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ASYMPTOTIC ESTIMATE OF ABSOLUTE PROJECTION
CONSTANTS

BY GRZEGORZ LEWICKI

Abstract. In this note we construct a sequence of real, k-dimensional
symmetric spaces Yk satisfying

lim inf An V> limirlif)\(Yk,ll)/\/E > max ]h(w) >1/(2—+/2/x),
we|0,ag

where A? is defined by () and

h(w) :af\/2/7+2a1\/ag_7wz+wm

with a1 = 1/(2 — \/2/7) and a2 = 1 — a1. This improves the lower bound
obtained in (3], Th. 5.3 by max,c(o,q,] (W)

1. Introduction. Let X be a normed space and let V' be a linear subspace
of X. Denote by P(X, V) the set of all projections from X onto V, i.e., the set
of all continuous extensions of id : V — V to X. Let

AV, X)=if{||P||: PeP(X,V)}
and
AV) =sup{\(V,X) : V C X, as Banach spaces}.

We call A\(V, X)) the relative projection constantof V in X and A(V') the absolute
projection constant of V. A projection P € P(X,V) is called minimal if
IIP|| = A(V, X). Let us denote

A = sup{A(Y) : Y is a real, k-dimensional space}.
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It is known (see e.g [8]), by the compactness of the Banach-Mazur compactum
and the continuity of the function X — A(X), that there exists a k-dimensional,
real space X* such that

(1) Ak = A(XF).

Moreover, X*, as a separable Banach space, is isometric to a subspace of
1 and A\(X*) = A(X* 1) (see e.g. [11]). By the Kade¢-Snobar Theorem
[7], A\ < Vk. Moreover, the examples from [4] show that this estimate is
asymptotically the best possible, which means that

(2) lim ANXEYWVE=1,
where X is given by . For other related results see [2,4-6].
It is worth saying that the spaces X* defined by are not symmetric. Recall

that a k-dimensional real Banach space V' is called symmetric if there is a basis
vl,...,v* of V such that

k k
(3) 1> sl =11 2 esao?’l
j=1 Jj=1

for any aq,...,a; € R, ¢, € {—1,1} and o € ¥, where ¥ denotes the set of
all permutations of {1,...,k}. Moreover, equality does not hold in the case
of symmetric spaces, which has been shown in [6]. It has been proven in [6]
that

1imksup(A£ /VE) < 1 —1/900,
where
(4) MY = sup{A(Y) : Y real, k-dimensional, symmetric space}.
It also has been conjectured in [6], p. 36, that

(5) limksup AP VE=1/(2—/2/).

This conjecture has been partially motivated by [5], Prop. 2, where the exis-
tence of k-dimensional, real, symmetric spaces Y* satisfying

(6) limksup MYV VE=1/(2—+/2/7)
has been shown. Observe that by [10]
(7) lim AU VE = \/2/7.

Since

V2/m=0.7979... <1/(2—+/2/7) =0.8319...,
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the spaces Y* have asymptotically larger absolute projection constants than
the Euclidean spaces lék). Also in [9] the Marcinkiewicz spaces satisfying
have been constructed.

Above conjecture has been disproved in [3], Th. 5.3. Moreover, in [1], for
k > 3, there have been constructed symmetric k-dimensional subspaces V¥ of

l1 having a very simple structure such that

lim AMVELVE=1/(2—/2/7).
The aim of this note is to show the existence of k-dimensional, real and sym-
metric subspaces V¥ satisfying

limirkl:f)\g/\/g > limi%f)\(Yk, L)/VE> max h(w)>1/(2—+/2/n),

E[O,az}

where h(w) = a?\/2/7 + 2a1+y/a3 — w? + wy/a3 — w? with a; = 2_\1/2/7 and

az = 1 — ay. This improves the lower bound obtained in [3], Th. 5.3 by
MaX,e(0,a5] P(W).

2. Auxiliary results. In this section we present some definitions and
results which will be of use later.

DEFINITION 2.1. Let 2 € R¥ and let ¥;, denote the set of all permutations
of {1,...,k}. Suppose J : &) x {—1,1}* — {1,...,2Fk!} is a fixed bijection
such that J(id, (1,...,1)) = 1. By [[z]] we denote the k x 2¥k! matrix with the
columns (), j =1,...,25k!, where

27 = (€00)(x) = (C1Tg(1)s - - - » KT o(k))-

Here € € {—1,1}* ¢ € %}, are so chosen that j = J(c,¢). Observe that, for
any = € R¥, () = 2. We will refer to the matrix [[z]] as the block generated
by x.

DEFINITION 2.2. Let k, N € N. Put n = N2Fkl. Let z',..., 2N e R¥. A

linear subspace V' C lgn) is said to be generated by (x!,...,z") if and only if
the rows v!, ..., v¥ of the k x N2Fk! matrix [[z']],..., [[:UN]] form a basis of V,
where, for i = 1,..., N, [[z]] is the block generated by z' (see Def. . It is
easy to check that V' is a symmetric space (see ) with respect to v, ..., v
The following notation will also be used. For z,y € R, set
2k k! k ) k
(2
ylall =3 (12w’ = > [ wew)
i=1  j=1 (g, 0) €S x{—1,1}*k  j=1

Observe that for any z,y € RF

(8) y- [[2]] = 2 - [[y]].
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Now let V C lgn) be a subspace generated by z,...,z" from R¥. For z € R¥

we set k
Iz = 11Dz,
j=1

where v, ..., 0" is the basis of V associated with 2, ..., 2"V by Def. (2.2). By
||z|le we denote the Euclidean norm of z. Observe that

N .
Jall = > 2 - (o]

The main tool for our investigations will be the following theorem proved in [3],
Th. 4.1. We present here a version of it more convenient for our purposes.

THEOREM 2.1. Let k,N € N. Let n = N2Fk!. Consider the following
extremal problem. Mazimize the function f : R¥N — R defined for ', ...,z €
R* by

N
9) fat, ey =) e
j=1

under the conditions

N -
>l =1.
j=1

If f attains its mazimum at (y',...,y"N) then the symmetric k-dimensional
space YN generated by yY ...,y satisfies
f(yl7"'7yN)

=ANYN 1) < MY,
3. Main result. In this section we show that there exist k-dimensional
maximal symmetric spaces V* satisfying

(10) limi%f)\(Yk, L)/ VE > max h(w) > 1/(2 — \/2/7),

0,a2
where h(w) = a?./2/7 + 2a1+/a3 — w? + w\/a} — w? with a; = 1/(2 - /2/7)
and as = 1 — aq. In fact, we show that holds true for k-dimensional
maximal symmetric spaces generated by three blocks. To do this, for £ € N,
k> 2 and a,l € [0,1], set

1,...,1
(11) xl’k’l = 7(11( ! ! )’ 1‘2’k’l = lag(ck,dk, . ,dk)

Vi

and
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where a2 = 1 — a1 and cg, di, are nonnegative numbers such that

(12) View)? + (k= 1)(dg)? =1
and
(13) Vk—1d, =w.

Here w € [0, 1] is a fixed number independent of k. Notice that for any a; €
[0,1]
25 e + (|25l + [z le = a1 + a2 = 1,

which shows that the above vectors can be used to estimate from below the

function f from Theorem
We start with

LEMMA 3.1. For any k € N and a,b € R
Z |<€7(aaba---ab)>|22ka
ee{—1,1}*

and

> e (a,a,b, ..., b)) > 2Fa,

ee{—1,1}k

where for x = (z1,...,71) ER* andy = (y1,...,yx) € R¥

k
j=1

PRrooOF. Notice that

> Heab,... b)) =2 > a+ (e (b,...,b))

ee{-1,1}* ee{—1,1}k-1
=2 > Jat+b+ (e (b, 0) | +la—b— (& (b,...,D))
ee{—1,1}k—2
>2- > |20 = 2%
ee{—1,1}k—2
The second inequality can be proved in the same way. O

LEMMA 3.2. Let f* be the function defined in Th by (@ for N =3 and
k > 2. Then for any ay € [0,1]
Fr(pVRL g2 g3k
2k(k —1)!

iC
> Gay k(W) == ;}C f + 2Vkayasley + 2Vkayas(1 — 1)

+ 20,%1(1 — l)(ck + (k — l)dk) + (CLQZ)Q(Cz + (k‘ — 1)dek)
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where
(k—1)/2 i
Cr= > <l>(k— 21)
1=0
for k odd,
K21
Cr= > <l>(k—2l)
1=0
for k even and ao =1 — ay.
Proor. By @D and ,
14 fk(xl,k:,l?lﬂ,k,l’ 963,1@,1) _ 23: x@k,l[[ajj,k,l]]

2k (k — 1)! % (k— 1)

ij=1

Note that by elementary calculations (compare with [1], Th. 2.8)

(15) 2 F U] = (ai /k)2K!Cy.
Also
(16) 2P [2R) > (agl)228 (k — 1)lex (e + (k — 1)dy),
(17) 2P = 25 (k = Dla3(1 - D)%,
Lk 20 _ (a1a0)2"k!cy,

(18) a o [ = —

Lk 3.k — (araz(1 — l))Qkk!
(19) a [ = 7
and
(20) 2R [3 ] = a3(1 = Diep 4 (k — 1)dg)2%(k — 1)

To prove , notice that by Lemma

x2,k,l[[x2,k,l“ _ (agl)Z(k_ 1)! . ( Z ’<e’ (ci,d%...,d%))’
ec{—1,1}*

+(k_ 1) Z ’<€’ (dekackdkad%w'-ad%)ﬂ)
ec{—1,1}*
> (agl)?2%(k — D2 + (k — D)ewdy),
as required. The proof of equalities f follows by elementary calcula-
tions. Applying 7, we get the result. O
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LEMMA 3.3. Let g : [0,1]2 — R be defined by

glar, w,1) = a3\/2/7 + 2a1asl\/1 — w?
+ 2aga; (1 — 1) + (azl)*wv/1 — w? + 2a3w(1 — 1),

where ay =1 —ay. Let, fork € N, k> 2, gbkl g2kl g3kl ¢ RF be the vectors

associated with w by f. Let f* be as in Lemma . Then for any
(alalaw) € [07 1]3

(21)

B(gbhl g2k g3kl
VE2E(E —1)!
PRrOOF. By Lemma [3.2 for any (I, w) € [0, 1]?

Fr(a bRl p2Hd g3kl

limkinf > g(ag,w,l).

V2 (k1)) > Gay ht(w)/VE
a%Ck 2
— N + 2a1a9lV/ 1 — w? + 2a2a1(1 — 1)
vk —1
+2021(1 — Z)C’“L\/Ew + (a%lzx/k “Tw/1— w2) IVE.

By [1], Lemma 2.3, ngl = /\(lék)). By (EI), limy, 2,{7071’6\@ = \/g Consequently,

fk(xl,k,l 22k x3,k.l)
VE2F(k —1)!

as required. O

lim inf > 1i’£nga1’k,l(w)/\/E = g(a1,w,l),

REMARK 3.1. Notice that for any a; € [0,1]

glai, w,1) = a3\/2/7 + 2a1a2V 1 — w? + adw/1 — w?.
1

Set a1 = Py Changing variables from w € [0, 1] to agw € [0, az] we get

) 71 == h )
wrg['%ﬁ}g(al w, 1) S (w)

h(w) = a3\/2/7 + 2a14/a3 — w? + wy/a} — w2,

In 3], Lemma 5.2 it was shown that

where

lim gal,k,l (w)
e VR

> glar,w,1) = h(azw)
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for any w € [0,1]. Moreover it can be shown by elementary calculations that
for a; = —L— the function h(w) attains its global maximum on [0, as] at

2—+/2/m
\/a% + 2&% —a

2

LEMMA 3.4. For any a; € [0,1) and w € (0, 1] there exists | € (0,1) such
that g(alvwvl) > g(al)w’ 1)

Wo =

PROOF. First notice that for any [ € [0,1] and k € N,

2aqaslcg, + 2a1a2(1 — 1) > 2aia9¢, = 2a1a2V 1 — w?.

To end our proof let us consider (for fixed a; € [0,1] and w € (0,1]) the
function

u(l) = 2a3w(1 — 1)l + (azl)?wy/1 — w?.
u(l) = 203wl + Pa3w(vV1 — w? — 2).

It is easy to see that «/(I) = 0 if and only if I =, = ﬁ and that u

2—/1—w?
attains its global maximum on [0,1] at [, € (0,1). By (21) and the above
reasoning for any a1 € [0,1] and w € (0,1], g(a1,w,ly,) > g(a1,w, 1), which
shows our claim. O

Notice that

Now we can state the main result of this note

THEOREM 3.1. For each k € N there exist yb*, y>F y3* € R¥ such that the

symmetric spaces V¥ generated by y"*, y>* 43 satisfy
tim inf (AF/VE) > liminf (AVH0)/VE) = max g(a,w,1)
k k (a,w,)€[0,1]3
1
> max h(w) > ———.
we[0,az] 2 — 2/7‘r
Proor. We apply Th. Let a1 = and ap =1—a;. Fix k € N,
2—+/2/7
N =3, wy, =V (a1/a2)22+2—a1/a2. Let I, — ﬁ Let ybk, y2* and y3*
—/1-w

o

be the vectors maximizing the function f = f* defined by (9)). Let V* be the
symmetric space generated by y'*, y** and y**. By Th. and (4)),
E(o1k 2k 3.k k(o dklo ~2klo ~3.klo
)\fZ)\(Vk,ll):f (y Y YT Y )Zf (.I y L y L )’
2k(k —1)! 2k(k —1)!
where zlFlo g2klo and 3%l are as in Lemma By Lemma Lemma
[3-3] and Lemma [3.4) we get the result. O
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REMARK 3.2. Let a1 = and ag = 1 — a;1. Lemma provides the

1
2—/2/7

lower estimate

lim in (A(vk,ll)/\/%) > g(a,wo, lo) = 0.83345. ..

> h(agw,) = max h(w) = 0.83327...

wel0,az]

> h(0) = (2—/2/m)" 1 =0.8319...,
(a1/a2)?+2—a1 /a2 and 1. — aswo+ai (/1—w2—1)

where w, = 5

a2wo(2—4/1—w2)

At the end of this note we show how to maximize the function g(a,w,!)
numerically, which will improve the numerical estimate from Remark (3.2)).

LEMMA 3.5. Let g be as in Lemmal[3.3. Then
max{g(a,w,1) : (a,w,1) € [0,1*} = max I(z),

z€[0,m/2]
where
I(z) = \/2/ma(x)? + ga(x)(l — a(x))(cos(z) + %)
+g(1 — a(z))?sin(z)(cos(z) + 1)
with
sin(x)? — cos(x)? — cos(x)

a(r) = 5

sin(z)? — cos(x)? — 3sin(z) — cos(z)

PROOF. Setting w = sin(x), we obtain
gla,w,l) = a®>\/2/m + 2a(1 — a)l cos(x) + 2(1 — a)a(l — 1)
+ (1 — a)?1%sin(x) cos(x) + 2(1 — a)?(1 — 1)l sin(z),

which needs to be maximized on 0 < /,a <1 and 0 < x < 7. Taking partial
derivatives with respect to x and [ and setting them to zero, after elementary
but tedious calculations, one can obtain I = 2. Hence to maximize g, it is

3
enough to maximize

4 2
2(w, ) = a®\/2/7 + ga(l —a)cos(x) + g(l —a)a

W

+ —(1 — a)*sin(z) cos(z) + g(l — a)?sin(z),

Ne

onl<a<land0<z< g Taking the partial derivative of z with respect
to x we easily get that
cos(2x) + cos(x)

a=a(r)= cos(2z) + cos(z) — 3sin(x)’
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Hence our problem reduces to maximizing the function /(z) on [0, 7 /2], which
proves our lemma. ]

REMARK 3.3. Maximazing numerically [(x) on [0, 7/2] one can get
max{l(x): x € [0,7/2]} = 0.8337894....

Hence by Theorem

10.

11.

.. S _
hmklnf (A,J\/E) > (a,w{%%}[%m]S g(a,w,l) = 0.833789...
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