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A b s t r a c t

The paper presents finite element analysis of stresses and deformations of planetary roller screw 
components. The finite element model takes into account the frictional contact between helical surfaces. 
The results of numerical calculations for the contact problem were compared with the theoretical solution 
based on the Hertz theory. The obtained results can be used in the development of design procedures of 
planetary roller screw.
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z obliczeń numerycznych dla zagadnienia kontaktowego porównano z rozwiązaniem teoretycznym 
w oparciu o wzory Hertza. Otrzymane wyniki mogą być wykorzystane w rozwoju procedur projektowych.
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1. Introduction 

Planetary Roller Screw (PRS) is a mechanical actuator that is characterized mainly by 
high efficiency, high load capacity, resistance to dynamic loads and resistance to a hostile 
work environment. In comparison with a more common ball screw, roller screws have larger 
contact surfaces of rolling elements, higher axial stiffness and lower noise. However, because 
of manufacturing (fine grinding, surface hardening) and unitary production PRS is much 
more expensive. 

The main elements of a planetary roller screw (Fig. 1), which transfer the load, are: screw 
(1), nut (3) and rollers (2). The movement of the rollers is synchronized by the planetary 
toothed conjunction (4, 5). The cores of the rollers are based in the endplates (6). 

Fig. 1. Planetary roller screw structure; 1 − screw, 2 − roller, 3 − nut, 4 − satellite toothed wheel, 
5 − end plate, 6 − sun toothed wheel, 7 − retaining wheel

The previous publication related to the stress analysis and the load distribution in the pla-
netary roller screw components concerned mainly: the analysis of the displacements and the 
load distribution between cooperating elements and the related determination of the stiffness 
of the cooperating areas [2], analysis of the load distribution for the preliminary design based 
on the analytical model and a study on the load cases [5], the procedure of the preliminary 
design of PRS including also an analysis of the carrying capacity of the threads based on the 
Hertz theory [3], a mathematical model for contact analysis, where series of equivalent balls 
are used to replace the rounded profile of the roller’s thread [8], an optimal design and contact 
analysis concerning an attempt to reduce the contact area between the screw, the roller and 
the nut for trapezoidal threads [4].

The main goal of this paper was to investigate displacements and stresses of the coope-
rating components of a planetary roller screw including the contact between the screw, the 
roller and the nut simultaneously. An additional objective was to investigate the shape of the 
contact regions on the thread’s surfaces and to compare numerical results with the theoretical 
solution based on the Hertz theory.

The presented studies were carried out for the following  pitch dimensions of the screw, 
roller and nut: ds = 30 mm, dr = 10 mm, dn = 50 mm and the thread pitch p = 2 mm.
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2. Theoretical solution of the contact problem

An approximate method of the solution to the problem of two bodies in contact, using the 
Hertz theory, was presented in [1, 7] and developed in [6]. The theory relates to the general 
case of compression of two elastic bodies with the  radii of curvature for the first body: R11, 
R12 and for the second body: R21, R22 where R11 < R12 and R21 < R22. For the cooperation of 
the roller, screw and nut threads (Fig. 2), the radii of the curvatures were accepted as giv-
en in eq. 1–3, where indexes r, s, n refer consecutively to the roller, the screw and the nut.  

Fig. 2. Pitch diameters of planetary roller screw components and theoretical ellipse of contact

The following radii take into account respectively the curvatures of the threads’ profiles and 
the curvatures of the helix lines.

	 	 (1)
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where:
	 ds, dn, dr	 –	 pitch diameter of the screw, the nut and the roller,
	 α0	 ‒	 thread flank angle,
	 p	 ‒	 thread pitch.
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Contact pressures can be calculate using the eq. (4).

	 	 (4)

where:
	 Fc	 –	 contact pressure force
	 a, b	 –	 semi-axes of the ellipse of contact determined from eq. (5).

		  (5)

where:
	 ν	 –	 Poisson’s ratio,
	 E	 –	 Young’s modulus.

Based on the coefficients A and B, depending on the radii of curvatures, an auxiliary angle 
θ is determined (eq. 6–7). For this angle, Hertz coefficients mH and nH appearing in eq. 5 can 
be determined.

		  (6)

		  (7)

where:
	 φ	 –	 angle determining the relative position of contact planes.

The values of the Hertz coefficients can be taken from the tables in the literature [7] for 
θ∈ °÷ °30 90  with an accuracy of 5° or in [1] θ∈ °÷ °1 90  with an accuracy of 1°. Pub-
lication [6] also delivered continuous functions of Hertz coefficients mH and nH as given in 
eq. 8 and eq. 9.
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3. Finite element analysis

The analysis of stresses and deformation was performed by applying ANSYS software. 
A finite element model (Fig. 3) included a 1/10 section of a planetary roller screw within 
a single cooperating pair of threads and was prepared using 20-node solid elements SOLID95 
and contact elements TARGE170 and CONTA 174. Contact elements were defined on much 
larger areas than the surface areas resulting from the Hertz theory (Fig.4). Due to complex 
geometry of threads an irregular mesh was used. In the regions of contact, the mesh was 
refined with element size h = 0,01 mm. The coefficient of friction µ = 0.1; Young modulus  
E = 2,11·105 MPa and Poisson ratio ν = 0.3 were accepted. The axial load, which was applied 
to the core of the nut, was accepted at the low, medium and high level F = {25, 50, 100} N.

Fig. 4. Mesh refinement in the contact regions in example of the roller (element size h = 0.01 mm)

Fig. 3. Finite element model of 1/10 section of PRS with boundary conditions

4. Results

The results obtained from the theoretical and finite element analysis are summarized in 
Tables 1–3. In Fig. 5 to Fig. 10 the results obtained for the axial load F = 50 N are presented. 



146

Fig. 5. Huber-Mises-Hencky reduced stress Fig. 6. Displacement vector sum 

Fig. 7. Contact area between the roller and 
screw determined with FEA 

Fig. 8. Contact area between the roller and the nut 
determined with FEA (F = 50 N)

Fig. 9.	 Contact pressure between the 
roller and screw determined with 

FEA 

Fig. 10.	 Contact pressure between the roller and the 
nut determined with FEA 
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Fig. 5 and Fig. 6 present Huber-Mises-Hencky the sum of reduced stress and displacement 
vector. Fig. 7 and Fig. 8 show the contact areas determined based on FEM, with the indication 
of the sliding zone. The contact area between the screw and the roller is closed, but between 
the roller and the nut there is an edge zone. Fig. 9 and Fig. 10 present contact pressure 
between the screw roller and the nut. The difference in the contact pressure for numerical 
and theoretical solutions is at the level of 0–39% for the contact between the screw and roller 
and decreases with the increase of the axial load (Tab. 1). A similar result is obtained for the 
contact between the roller and the nut. For comparison, the pressure around the border of the 
sliding zone was taken. The difference of local displacements in the contact areas between 
the screw and roller as well as the roller and nut is about 16% (Tab. 3).

T a b l e  1

Contact pressure and the contact regions between the roller and screw

Axial Load [N] Contact pressure 
(Hertz) [MPa]

Contact pressure 
(FEM [MPa]

Relative error of contact 
pressure

25 999 608 39.1%

50 1259 1480 17.6%

100 1585 1586 0.1%

T a b l e  2

Contact pressure and the contact regions between the roller and nut

Axial Load [N] Contact pressure 
(Hertz) [MPa]

Contact pressure 
(FEM)
[MPa]

Relative error of contact 
pressure

25 969 – –

50 1221 879 28.0%

100 1585 1531 0.5%

T a b l e  3

Axial displacement in the contact regions (FEM)

Axial 
Load

Axial displacement in 
contact region of screw 

(FEM)

Axial displacement in 
contact region of nut (FEM) Displacement factor

F [N] uy (s–r) [mm] uy (n–r) [mm] uy (n–r)/uy (s–r)

25 0.00654 – –

50 0.01306 0.01519 1.16

100 0.02616 0.03064 1.17
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5. Conclusions

The consistency of the theoretical and numerical results for the contact analysis was 
achieved only after a significant increase in the axial load. Using the finite element analysis 
gives good results at a medium and high level of the axial load. At low values of the axial load 
the results of the FEA should be assessed carefully.

In fact, the displacement can be larger due to the roughness of the surfaces, which in the 
FEM is omitted, and the displacements obtained from the FEM analysis for the low level 
of the axial load are comparable to roughness of the surfaces. For a high level of the axial 
load the influence of surface roughness on the accuracy of the cooperation can be omitted. 
It would be useful to carry out experimental studies verifying the influence of the surface 
roughness for a low load level.
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