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ASYMPTOTIC ESTIMATE OF ABSOLUTE PROJECTION

CONSTANTS

by Grzegorz Lewicki

Abstract. In this note we construct a sequence of real, k-dimensional
symmetric spaces Y k satisfying

lim inf
k
λS
k /
√
k ≥ lim inf

k
λ(Y k, l1)/

√
k > max

w∈[0,a2]
h(w) > 1/(2−

√
2/π),

where λS
k is defined by (4) and

h(w) = a21
√

2/π + 2a1

√
a22 − w2 + w

√
a22 − w2

with a1 = 1/(2−
√

2/π) and a2 = 1− a1. This improves the lower bound
obtained in [3], Th. 5.3 by maxw∈[0,a2] h(w).

1. Introduction. Let X be a normed space and let V be a linear subspace
of X. Denote by P(X,V ) the set of all projections from X onto V, i.e., the set
of all continuous extensions of id : V → V to X. Let

λ(V,X) = inf{‖P‖ : P ∈ P(X,V )}

and

λ(V ) = sup{λ(V,X) : V ⊂ X, as Banach spaces}.
We call λ(V,X) the relative projection constant of V inX and λ(V ) the absolute
projection constant of V . A projection P ∈ P(X,V ) is called minimal if
‖P‖ = λ(V,X). Let us denote

λk = sup{λ(Y ) : Y is a real, k-dimensional space}.
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It is known (see e.g [8]), by the compactness of the Banach–Mazur compactum
and the continuity of the functionX → λ(X), that there exists a k-dimensional,
real space Xk such that

(1) λk = λ(Xk).

Moreover, Xk, as a separable Banach space, is isometric to a subspace of
l∞ and λ(Xk) = λ(Xk, l∞) (see e.g. [11]). By the Kadec̆–Snobar Theorem

[7], λk ≤
√
k. Moreover, the examples from [4] show that this estimate is

asymptotically the best possible, which means that

(2) lim
k
λ(Xk)/

√
k = 1,

where Xk is given by (1). For other related results see [2,4–6].
It is worth saying that the spaces Xk defined by (1) are not symmetric. Recall
that a k-dimensional real Banach space V is called symmetric if there is a basis
v1, . . . , vk of V such that

(3)
∥∥ k∑
j=1

ajv
j
∥∥ =

∥∥ k∑
j=1

εjaσ(j)v
j
∥∥

for any a1, . . . , ak ∈ R, εk ∈ {−1, 1} and σ ∈ Σk, where Σk denotes the set of
all permutations of {1, . . . , k}. Moreover, equality (2) does not hold in the case
of symmetric spaces, which has been shown in [6]. It has been proven in [6]
that

lim sup
k

(λSk /
√
k) < 1− 1/900,

where

(4) λSk = sup{λ(Y ) : Y real, k-dimensional, symmetric space}.

It also has been conjectured in [6], p. 36, that

(5) lim sup
k

λSk /
√
k = 1/(2−

√
2/π).

This conjecture has been partially motivated by [5], Prop. 2, where the exis-
tence of k-dimensional, real, symmetric spaces Y k satisfying

(6) lim sup
k

λ(Y k)/
√
k = 1/(2−

√
2/π)

has been shown. Observe that by [10]

(7) lim
k
λ(l

(k)
2 )/
√
k =

√
2/π.

Since √
2/π = 0.7979 . . . < 1/(2−

√
2/π) = 0.8319 . . . ,
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the spaces Y k have asymptotically larger absolute projection constants than

the Euclidean spaces l
(k)
2 . Also in [9] the Marcinkiewicz spaces satisfying (6)

have been constructed.
Above conjecture (5) has been disproved in [3], Th. 5.3. Moreover, in [1], for
k ≥ 3, there have been constructed symmetric k-dimensional subspaces V k of
l1 having a very simple structure such that

lim
k
λ(V k, l1)/

√
k = 1/(2−

√
2/π).

The aim of this note is to show the existence of k-dimensional, real and sym-
metric subspaces V k satisfying

lim inf
k
λSk /
√
k ≥ lim inf

k
λ(Y k, l1)/

√
k > max

w∈[0,a2]
h(w) > 1/(2−

√
2/π),

where h(w) = a2
1

√
2/π + 2a1

√
a2

2 − w2 + w
√
a2

2 − w2 with a1 = 1

2−
√

2/π
and

a2 = 1 − a1. This improves the lower bound obtained in [3], Th. 5.3 by
maxw∈[0,a2] h(w).

2. Auxiliary results. In this section we present some definitions and
results which will be of use later.

Definition 2.1. Let x ∈ Rk and let Σk denote the set of all permutations
of {1, . . . , k}. Suppose J : Σk × {−1, 1}k → {1, . . . , 2kk!} is a fixed bijection
such that J(id, (1, . . . , 1)) = 1. By [[x]] we denote the k×2kk! matrix with the

columns x(j), j = 1, . . . , 2kk!, where

x(j) = (ε ◦ σ)(x) = (ε1xσ(1), . . . , εkxσ(k)).

Here ε ∈ {−1, 1}k, σ ∈ Σk are so chosen that j = J(σ, ε). Observe that, for

any x ∈ Rk, x(1) = x. We will refer to the matrix [[x]] as the block generated
by x.

Definition 2.2. Let k,N ∈ N. Put n = N2kk!. Let x1, . . . , xN ∈ Rk. A

linear subspace V ⊂ l
(n)
1 is said to be generated by (x1, . . . , xN ) if and only if

the rows v1, . . . , vk of the k×N2kk! matrix [[x1]], . . . , [[xN ]] form a basis of V ,
where, for i = 1, . . . , N, [[xi]] is the block generated by xi (see Def. 2.1). It is
easy to check that V is a symmetric space (see (3)) with respect to v1, . . . , vk.

The following notation will also be used. For x, y ∈ Rk, set

y · [[x]] =
2kk!∑
i=1

(∣∣ k∑
j=1

yjx
(i)
j

∣∣) =
∑

(σ,ε)∈Σk×{−1,1}k

∣∣ k∑
j=1

yjεjxσ(j)

∣∣.
Observe that for any x, y ∈ Rk

(8) y · [[x]] = x · [[y]].



54

Now let V ⊂ l
(n)
1 be a subspace generated by x1, . . . , xN from Rk. For z ∈ Rk

we set

‖z‖ =
∥∥ k∑
j=1

zjv
j
∥∥

1
,

where v1, . . . , vk is the basis of V associated with x1, . . . , xN by Def. (2.2). By
‖z‖e we denote the Euclidean norm of z. Observe that

‖z‖ =
N∑
j=1

z · [[xj ]].

The main tool for our investigations will be the following theorem proved in [3],
Th. 4.1. We present here a version of it more convenient for our purposes.

Theorem 2.1. Let k,N ∈ N. Let n = N2kk!. Consider the following
extremal problem. Maximize the function f : RkN → R defined for x1, . . . , xN ∈
Rk by

(9) f(x1, . . . , xN ) =
N∑
j=1

‖xj‖

under the conditions
N∑
j=1

‖xj‖e = 1.

If f attains its maximum at (y1, . . . , yN ) then the symmetric k-dimensional
space Y N generated by y1, . . . , yN satisfies

f(y1, . . . , yN )

2k(k − 1)!
= λ(Y N, l1) ≤ λ(Y N ).

3. Main result. In this section we show that there exist k-dimensional
maximal symmetric spaces V k satisfying

(10) lim inf
k
λ(Y k, l1)/

√
k > max

w∈[0,a2]
h(w) > 1/(2−

√
2/π),

where h(w) = a2
1

√
2/π+ 2a1

√
a2

2 − w2 +w
√
a2

2 − w2 with a1 = 1/(2−
√

2/π)
and a2 = 1 − a1. In fact, we show that (10) holds true for k-dimensional
maximal symmetric spaces generated by three blocks. To do this, for k ∈ N,
k ≥ 2 and a1, l ∈ [0, 1], set

(11) x1,k,l =
a1(1, . . . , 1)√

k
, x2,k,l = la2(ck, dk, . . . , dk)

and

x3,k,l = (1− l)a2(1, 0, . . . , 0)
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where a2 = 1− a1 and ck, dk are nonnegative numbers such that

(12)
√

(ck)2 + (k − 1)(dk)2 = 1

and

(13)
√
k − 1 dk = w.

Here w ∈ [0, 1] is a fixed number independent of k. Notice that for any a1 ∈
[0, 1]

‖x1,k,l‖e + ‖x2,k,l‖e + ‖x1,k,l‖e = a1 + a2 = 1,

which shows that the above vectors can be used to estimate from below the
function f from Theorem 2.1.
We start with

Lemma 3.1. For any k ∈ N and a, b ∈ R+∑
ε∈{−1,1}k

|〈ε, (a, b, . . . , b)〉| ≥ 2ka

and ∑
ε∈{−1,1}k

|〈ε, (a, a, b, . . . , b)〉| ≥ 2ka,

where for x = (x1, . . . , xk) ∈ Rk and y = (y1, . . . , yk) ∈ Rk

〈x, y〉 =
k∑
j=1

xkyk.

Proof. Notice that∑
ε∈{−1,1}k

|〈ε, (a, b, . . . , b)〉| = 2 ·
∑

ε∈{−1,1}k−1

|a+ 〈ε, (b, . . . , b)〉|

= 2 ·
∑

ε∈{−1,1}k−2

|a+ b+ 〈ε, (b, . . . , b)〉|+ |a− b− 〈ε, (b, . . . , b)〉|

≥ 2 ·
∑

ε∈{−1,1}k−2

|2a| = 2ka.

The second inequality can be proved in the same way.

Lemma 3.2. Let fk be the function defined in Th.2.1 by (9) for N = 3 and
k ≥ 2. Then for any a1 ∈ [0, 1]

fk(x1,k,l, x2,k,l, x3,k,l)

2k(k − 1)!
≥ ga1,k,l(w) :=

a2
1Ck

2k−1
+ 2
√
ka1a2lck + 2

√
ka1a2(1− l)

+ 2a2
2l(1− l)(ck + (k − 1)dk) + (a2l)

2(c2
k + (k − 1)ckdk)
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where

Ck =

(k−1)/2∑
l=0

(
k

l

)
(k − 2l)

for k odd,

Ck =

k/2−1∑
l=0

(
k

l

)
(k − 2l)

for k even and a2 = 1− a1.

Proof. By (9) and (8),

(14)
fk(x1,k,l, x2,k,l, x3,k,l)

2k(k − 1)!
=

3∑
i,j=1

xi,k,l[[xj,k,l]]

2k(k − 1)!
.

Note that by elementary calculations (compare with [1], Th. 2.8)

(15) x1,k,l[[x1,k,l]] = (a2
1/k)2k!Ck.

Also

x2,k,l[[x2,k,l]] ≥ (a2l)
22k(k − 1)!ck(ck + (k − 1)dk),(16)

x3,k,l[[x3,k,l]] = 2k(k − 1)!a2
2(1− l)2,(17)

x1,k,l[[x2,k,l]] =
(a1a2l)2

kk!ck√
k

,(18)

x1,k,l[[x3,k,l]] =
(a1a2(1− l))2kk!√

k
(19)

and

(20) x2,k,l[[x3,k,l]] = a2
2(1− l)l(ck + (k − 1)dk)2

k(k − 1)!.

To prove (16), notice that by Lemma 3.1

x2,k,l[[x2,k,l]] = (a2l)
2(k − 1)! ·

( ∑
ε∈{−1,1}k

|〈ε, (c2
k, d

2
k, . . . , d

2
k)〉|

+ (k − 1)
∑

ε∈{−1,1}k
|〈ε, (ckdk, ckdk, d2

k, . . . , d
2
k)〉|
)

≥ (a2l)
22k(k − 1)!(c2

k + (k − 1)ckdk),

as required. The proof of equalities (17)–(20) follows by elementary calcula-
tions. Applying (14)–(20), we get the result.
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Lemma 3.3. Let g : [0, 1]3 → R be defined by

g(a1, w, l) = a2
1

√
2/π + 2a1a2l

√
1− w2

+ 2a2a1(1− l) + (a2l)
2w
√

1− w2 + 2a2
2w(1− l)l,

(21)

where a2 = 1− a1. Let, for k ∈ N, k ≥ 2, x1,k,l, x2,k,l, x3,k,l ∈ Rk be the vectors
associated with w by (11)–(13). Let fk be as in Lemma 3.2. Then for any
(a1, l, w) ∈ [0, 1]3

lim inf
k

fk(x1,k,l, x2,k.l, x3,k.l)√
k2k(k − 1)!

≥ g(a1, w, l).

Proof. By Lemma 3.2 for any (l, w) ∈ [0, 1]2

fk(x1,k,l, x2,k.l, x3,k.l)√
k2k(k − 1)!

≥ ga1,k,l(w)/
√
k

=
a2

1Ck√
k2k−1

+ 2a1a2l
√

1− w2 + 2a2a1(1− l)

+2a2
2l(1− l)

ck +
√
k − 1w√
k

+
(
a2

2l
2
√
k − 1w

√
1− w2

)
/
√
k.

By [1], Lemma 2.3, Ck

2k−1 = λ(l
(k)
2 ). By (7), limk

Ck

2k−1
√
k

=
√

2
π . Consequently,

lim inf
k

fk(x1,k,l, x2,k.l, x3,k.l)√
k2k(k − 1)!

≥ lim
k
ga1,k,l(w)/

√
k = g(a1, w, l),

as required.

Remark 3.1. Notice that for any a1 ∈ [0, 1]

g(a1, w, 1) = a2
1

√
2/π + 2a1a2

√
1− w2 + a2

2w
√

1− w2.

Set a1 = 1

2−
√

2/π
. Changing variables from w ∈ [0, 1] to a2w ∈ [0, a2] we get

max
w∈[0,1]

g(a1, w, 1) = max
w∈[0,a2]

h(w),

where

h(w) = a2
1

√
2/π + 2a1

√
a2

2 − w2 + w
√
a2

2 − w2.

In [3], Lemma 5.2 it was shown that

lim
k

ga1,k,1(w)√
k

≥ g(a1, w, 1) = h(a2w)
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for any w ∈ [0, 1]. Moreover it can be shown by elementary calculations that
for a1 = 1

2−
√

2/π
the function h(w) attains its global maximum on [0, a2] at

wo =

√
a2

1 + 2a2
2 − a1

2
.

Lemma 3.4. For any a1 ∈ [0, 1) and w ∈ (0, 1] there exists l ∈ (0, 1) such
that g(a1, w, l) > g(a1, w, 1).

Proof. First notice that for any l ∈ [0, 1] and k ∈ N,

2a1a2lck + 2a1a2(1− l) ≥ 2a1a2ck = 2a1a2

√
1− w2.

To end our proof let us consider (for fixed a1 ∈ [0, 1] and w ∈ (0, 1]) the
function

u(l) = 2a2
2w(1− l)l + (a2l)

2w
√

1− w2.

Notice that

u(l) = 2a2
2wl + l2a2

2w(
√

1− w2 − 2).

It is easy to see that u′(l) = 0 if and only if l = lw = 1
2−
√

1−w2
and that u

attains its global maximum on [0, 1] at lw ∈ (0, 1). By (21) and the above
reasoning for any a1 ∈ [0, 1] and w ∈ (0, 1], g(a1, w, lw) > g(a1, w, 1), which
shows our claim.

Now we can state the main result of this note

Theorem 3.1. For each k ∈ N there exist y1,k, y2,k, y3,k ∈ Rk such that the
symmetric spaces V k generated by y1,k, y2,k, y3,k satisfy

lim inf
k

(
λSk /
√
k
)
≥ lim inf

k

(
λ(V k, l1)/

√
k
)
≥ max

(a,w,l)∈[0,1]3
g(a,w, l)

> max
w∈[0,a2]

h(w) >
1

2−
√

2/π
.

Proof. We apply Th. 2.1. Let a1 = 1

2−
√

2/π
and a2 = 1− a1. Fix k ∈ N,

N = 3, wo =

√
(a1/a2)2+2−a1/a2

2 . Let lo = 1

2−
√

1−w2
o

. Let y1,k, y2,k and y3,k

be the vectors maximizing the function f = fk defined by (9). Let V k be the
symmetric space generated by y1,k, y2,k and y3,k. By Th. 2.1 and (4),

λSk ≥ λ(V k, l1) =
fk(y1,k, y2,k, y3,k)

2k(k − 1)!
≥ fk(x1,k,lo , x2,k,lo , x3,k,lo)

2k(k − 1)!
,

where x1,k,lo , x2,k,lo and x3,k,lo are as in Lemma 3.3. By Lemma 3.2, Lemma
3.3 and Lemma 3.4 we get the result.
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Remark 3.2. Let a1 = 1

2−
√

2/π
and a2 = 1− a1. Lemma 3.3 provides the

lower estimate

lim inf
k

(
λ(V k, l1)/

√
k
)
≥ g(a1, wo, lo) = 0.83345 . . .

> h(a2wo) = max
w∈[0,a2]

h(w) = 0.83327 . . .

> h(0) = (2−
√

2/π)−1 = 0.8319 . . . ,

where wo =

√
(a1/a2)2+2−a1/a2

2 and lo =
a2wo+a1(

√
1−w2

o−1)

a2wo(2−
√

1−w2
o)

.

At the end of this note we show how to maximize the function g(a,w, l)
numerically, which will improve the numerical estimate from Remark (3.2).

Lemma 3.5. Let g be as in Lemma 3.3. Then

max{g(a,w, l) : (a,w, l) ∈ [0, 1]3} = max
x∈[0,π/2]

l(x),

where

l(x) =
√

2/πa(x)2 +
4

3
a(x)(1− a(x))

(
cos(x) +

1

2

)
+

4

9
(1− a(x))2 sin(x)(cos(x) + 1)

with

a(x) =
sin(x)2 − cos(x)2 − cos(x)

sin(x)2 − cos(x)2 − 3 sin(x)− cos(x)
.

Proof. Setting w = sin(x), we obtain

g(a,w, l) = a2
√

2/π + 2a(1− a)l cos(x) + 2(1− a)a(1− l)
+ (1− a)2l2 sin(x) cos(x) + 2(1− a)2(1− l)l sin(x),

which needs to be maximized on 0 ≤ l, a ≤ 1 and 0 ≤ x ≤ π
2 . Taking partial

derivatives with respect to x and l and setting them to zero, after elementary
but tedious calculations, one can obtain l = 2

3 . Hence to maximize g, it is
enough to maximize

z(w, x) = a2
√

2/π +
4

3
a(1− a) cos(x) +

2

3
(1− a)a

+
4

9
(1− a)2 sin(x) cos(x) +

4

9
(1− a)2 sin(x),

on 0 ≤ a ≤ 1 and 0 ≤ x ≤ π
2 . Taking the partial derivative of z with respect

to x we easily get that

a = a(x) =
cos(2x) + cos(x)

cos(2x) + cos(x)− 3 sin(x)
.
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Hence our problem reduces to maximizing the function l(x) on [0, π/2], which
proves our lemma.

Remark 3.3. Maximazing numerically l(x) on [0, π/2] one can get

max{l(x) : x ∈ [0, π/2]} = 0.8337894 . . .

Hence by Theorem 3.1

lim inf
k

(
λSk /
√
k
)
≥ max

(a,w,l)∈[0,1]3
g(a,w, l) = 0.833789 . . .
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