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Hermite interpolation of multivariable function given at 
scattered points 

Interpolacja hermite’a funkcji wielu zmiennych na 
nieregularnej siatce  

Abstract
The paper shows the approach to the interpolation of scattered data which includes not only function values, 
but also values of derivatives of the function. To this end, an interpolant composed of radial basis functions is 
used and extended by terms possessing appropriate  derivative terms. The latter match the given derivatives. 
Special attention is paid to the problem of choosing the value of the shape parameter, which is included in radial 
functions and influences the accuracy and stability of the solution. To validate the method, several numerical 
tests are carried out in the paper.
Keywords: scattered data interpolation, Hermite interpolation, radial basis functions 

Streszczenie
W artykule przedstawiono podejście do interpolacji danych na nieregularnie rozłożonych węzłach. Dane te 
zawierają nie tylko wartości funkcji, ale również ich pochodne. Do rozwiązania zagadnienia użyto funkcję 
interpolacyjną złożoną z radialnych funkcji bazowych, powiększoną o człony zawierające odpowiednie 
pochodne tych funkcji. Pochodne te odpowiadają zadanym pochodnym. Szczególną uwagę położono na 
problem wyznaczania współczynnika kształtu w funkcjach radialnych. Współczynnik ten warunkuje dokładność i 
stabilność rozwiązania. Dla sprawdzenia metody przeprowadzono kilka testów numerycznych. 
Słowa kluczowe: interpolacja na nieregularnie rozmieszczonych węzłach, interpolacja Hermite’a, radialne funkcje bazowe 
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1.  Introduction 

Interpolation methods play an important role in many areas of science, where there exists 
the need of a prediction on the basis of discrete data. Interpolating functions are also the 
main point in derivation of numerical schemas for various methods of solving differential 
equations. Conventional approximation methods allow to interpolate discrete data given on 
a regular grid or on structured mesh. Moreover, they enable to easily approximate data in two 
or three dimensions only. To overcome these drawbacks, the so-called meshfree approaches 
have appeared in recent years [1–3]. They allow to find an interpolating function for data given 
at scattered nodes, significantly increasing the possibilities of application of such  methods. 

Instead of polynomials that have been widely used as the basis functions in the 
interpolation on a mesh-based grid, a kind of functions which depend on data has been 
introduced in meshfree approaches. They are called radial basis functions (RBFs) since their 
values depend on the distance between two points in the space. These points can be easily 
defined in higher dimensional spaces, which does not change the general approach to the 
solution of the problem. It is a great advantage of the methods based on RBF, which allows 
to treat multidimensional problems in the same way as in two or three dimensions. An 
interesting information on this type of functions can be found in [4, 5]. 

In the present paper, the interpolation of multivariable discrete function is extended 
according to Hermite idea. We assume that at a node, not only the function value can be 
given, but also some derivatives can be known. This formulation differs from others that can 
be found in literature [1, 6], where it has been assumed that at one node there can exist only 
one degree of freedom, in the form of function value or its derivative. The approach presented 
in the paper can be especially useful to derive some meshfree methods for the solution of 
differential equations possessing multiply boundary conditions [7].

2.  Hermite interpolation with RBFs

Let us consider a set of scattered nodes x i
n i N∈ = , ,...,1 . At each of these nodes a 

function value f(xi) = fi is given. Moreover, at some of these nodes x k
D Dk N, ,...,=1 there are 

values of derivatives of the function generally denoted by ( )( )D f Dfk k kx = , where Dk is a 
differential operator imposed on the function at kth node. For simplicity of the presentation 
we assume that there can be one derivative value at one node, although one can easily extend 
the problem to more than one derivative. To find an approximate value of the function at any 
point different from the given nodes or to analyze the function by tools available in 
mathematical analysis, an interpolation series involving RBF is introduced in the following 
form: 
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where ϕ ξx −( )  denotes RBF function, whose value is depended on the distance between 
an interpolation point x and a point ξ, called the center. In the paper the centers coincide 
with nodes xi. In Eq. (1) αj, βj are interpolation coefficients and Dj

ξ  denotes the differential 
operator imposed on the function at x j

d node. In this case, the function is considered as the 
function of ξ variable.  

In order to determine the interpolation coefficients, the interpolation conditions are 
applied for the function: 
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as well as for its derivatives:
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In Eq.(3) Dj
x  denotes the same differential operator as Dj

ξ  but acting on the radial 
function viewed as a function of x variable. It makes the coefficient matrix of the system (2)–
(3) a symmetric one, which facilitates its assembling and solution of the problem. This system 
can be written in a more convenient manner using the following matrix notation:
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α, β and f, Df are vectors containing appropriate interpolation coefficients, function values 
and the derivatives, respectively.

To determine interpolation coefficients, the system (4) has to be solved yielding 

	
f
Dfx








 =









 ⋅











−

D

D D D

1Φ
ξ

Φ
Φ Φ

ξα
β

	 (5)

The problem of solvability of the system depends on the type of RBF used and it is not 
studied in detail in the paper. In some cases, the interpolant (1) should be augmented by a 
polynomial term to ensure the inversion of the system matrix. Some notes on this issue can 
be found in [1]. For problems analyzed in the paper the system (5) has had unique solutions.
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2.1.  Accuracy and conditioning of the problem

The most popular RBFs, listed in Table 1, contain shape parameter c. The shape parameter 
has a significant influence on accuracy. A larger value of this parameter should theoretically 
make the solution more accurate but leads to an ill-conditioned system, which may not be 
accurately solved. Therefore, the choice of the appropriate value of c is an important issue in 
using RBF based methods.

Table 1.	 Examples of radial basis functions

Name RBF

Multiquadric (r2+c2)1/2, c ≥ 0 

Inverse multiquadric (r2+c2)–1/2, c > 0 

Gaussian e ,− >r c c
2 2

0

So far there is no general approach to this end and this value is assumed mostly on the 
basis of numerical experiments or researchers’ experience [1]. Recently, in [8] an algorithm 
based on a heuristic kind has been proposed, which relates accuracy to condition number 
of the system of equations and number of significant digits assumed for the computation. It 
enables to automate the choice of the value of shape parameter. The algorithm searches for 
the largest value of c, which makes the exponent of the condition number of the interpolation 
matrix close to the number of significant digits but does not exceed this number. In the case of 
RBF, it ensures acceptable accuracy and stable solution of Eq. (4). The main condition, which 
the algorithm is based on, is as follows:

	 log10 κ(Φ)∈[rl ,ru]⇒c*	 (6)

where κ(Φ) denotes the condition number of the system matrix from Eq. (4) and rl and ru 
are lower and upper bound of a range associated with the number of significant digits. Usually 
ru is 16, when one operates double precision and rl is a little less. Note that κ(Φ) depends on 
the value of c. Defining a loop, where the value of c is increased or decreased to fulfil Eq. (6) 
one can determine the quasi optimal value of shape parameter c*. 

3.  Numerical experiments

To validate the method, several numerical experiments have been carried out. Below there 
are examples of two-variable test functions used in these experiments:

	 f1(x1,x2) = sin(4x1)⋅cos(5x2)	 (7)
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To obtain data points, functions (7)–(8) have been discretized with the use of scattered 
node distributions presented in fig.1  

At ND chosen grid points some derivatives of the test functions have been assumed as 
given data. Accuracy of the approach has been determined by a kind of L2 error norm in the 
following form:
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where ui and fi denote values of the interpolation function and the test one respectively, 
evaluated at NN regularly distributed points. The obtained results are presented in Tabs. 2 
and 3. For comparison, similar results, obtained using classical RBF interpolation (without 
derivatives) are included in the tables.

Table 2.	 Results obtained with multiquadrics RBF

Hermite approach classical approach

c* δ(f1) δ(f2) c* δ(f1) δ(f2)

N = 100 ND = 18 0.60 1.064e-3 3.306e-2
0.70 1.107e-3 5.524e-2

ND = 36 0.50 1.748e-3 1.328e-2

N = 200 ND = 18 0.40 8.943e-4 4.346e-4
0.45 9.337e-4 1.413e-3

ND = 36 0.35 9.225e-4 7.095e-4

Fig. 1.	Scattered node distribution for numerical experiments: N = 100 (left), N=200 (right) 
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Comparing the results of Hermite interpolation with those obtained using classical 
approach, one can notice that the introduction of information about derivatives in most 
cases leads to better accuracy of the approximation. It should be taken into account that more 
information (function and derivative values) increase the dimension of the system matrix from 
Eq. (4) making this matrix more ill-conditioned. Therefore, the value of the shape parameter 
has to be smaller to guarantee a stable solution and, finally, the accuracy may not be improved.

Table 3.	 Results obtained with invers multiquadrics RBF

Hermite approach classical approach

c* δ(f1) δ(f2) c* δ(f1) δ(f2)

N = 100 ND = 18 0.70 1.040e-3 4.561e-2
0.85 8.022e-4 1.074e-1

ND = 36 0.65 1.301e-3 4.140e-2

N = 200 ND = 18 0.45 1.443e-3 5.950e-4
0.55 9.002e-4 3.928e-3

ND = 36 0.45 9.174e-4 7.536e-4

4.  Conclusion

In the paper, the Hermite type interpolation of a function given at scattered nodes has 
been shown. To this end, an interpolant built with RBFs has been applied. Treating these 
functions as functions of two vector variables (interpolation point and center), one can 
obtain symmetric system matrix, which facilitates its assembling and accelerates the solution 
process. In the paper, special attention is paid to determining appropriate value of the shape 
parameter included in RBFs. This parameter is determined as a result of a trade-off between 
accuracy and conditioning of the system of equations following form interpolation conditions. 
It ensures a stable solution of the problem.    
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