → and for all natural n we have f n
n
( )

,∈  then bf(n) > n.

Indeed, if 1 ≤ k ≤ n, then h f h h n( ), ,≤  so h is cancelled. Therefore, bf(n) > n.

5. f(n1, n2, ..., ns) = n1n2 ‧ ... ‧ ns , s ≥ 2

Let { }pt t�
�

1 be an increasing sequence of the prime numbers. 
Our aim in this chapter is to find an algorithm which gives only prime numbers.

Theorem 5.1. Let f s f n n n n n ns
s s: , , ( , , ..., ) .� � …� � � � �2 1 2 1 2 We have:

  b b b s b sf f f f( ) , ( ) , ..., ( ) , ( )1 1 2 1 1 1 2� � � � �  (19)

and if n > s, then bf(n) = pt , where t > 1 is chosen in such a way that p n s pt t� � � � �1 1 .
Proof. By a straightforward verification, we get (19).
Let n > s . We assume that p n s p tt t� � � � � �1 1 1, .
We have to prove that pt is non-cancelled, but any natural number h < pt is cancelled.
First, let p n n nt s1 2 ⋅ ⋅... for some n n ns1 2, , ..., .∈  Thus, there exists a natural j ≤ s, such that 

p nt j .  Since n n n n ps j t1 2 1, , ..., and ,≥ ≥ n n n p s ns t1 2 1� � � � � � � .  Therefore, a number pt 
is non-cancelled.
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We now assume that h < pt . To show that h is cancelled, we need to consider two cases 
separately.

a) If h  =  p j , where j j t� � � and ,1  
 then we take n p n n h n n nj s s1 2 1 21 1� � � � �, , ..., and get ...
 with n n n s p s p ns j t1 2 11 1� � � � � � � � � �� .  Thus, h is cancelled.

b) If h = kl where k l k l k l k l kl, , , , we have ( )( ) . Thus, .� � � � � � � �1 2 2 0
1
2

2

We take n k n l n n h n n ns s1 2 3 1 21 1� � � � � �, , , ..., and get ... .
From Bertrand’s postulate, we have p p tt t� ��2 11 for . Therefore,

  
n n n k l s kl s h s

p s p s p

s

t t t

1 2 2
1
2

1
2

1
2

1
1
2

1 1

� � � � � � � � � � � �

� � � � � � �



( ) ( ) �� � � �1 1s n.
 

Thus, h is cancelled.
To summarise, we have shown that every h < ps is cancelled and this is the end of the 

proof. 
Remark 5.2. The set { ( ): , }b n n s nf � � �1 

 is the set of all prime numbers.

6. f(n1, n2) = od(n1 + n2) – od(n1), where od(n) denotes n-th odious number

The ‘odious’ numbers are the numbers ( ( ))od n n≥1 from the sequence A000069 in [14], 

  1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28... 

and this sequence contains consecutive natural numbers with an odd number of digit ‘1’ in 
their binary representation. 

Remark 6.1. Note that f n f od nn( , ) ( )1 1� � �  – od(n) gives the Thue-Morse ternary 
sequence: 1,2,3,1,3,2,1,2,3,2,1,3,1,2,3,1,…

The idea behind the construction of this sequence is based on the following recursive 
definition ([14]):

1. Start with f1 = 1, f2 = 2.
2. For any k∈,  we will give a procedure describing how to construct the values 

f fk k2 1 2 1+ +, ...,  tarting from the values f f k1 2, ..., :
a) Write: f f f f f fk k1 2 2 1 2 24 4 4, , ..., , , , ..., .− − −
b) Transform the value of 4 2− f k according to the rule: 

replace 3 with 2, replace 2 with 1, leave 1 unchanged.
c) After transformation, we get the sequence f f f fk k k1 2 2 1 2 1, ..., , , ..., .+ +
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Theorem 6.2. Let f : , 

2 →  we take the function f n n od n n od n( , ) ( ) ( ).1 2 1 2 1� � �
Then 

  b n nf
e e( ) min{ : }.� �2 2  (20)

Proof. We have:

  
V n od n n od n n n n

od r od s s r n
f ( ) { ( ) ( ): }

{ ( ) ( ): }.

� � � � � �

� � � � �
1 2 1 1 2

1
 (21)

By definition, bf(n) is the least natural number m in the set
 \{ :d d a∈ for some a V nf∈ ( )}. Thus, bf(n) is the least natural number m that discriminates 
the numbers od(1), od(2), ..., od(n). Taking into account the differences in the definitions of 
discriminator Dg(n)and bf(n), we obtain (20) from Theorem 5 [4].

7. f n n n n n n n n( , )
1
4

3 3 5[( 1 ( 1) ]1 2
1 2 1 1 2 1�� �� ��� �� � �) .

Remark 7.1. The sequence u r r r
5

1
4

3 5 1( ): ( ( ) )� � � was first investigated by Sabin Sălăjan 

[15]. Note that f n n u n n u n( , ) ( ) ( ) .1 2 5 1 2 5 1� � �

Theorem 7.2. Let f : , 

2 →  we take the function: 

  f n n n n n n n n( , ) [( ) ( ) ] .1 2
1
4

3 3 5 1 11 2 1 1 2 1� � � � � �� �  (22)

Then 

  b n n nf
e f e f( ) min , : , .� � �� �2 5 2 5

5
4

 (23)

Proof. Note that this theorem is an obvious corollary from Browkin’s Conjecture, 
confirmed by Ciolan and Moree Theorem 2 in [15]. We have:

  
V n n n n

u r

f
n n n n n n( ) ( ) ( ) :

{ ( )

� � � � � ��� �� � �� ��
�

� �1
4

3 3 5 1 11 2 1 1 2 1
1 2

5 uu5 1( ) : }.s s r n� � �
 (24)

By definition, bf(n) is the least natural number m in the set
 \{ :d d a∈ for some a V nf∈ ( )}.  Therefore, bf(n) is the least natural number that 
discriminates the numbers u5(1), u5(2), ..., u5(n). We obtain (22) from Theorem 1 [15].
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8.  f n n n n n( , ) 2 21 2
1 2 1  � � �� .

In most cases, one can find a discriminator for some special types of functions. There is 
still lack of an algorithm for any larger class of mappings, for example, all polynomials or all 
exponential functions. However, now we will describe a simple, general idea of how to find at 
least an estimation for the discriminator. More accurately, if for any n∈ we find the set Zn 
such that b n Zf n( ) ,∉  then we have the lower bound of bf(n) in the form:

  b n m m Z mf n( ) min{ : , }.� � �  

Obviously, Z nn f=\{ ( )}b satisfies the condition b n Zf n( ) ,∉  but the aim is use 
properties of f to find Z b nn f⊂\{ ( )} such that

  min{ : , } min : ( ).\{ ( )},m m Z m m m b nb n mn ff� � � �� ���    

Below, we will follow this line of reasoning for the function 

  f n n n n n( , ) .1 2 2 21 2 1� ��  

We recall that �( ) { : ,( , ) } .n m m n m n� � � � 1

Theorem 8.1. Let f : , 

2 →  we take the function: 

  f n n n n n( , ) .1 2 2 21 2 1� ��  (25)
Then:

  b n m m n m nf ( ) min{ : ( ) , }, for .� � � ��  2  (26)

Proof. We assume that n ≥ 2. Let Z m m n mn : { : ( ) , }.� � � �� 1 

Since { , , ..., } Z , then .1 2 0n Zn n� � �  We will show that if m ∈ Zn , then m is cancelled. Let 
m = 2sm1 , where m1 is an odd number, s ≥ 0.

We take n s n m1 2 11� �max{ , } and ( ),�  then

  n n s m m m m ns s
1 2 1 1 11 2 2 1 1� � � � � � � � � �max{ , } ( ) ( ) ( ) ( ) ( ) ( ) .� � � � � �  

Thus, 2 21 2 1n n n
fV n� � � ( ). Note that m nf�� ( ). Indeed, by Euler’s theorem:

  
2 2 2 2 2 2 1 01 2 1 1 11 1 1n n n m s s s m� �� � � � � �� �( ) max{ , } max{ , } max{ , } ( )( ) ((mod ), so \ ( ).m m nf� �  
Thus, m is cancelled. Therefore, b n Z b n nf n f( ) and ( ) ,� � ��� which implies (25).

Comment. Now we are going to prove the theorem which allows us to rewrite (25) in 
a simpler form. However, the proof depends on some conjecture still waiting to be proved.
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Remark. We will recall Sierpiński’s conjecture, which states that for every integer
x > 1 there is at least one prime number in (x2 – x, x2), see [9]. However, many similar-

sounding conjectures have appeared over the years. Oppermann [19] stated the conjecture 
that for every natural x > 1, the interval (x2 – 2x + 1, x2) contains a prime. Cramer [21] stated 
the conjecture that for every n-th prime number pn , we have p p O pn n n� � �1

2((log ) ).  Baker, 
Harman and Pintz proved that for sufficiently large real number x, there is at least one prime 
number in [x – x0.525, x], see [18]. For a brief review of other theorems and conjectures about 
pn+1 – pn , we refer the reader to paper [16].

Conjecture 8.2. 
  min{ : ( ) , } min{ : , is a prime number}.m m n m p p n p� � � � �

 (27)

Theorem. If Sierpiński’s conjecture is true, then (27) is also true.
Proof. First, we will prove an inequality without using any conjecture. 

  min{ : ( ) , } min{ : , is a prime number}.m m n m p p n p� � � � �

 (28) 

If p is a prime number such that p > n, then ϕ(p) = p – 1 ≥ n. 
Let k p p n p� �min{ : , is a prime number}.
Hence, � �( ) , so { : ( ) , }k n k m m n m� � � �  and

  min{ : , is a prime number} min{ : ( ) , }.p p n p m m n m� � � �� 

 

Secondly, we will prove the opposite inequality using Sierpiński’s conjecture.

  min{ : ( ) , } min{ : , is a prime number}.m m n m p p n p� � � � �

 

We start this proof using the fact that for every composite number m, we have (see [8]):

  �( ) .m m m� �  (29)

Suppose that m m m n m0 � � �min{ : ( ) , }� 
is a composite number.

If Sierpiński’s conjecture is true, then there exists prime number p such that 

  n m m m p m� � � � ��( ) .0 0 0 0  

Therefore, by (28) we get p m m n m m� � � �min{ : ( ) , } ,�  0 which leads to the contrary. 
It means that m0 is a prime, so m p p n p0 � �min{ : , is a prime number}.

9. The Fibonacci numbers Fa

Theorem 9.1. For the Fibonacci numbers Fa , we take a function F : → such that F(a) = Fa .
Then b n nF ( ) ,6 1� � if n is a natural number.
Proof. We have V n F a n n d d aF a F( ) { : } and ( ) { :� � � ��  for some a V nF∈ ( )}.
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It has been proven (see [17]) that for any natural number m the sequence ( mod )F mi i�
�

0

is periodic with its length being not greater than 6m. Thus, for every natural number k ≥ 1 
there exists a natural number i ≤ 6k such that k Fi .  Therefore: 

  k kF�� ( ),6  (30)
Thus:

  { , , ..., } ( ).1 2 6n ��F n  (31)

However, by the definition b n nF F( ) ( ).6 6��  Thus, b n nF ( ) .6 1� �

10. bf(n) = f(n) + 1 for surjective, non-decreasing natural-valued arithmetic f

Theorem 10.1. Let f : , →  such that f is a surjective, non-decreasing function.
Then, for all n∈ we have b n f nf ( ) ( ) .� �1
Proof. We will prove that V n n f f n b n f nf f f( ) ( ) { ( ), ..., ( )}, ( ) ( ) .� � � �� 1 1
We proceed by induction on n. Observe that when n = 1, we have

  f V bf f f( ) , ( ) ( ) { }, ( ) .1 1 1 1 1 1 2� � � ��

Assume that the proposition holds for n – 1, where n ≥ 2, i.e.

  V n n f f n b n f nf f f( ) ( ) { ( ), ..., ( )}, ( ) ( ) .� � � � � � � � �1 1 1 1 1 1 1�  

If f n f n V n V n n n b n b nf f f f f f( ) ( ), then ( ) ( ) ( ) ( ), ( ) ( )� � � � � � � � � �1 1 1 1� �

ff n f n( ) ( )� � � �1 1 1

If f n f n V n V n f n ff f( ) ( ) , then ( ) ( ) { ( )} { ( ), ..., ( ), (� � � � � � � �1 1 1 1 1f f n nn

n n d d f n f f n f n

b
f f

)},

( ) ( ) { : ( )} { ( ), ..., ( ), ( )}.

and

� �� � � � � �1 1 1

ff n f n( ) ( ) .� �1

Thus, the proposition holds for n and this completes the proof. 

We would like to thank the referee for providing useful comments which serve to improve the paper, especially Theorem 9.1.
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