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Abstract
This paper presents a proposal for shaping the properties of green self-compacting concrete, mostly focussing 
on minimising the amount of clinker in concrete and obtaining lower hardening temperatures. The main 
application of this SCC would be in constructions build during summer, as well as in massive and semi-
massive structures. In these kinds of constructions, thermal effects connected with cement hydration are 
of particular importance. The difference in temperature between the interior and the relatively fast cooling 
exterior of the concrete element leads to thermal stress. In extreme conditions, this can cause cracking within 
the entire bulk of concrete element, leading to a lowering of its durability and longevity. 
Keywords: self-compacting concrete, heat of hydration, massive structures

Streszczenie
W artykule przedstawiono koncepcję doboru składników mieszanek betonów samozagęszczalnych o ni-
skim cieple hydratacji. Takie mieszanki są wykorzystywane do realizacji konstrukcji masywnych, a także do 
realizacji prowadzonych w warunkach podwyższonych temperatur. W konstrukcjach masywnych, efekty 
cieplne związane z reakcją hydratacji mają szczególne znaczenie. Różnica temperatur pomiędzy wnętrzem 
a powierzchnią konstrukcji prowadzi do powstawania naprężeń termicznych. W ekstremalnych warunkach 
prowadzić to może do zarysowania konstrukcji w całej jej objętości. Prowadzi to do obniżenia trwałości 
konstrukcji, a w przypadku masywnych fundamentów obciążonych dynamicznie może je całkowicie dys-
kwalifikować. 
Słowa kluczowe: beton samozagęszczalny, ciepło hydratacji, konstrukcje masywne
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1.  Introduction

The composition and constituents of SCC are chosen on the basis of its rheological 
properties, taking into consideration the requirements of the construction with regard to 
concrete. SCC has to fulfil the following requirements: fresh concrete fluidity, which has to 
guarantee swift and precise filling of the form and covering of reinforcement; self-deaeration, 
which is its ability to quickly remove air from the concrete mix; stability, which is the resistance 
of the concrete mix to segregation [1]. 

The requirements of concrete mix fluidity and self-deaeration can be fulfilled by lowering 
the yield and plastic viscosity of the fresh concrete (or increasing the spread Dmax and reducing 
the spread time T500 according to a slump flow test). The lower the yield, the lower the height 
of a concrete mix column which causes its flow, and the faster and more efficient its deaeration 
and levelling in a form or formwork. The lower the plastic viscosity of the concrete mix, the 
shorter the time concrete mix needs to fill a form and deaerate. Unprompted sedimentation 
of the aggregate decreases when the plastic viscosity increases; however, it increases with 
larger aggregate grains and higher differences between the densities of the aggregate and the 
cement paste. Achieving a compromise between the conflicting requirements of fluidity and 
self-compaction, thus obtaining suitable rheological properties of the concrete mix, is the 
single biggest challenge during the process of designing a concrete mix. It is assumed that for 
the sake of the fluidity requirement, the yield should be as low as possible. At the same time, 
the plastic viscosity should be chosen so that the concrete mix properly and quickly fills the 
mould and that the air is effectively removed with a minimum of segregation. 

The necessity to meet the rheological criteria determines the need for a specific 
composition and combination of constituents of the self-compacting concrete. First and 
foremost, assumed are: small w/(c+a) ratio (w – water, c – cement, a – mineral additives), 
and a large amount of fine fraction (< 0.125 mm), which includes fine aggregate, as well as 
cement and mineral additives (stone powder, ground granulated blast furnace slag, fly ash and 
others). Mineral additives allow to increase the amount of cement paste without increasing the 
amount of cement over the necessary minimum. Due to the fact that the presence of additives 
helps to reduce the amount of cement in the concrete, the amount of heat generated during 
hydration is reduced. By properly choosing the type and amount of additives, it is possible 
to regulate the technical properties of concrete. A low w/c ratio and a high content of dust 
fractions reduce the amount of free water in the concrete mix – this increases its resistance to 
segregation and sedimentation. 

Typical self-compacting concrete is characterised by a w/c ratio < 0.50, w/(c+a) 
< 0.35, a fine fraction content from 500 to 600 kg/m3 and a volume of cement paste from 
300 to 400  dm3/m3 or even higher. The right fluidity is obtained through use of effective 
superplasticizers, usually based on polyethers. Moreover, in order to reduce the risk of 
segregation of the concrete mix and to obtain an appropriate degree of flow, rounded, regularly 
shaped gravel is used; its maximal size should not exceed 20 mm (usually 10–16 mm) and 
its sand content should be 40–50%. In order to eliminate or reduce the segregation and the 
leakage of cement paste from fresh concrete, and to lower its pressure on the formworks, it is 
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recommended that viscosity increasing admixtures be used. The presence of such admixtures 
also decreases the susceptibility of fresh concrete to changes in the amount of water. Due to 
the technological simplicity of adding admixtures to a degree, they can pose as an alternative 
to the use of mineral additives – they allow the improvement of the stability of the fresh 
concrete without the need to interfere with its basic composition.

Proper selection of the constituents of the fresh concrete is also essential for the 
building of massive structures. The concrete composition is calculated so that the amount 
of heat generated by cement hydration is minimised whilst taking into consideration the 
requirements of the concrete with regard to construction [2]. Due to the fact that cement 
is the constituent that determines the amount of generated heat, it is necessary to use 
cements which produce low levels of hydration heat and to try to limit their content to the 
necessary minimum. 

In practice, for concrete in massive structures, amount of cement for 1 m3 of concrete 
does not exceed 300 kg/m3. In order to further limit the amount of heat generated during the 
hardening of the concrete, mineral additives are used as a substitute for the part of cement – 
the best results are obtained by using fly ash or ground granulated blast furnace slag. Because 
of the necessity to limit concrete shrinkage and to provide adequate impermeability of the 
cement matrix and adequate durability of the concrete construction, it is best to use a w/c 
ratio lower than 0.5 (however, to keep of the amount of heat generated to a minimum, the 
w/c ratio can be higher). Because of the need to obtain this ratio, it is necessary to use 
plasticisers and superplasticizers to acquire the right workability. Retarding admixtures are 
used in order to delay the setting time and to spread the heat production over the course 
of time. 

Due to the minimisation of the amount of cement (and cement paste) it is beneficial 
to use aggregate with the largest possible grain size and an amount of sand not exceeding 
30–35%. It is worth noting that because of the technological factors and the possibility 
of causing tension in the element, aggregate grains should not be larger than 31.5 mm. 
An important consideration is the choice of an aggregate which has appropriate levels 
of thermal conductivity and coefficient of thermal expansion. The best properties in 
this regard are displayed by gravel aggregate, and to a lesser extent granite and limestone 
aggregate. 

As can be observed, the compositions of both SCC and concretes for massive structures 
easily fall within the definition of ‘green concrete’ [3, 4]. Obtaining SCC that generates 
low hydration heat is not, however, an easy task. Primarily, the amount and composition 
of the cement paste must be optimised in such a way that allows the fulfilling of both the 
requirement of self-compaction (in which a higher quantity of cement paste is desirable) 
and the minimisation of the amount of heat generated (in which a lower quantity of cement 
paste is desirable). Another important consideration is the choice of aggregate grading – this 
choice should be made in such a way that the requirements of self-compaction can be met 
with the realistically lowest content of sand and the largest possible size of aggregate grains. 
The general concept of the composition of SCC which generates low levels of hydration heat 
is presented in Fig. 1.
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Fig. 1.	The technical requirements green SCC generating low hydration heat

It is assumed that the amount of the cement paste in this concrete should not exceed a level 
of around 280–300 dm3/m3, meaning it should not vary from the amount of cement paste 
in mechanically compacted concrete. With this amount of cement paste, by appropriately 
choosing the w/c ratio, type and amount of cement and type of mineral additives, it is possible 
to more or less freely shape the rheological properties of the fresh concrete, the amount of 
heat generated during the hardening process, and the properties of the hardened concrete. It 
is also possible to fulfil the requirements of concrete standards that apply to 300–350 kg/m3 

of cement with a w/c ratio of 0.45–0.60 which result from the exposition class dependant on 
the environmental conditions according to PN-EN 206. 

It should be noted that using a w/c ratio > 0.5 allows lowering the degree of hydration 
heat generated and inhibiting the kinetics which result from hydration heat generation in the 
early phase of hydration – this is beneficial due to the early thermal effects in the massive 
concrete structure. If expected properties of hardened concrete allow, it is beneficial to set as 
high a w/c ratio as possible. 

The necessity to guarantee the required stability of the SCC mix imposes the use of 
aggregate with a maximal grain size of 16 mm. This presents certain problems with regard to 
the minimisation of the amount of cement paste and requires careful selection of the aggregate 
grading to minimise the content of empty voids. Use of gravel aggregate is the optimal choice 
considering the requirements for SCC and massive concrete structures.

It is assumed that the required rheological properties of fresh concrete can be obtained 
through the use of a carefully selected superplasticizer, thus avoiding the use of viscosity 
enhancing admixtures. It should be noted that air-entraining of fresh concrete can be used 
as a way of decreasing the amount of cement (binder) in the concrete – this is beneficial 
with regard to the amount of heat generated (however, it may impede the extent to which 
its workability can be shaped). In order to achieve this effects, air-entraining cements or 
admixtures may be used. 
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2.  Research methodology and compositions of mixtures 

During the research, the possibility of obtaining self-compacting concrete which 
generates low levels of hydration heat according to the above-mentioned requirements was 
investigated. When selecting the amount and type of binder, the objective was to minimise 
the use of clinker in the concrete; therefore, cements with low levels of clinker were used – 
these included new, air-entraining cements which had not been previously used in Poland. 
The amount of cement was also minimised by substituting it with various combinations of 
high-calcium fly ash, limestone and silica fume. 

Table 1.	Composition of concrete

Content B0 B1 B2 B3 B4 B5 B6

CEM I 52.5 N 451

CEM III/B 42,5 L-LH 306 238 250 253

CEM V AS-V 297

CEM V AS-V AEA 277

Calcareous Fly Ash 104

Quartz Meal 135

Limestone 125

Sand 0-4 800 969 946 881 998 997 880

Coarse aggregates 4-11 437 363 354 330 372 374 420

Coarse aggregates 8-16 538 451 440 410 468 464 490

Water 171 193 187 174 151 158 160

SP Glenium SKY 591 [kg] 3.91 2.90 3.89 5.05 7.78 5.45 5.28

weff/(c+a) 0.38 0.63 0.63 0.63 0.44 0.41 0.42

weff/c 0.38 0.63 0.63 0.63 0.63 0.63 0.63

Volume of cement paste [dm]3 320 294 289 268 270 293 291

About five million tons of calcareous fly ash is produced annually in Poland as a result 
of brown coal combustion in conventional boilers. The results of studies [5, 6] show no 
negative influences of HCFA on the properties of hardened concrete. The main problem with 
the practical use of HCFA is that its inclusion significantly worsens the workability of fresh 
concrete, especially in the aspect of workability loss. 

However, it has shown that the negative influence of CFA on the workability of fresh 
concrete may be reduced through the application of a grinding process and even the obtaining 
of SCC with HCFA is possible [4, 5]. Among the variants of concrete tested (Table 1) there 
were concrete mixes which included sand and gravel aggregate with the fraction grading 
shown in Fig. 2. SCCs were designed using the method presented in [7].
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Fig. 2.	Aggregate grading curve

Fresh and hardened concretes were tested for:
▶▶ Properties of fresh SCC – measurements were performed at a temperature of 20°C at 

5 and 60 min after the completion of mixing using the slump-flow test according to EN 
12350-8. The stability of each mixture was evaluated using the Visual Stability Index 
(VSI; according to ACI 237 R-07; 2007). Additionally, the air content in the mixture at 
5 min after mixing was determined according to EN 12350-7.

▶▶ Setting time of concrete – measurements were performed using an ultrasonic method 
by means of the Schleibinger Vikasonik system. The transmitter and receiver were 
placed on the sides of the 25 cm cubes which were tested for the progress of concrete 
hardening temperature. 

▶▶ Progress of concrete hardening temperature – measurements were performed on 
25 cm cubic samples on a face which was insulated using polystyrene foam coating with 
a thickness of 100 mm and a thermal conduction coefficient of 0.044 W/m·K (Fig. 3). 
Temperature measurements were taken from the centre of the cubes. The external 
temperature during the performing of measurements was 20°C.

Fig. 3.	Sample of fresh concrete with thermal insulation and the Vikasonic system as prepared for measurement
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▶▶ Compressive strength after 2, 7 and 28 days – measurement were performed according 
to PN-EN 12390-3, samples were cured according to PN-EN 12390-2.

▶▶ Hydration heat – for binders and admixtures used in the tested concretes, hydration 
heat and hydration kinetics were measured using the Tam Air isomeric calorimeter 
produced by TA Instruments. Measurement was performed on the cement (binder) 
paste over a 72-hour period with superplasticizer content analogous as in concrete. 
Measurement was performed at a temperature of 20°C. 

3.  Test results and discussion

The obtained results are compiled in Tables 2 and 3. The highest amount of generated heat 
during the hydration process was clearly obtained for samples with the B0 binder (Portland 
cement CEM I and SP). Samples which contained the other binders produced significantly 
lower hydration heat and kinetic activity associated with its generation – the amount of heat 
generated is mainly dependent on the amount of cement clinker and specific surface area. The 
smallest amount of heat generated during the hydration of ground granulated blast-furnace 
slag cement occurred with samples using the CEM III/B 42,5 L-LH binders. Composite 
cement CEM V/A (S-V) with AEA has a lower amount of heat at the first stage of hydration 
than CEM V/A (S-V) without the addition of AEA.

Self-compacting concretes of slump flow class SF2 and viscosity VF2 were obtained. These 
properties were generally sustained at a stable level for at least one hour. This also applies to 
the concrete mixes which contained high-calcium fly ash (B4); however, in this case, it is 
necessary to increase the quantity of superplasticizer which is added. The concrete, excluding 
the concrete with air-entraining cement which has an air-content of 11%, has an air-content 
at the level of 2%. The use of cements with mineral additives in concrete composition and the 
introduction of mineral additives in place of portion of the cement delays the setting time 
in comparison with the SCC mixture with CEM I cement – the delay amounts to 50–100% 
(3–6 h). The longest delay was observed for concrete B4 with cement CEM V/A (S-V) with 
the addition of AEA.

Use of cement with mineral additives and mineral additives themselves have significantly 
lowered the maximal hardening temperature of concrete from approx. 60°C for concrete with 
cement CEM I to approx. 40°C for concretes with CEM V/A (S,V) and approx. 30°C for 
concretes B2, B4, B5 and B6 with CEM III/B. Using cement CEM III/B is particularly effective, 
whereas using mineral additives with this cement only influences the concrete temperature to 
a lesser degree. Using air-entraining cement affects the temperature of hardening to a rather 
small degree. Using cements CEM III/B and CEM V/A (S,V) did not significantly increase 
the time taken to reach the maximal temperature of concrete in comparison to CEM I 
concrete. However, in the case of using mineral admixtures as a replacement for cement CEM 
III/B, the maximal temperature was recorded to have been reached from 14 to 22 hours later 
than in the concrete with cement CEM I.
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Table 2.	Research results

Property B0 B1 B2 B3 B4 B5 B6

Slump flow after 5 min [mm] 705 680 650 620 650 670 695

Slump flow after 5 min [mm] 680 670 600 550 600 660 670

Flow time T500 after 5 min [s] 2.3 2.7 3.0 2.1 6.0 5.2 5.4

Flow time T500 after 60 min [s] 2.7 2.9 3.2 4.0 7.4 6.7 7.0

Air content AC [%] 2.1 1.5 2.5 11.0 1.3 2.0 1.7

Initial setting time [h] 6:36 10:04 9:52 17:09 12:00 10:12 9:43

Maximal temperature [°C] 57.9 34.8 39.7 37.2 32.2 30.0 29.8

Time of maximal temperature 29:54 36:55 33:50 35:41 51:28 45:56 43:56

Compressive strength after 2 days [MPa] 25.3 2.3 2.0 0.8 4.9 1.2 2.0

Compressive strength after 7 days [MPa] 48.6 25.4 22.7 13.5 36.0 31.0 29.4

Compressive strength after 28 days [MPa] 57.8 41.4 38.9 25.2 48.3 44.8 42.5

Table 3.	Test results – cement + additive hydration heat [ J/g]

Concrete 1h 2h 12h 24h 72h

B0 10.54 13.25 38.37 75.84 201.06

B1 8.95 10.92 22.70 32.31 151.64

B2 2.72 3.55 6.42 10.51 119.1

B3 3.77 5.21 9.56 17.48 120.02

B4 7.84 10.66 22.43 30.19 106.05

B5 6.70 8.41 13.31 19.69 81.83

B6 9.53 10.96 16.29 25.26 94.72

As could be expected, the compressive strength of concrete with cements CEM III/B 
and CEM V/A (S,V) and with the mineral additives is low and amounts from approx. 1 to 
5 MPa after 2 days. However, after 7 days, it amounts to from 23 to 36 and the highest is for 
concrete containing CFA. After 28 days, there were compressive strengths of 38.9 MPa for 
CEM V/A and 42–47 MPa for CEM III/B concretes, which should be considered to be very 
satisfactory (usually concrete classes of up to C30/37 are specified for concretes used for 
massive structures). Due to high air entrainment, concrete with air entraining cement CEM 
V/A clearly has lower compressive strength in all measuring terms (after 2, 7, 28 days).

It was reconfirmed that despite the negative influence on workability, high-calcium fly 
ash which underwent the grinding process can be used for self-compacting concretes – its 
presence has either a zero or positive effect upon the remaining concrete properties. Air-
entraining cements can be also used; however, in the case of these, problems may occur 
regarding control over the air content and, consequently, substantial losses in compressive 
strength – the air content is dependent upon the amount of cement and cannot be controlled 
by changing the amount of admixture. 
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4.  Summary

Designed according to the proposed concept, self-compacting concretes are characterised by 
their low content of clinker, amounting to from 60 to 133 kg/m3, and their good strength properties. 
It can also be assumed that these concretes, due to their high content of blast-furnace slag, are also 
characterised by adequate durability; however, this requires further experimental verification. 

It was proven that by optimising materials and concrete mix design, one can obtain green 
self-compacting concrete which is characterised by a low hardening heat and good mechanical 
properties over longer periods of hardening. This kind of concrete performs well, especially 
in massive structure elements. Ground high-calcium fly ash can be used for self-compacting 
concrete without negatively affecting the properties of the concrete after hardening. 

Using air-entraining cements for concrete enables decreasing the amount of heat 
generated by concrete during hardening (approximately 7% lower maximal temperature of air 
entrained concrete was observed). The range of their use can also include concrete elements 
of considerable size; however, it should be note that when using air entraining cements, it is 
difficult to control air entrainment and the compressive strength of concrete.
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