doi: 10.4467/20843828AM.12.002.1120 FASCICULUS L, 2012

PERMANENCE AND POSITIVE BOUNDED SOLUTIONS OF KOLMOGOROV PREDATOR-PREY SYSTEM

by Trinh Tuan Anh and Pham Minh Thong

Abstract. Our main purpose is to present some criteria for the permanence and existence of a positive bounded solution of Kolmogorov predator- -prey system. Under certain conditions, it is shown that the system is permanent and there exists a solution which is defined on the whole R and whose components are bounded from above and from below by positive constants.

1. Introduction. We consider the following Kolmogorov predator-prey system

(1.1)
$$
\begin{cases} \dot{u}_i = u_i f_i(t, u_1, \dots, u_n, v_1, \dots, v_m), \ i = 1, \dots, n, \\ \dot{v}_j = v_j h_j(t, u_1, \dots, u_n, v_1, \dots, v_m), \ j = 1, \dots, m, \end{cases}
$$

where $f_i, h_j : \mathbb{R} \times \mathbb{R}^{n+m}_+ \to \mathbb{R}$ are continuous, $u_i(t)$ denotes the quantity of the i^{th} prey at time t and $v_j(t)$ denotes the quantity of the j^{th} predator at time t.

A special case of [\(1.1\)](#page-0-0) is the system of Lotka–Volterra type:

$$
(1.2) \quad \begin{cases} \dot{u}_i = u_i \left[b_i(t) - \sum_{k=1}^n a_{ik}(t) u_k - \sum_{k=1}^m c_{ik}(t) v_k \right], \ i = 1, \dots, n, \\ \dot{v}_j = v_j \left[r_j(t) + \sum_{k=1}^n d_{jk}(t) u_k - \sum_{k=1}^m e_{jk}(t) v_k \right], \ j = 1, \dots, m, \end{cases}
$$

where $a_{ik}(t)$, $c_{ik}(t)$, $d_{jk}(t)$, $e_{jk}(t)$, $b_i(t)$, $r_j(t)$ are continuous and bounded on R.

A fundamental ecological question associated with the study of multispecies population interactions is the long-term coexistence of the involved populations. Such questions also arise in many other situations (see [[3](#page-21-0)]). Mathematically, this is equivalent to the so-called permanence of the populations. We

²⁰⁰⁰ Mathematics Subject Classification. 34A12, 39A10, 34C11, 34C27, 92B05.

Key words and phrases. Predator-prey system, permanence, bounded solution, almost periodic solution.

recall that system [\(1.1\)](#page-0-0) is permanent if there exist positive constants δ and Δ $(\delta < \Delta)$ such that any noncontinuable solution $(u_1(.),...,u_n(.),v_1(.),...,v_m(.)$ of (1.1) with $(u_1(t_0),...,u_n(t_0),v_1(t_0),...,v_m(t_0)) \in \text{int } \mathbb{R}^{n+m}_+$ – the interior of \mathbb{R}^{n+m}_+ , is defined on $[t_0, +\infty)$ and for $i = 1, \ldots, n$, $j = 1, \ldots, m$ the following inequalities are satisfied:

$$
\delta \leqslant \liminf_{t \rightarrow +\infty} u_i(t) \leqslant \limsup_{t \rightarrow +\infty} u_i(t) \leqslant \Delta, \quad \delta \leqslant \liminf_{t \rightarrow +\infty} v_j(t) \leqslant \limsup_{t \rightarrow +\infty} v_j(t) \leqslant \Delta.
$$

The permanence, the existence and global attractivity of a positive periodic solution of system (1.1) and (1.2) in the periodic case have been studied by Wen and Wang (see [[6](#page-21-1)]), as well as many other authors. Some results on sufficient conditions for the existence and global attractivity of a unique positive almost periodic solution of system [\(1.2\)](#page-0-1) in the almost periodic case were mentioned in [[7](#page-21-2)]. For the Kolmogorov competing system, the authors in [[5](#page-21-3)] have obtained a sufficient condition for the permanence and the existence of a positive bounded solution. As a continuation of [[5](#page-21-3)[–7](#page-21-2)] and some recent results, in this paper we study the permanence and the existence of a positive bounded solution of the Kolmogorov predator-prey system under certain conditions. The paper is organized as follows: Section 2 contains preliminaries, in which we present the relevant results on the permanence and asymptotic behaviour of solutions of a single-species model. In Section 3, we prove our main result on the permanence and existence of a positive bounded solution of system [\(1.1\)](#page-0-0). In the last section, we study the permanence, existence and global attractivity of a unique positive almost periodic solution of Lotka–Volterra system [\(1.2\)](#page-0-1).

2. Preliminaries. Consider the following equation

$$
(2.1) \t\t\t \dot{x} = xg(t, x),
$$

where $g : \mathbb{R} \times [0, +\infty) \to \mathbb{R}$ is continuous. Let $\mathbb{R}_+ = : [0, +\infty)$. We assume that:

 (G_1) The function $g(.,0)$ is bounded and $\lim_{s \to 0} {\sup |g(t,x) - g(t,0)|} = 0$, $x\rightarrow 0$ ^t $t\in\mathbb{R}$

 (G_2) There exists $\lambda > 0$ such that $\liminf_{t \to +\infty}$ $\int^{\frac{t}{\lambda}}$ t $g(s, 0)ds > 0,$

 (G_3) There exist a positive number ω and a function $a : \mathbb{R} \to \mathbb{R}_+$, which is bounded and locally integrable with $\liminf_{t\to+\infty}$ $t+\omega$ t $a(s)ds > 0$ such that $D_x^+g(t,x)) \leqslant$ $-a(t)$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}_+$, where D_x^+ is the upper right derivative with respect to x.

Let $\mathcal{B}_+ = \{b : \mathbb{R} \to \mathbb{R} \text{ is continuous and } 0 < \inf_{t \in \mathbb{R}} b(t) \leqslant \sup_{t \in \mathbb{R}} b(t)$ $t \in \mathbb{\bar{R}}$ $b(t) < +\infty$.

LEMMA 2.1. If $g(t, x)$ is nonincreasing in x, then for each initial value $x(t_0) = x_0 \in \mathbb{R}_+$, equation [\(2.1\)](#page-1-0) has a unique solution $x(t)$ for $t \geq t_0$.

PROOF. By the way of contradiction we assume that there exists $(t_0, x_0) \in$ $\mathbb{R}\times\mathbb{R}_+$ such that there are two distinct solutions $x_1(t)$ and $x_2(t)$ on $[t_0, t_1]$ ($t_1 >$ t_0) of [\(2.1\)](#page-1-0) with $x_1(t_0) = x_2(t_0) = x_0$. Without loss of generality, we may assume that $x_1(t) > x_2(t)$ for $t \in (t_0, t_1]$. There are two possible cases: +) If $x_0 > 0$ then $[\ln x_1(t) - \ln x_2(t)]' = g(t, x_1(t)) - g(t, x_2(t)) \leq 0$ for all $t \in [t_0, t_1]$. Hence, $0 < \ln x_1(t_1) - \ln x_2(t_1) \leq \ln x_1(t_0) - \ln x_2(t_0) = 0$. This is a contradiction.

+) If $x_0 = 0$ then $x_1(t) > 0$ for all $t \in (t_0, t_1]$. Hence, $\dot{x}_1(t) = x_1(t)g(t, x_1(t)) \le$ $\gamma x_1(t)$ for $t \in [t_0, t_1]$ and for some $\gamma > 0$. By Gronwall's inequality, $x_1(t) = 0$ for all $t \in [t_0, t_1]$. This is a contradiction. The lemma is proved. \Box

REMARK. Assumption (G_3) directly implies that $q(t, x)$ is nonincreasing in x .

LEMMA 2.2. If assumptions (G_1) , (G_2) and (G_3) hold, then (i) Equation (2.1) is permanent, (ii) $\lim_{t\to+\infty} |x_1(t) - x_2(t)| = 0$ for every couple of solutions $x_1(t)$ and $x_2(t)$ of [\(2.1\)](#page-1-0) with $x_1(t_0) > 0$ and $x_2(t_0) > 0$.

PROOF. (*i*) By (G_3) , we have $\int_a^{t+\omega}$ t $g(s,x)ds =$ $t+\omega$ t $[g(s, 0)+g(s, x)-g(s, 0)]ds\leqslant$ \int ^{t+ω} t $g(s, 0)ds-x$ $t+\omega$ t $a(s)ds$, and then \limsup $t\rightarrow+\infty$ $t+\omega$ t $g(s, x)ds \leqslant \limsup$ $t\rightarrow+\infty$ $t+\omega$ t $g(s, 0)ds$ $x \liminf_{t \to +\infty}$ \int ^{t+ω} t $a(s)ds$. Thus, by (G_1) and (G_3) , there exists positive number F such that lim sup $t\rightarrow+\infty$ $t+\omega$ t $g(s, P)ds < 0$. By (G_1) and (G_2) , there exists positive number $p \ (p < P)$ such that $\liminf_{t \to +\infty}$ \int ^{t+ λ} t $g(s, p)ds > 0$. Thus, there exist $\varepsilon > 0$ and $T \in \mathbb{R}$ such that

(2.2)
$$
\int_{t}^{t+\omega} g(s,P)ds \leq -\varepsilon, \quad \int_{t}^{t+\lambda} g(s,p)ds \geq \varepsilon \text{ for all } t \geq T.
$$

Claim 1. If $t_1 \geq T$ such that $x(t_1) = P$ and $x(t) \geq P$ for all $t \in [t_1, t_2]$, then $t_2 - t_1 < \omega$. Indeed, by the way of contradiction we assume that $t_2 - t_1 \geq \omega$,

then

$$
x(t_1 + \omega) = x(t_1) \exp \left\{ \int_{t_1}^{t_1 + \omega} g(t, x(t)) dt \right\}
$$

$$
\leq x(t_1) \exp \left\{ \int_{t_1}^{t_1 + \omega} g(t, P) dt \right\} \leq Pe^{-\varepsilon} < P,
$$

which is a contradiction, since $x(t_1 + \omega) \geq P$. The claim is proved.

Claim 2. There exists $T_1 \geq T$ such that $x(T_1) \leq P$. Indeed, suppose in the contrary that $x(t) > P$ for all $t \geqslant T$. Then $x(t) \leqslant x(T) \exp \int_{0}^{t}$ T $g(s, P)ds$ for all $t \geqslant T$. Thus, [\(2.2\)](#page-2-0) implies that $\lim_{t \to +\infty} x(t) = 0$. This is a contradiction that proves the claim.

Let us put $\alpha_1 = \sup_{t \in \mathbb{R}} |g(t, 0)|$ and $\Delta = P \exp(\alpha_1 \omega)$. By Claims 1 and 2, it follows that $x(t) \leq \Delta$ for all $t \geq T_1$.

Claim 3. If $t_1 \geq T$ such that $x(t_1) = p$ and $x(t) \leq p$ for all $t \in [t_1, t_2]$ then $t_2 - t_1 < \lambda$. Indeed, by the way of contradiction we assume that $t_2 - t_1 \geq \lambda$, then $x(t_1 + \lambda) = x(t_1) \exp \int_0^{t_1 + \lambda}$ t_1 $g(t, x(t))dt \geqslant x(t_1) \exp \int_0^{t_1+\lambda}$ t_1 $g(t, p)dt \geqslant p e^{\varepsilon} > p$, which is a contradiction, since $x(t_1 + \lambda) \leq p$. The claim is proved.

Claim 4. There exists $T_2 \geq T$ such that $x(T_2) \geq p$. Indeed, suppose in the contrary that $x(t) < p$ for all $t \geqslant T$. Then $x(t) \geqslant x(T) \exp \int_{0}^{t}$ all $t \geqslant T$. Thus, [\(2.2\)](#page-2-0) implies that $\lim_{t \to +\infty} x(t) = +\infty$. This is a contradiction $g(s, p)ds$ for which proves the claim.

Let us put $\alpha_2 = \sup_{t \in \mathbb{R}} \{ |g(t, p)| + g(t, 0) \}$ and $\delta = p \exp(-\alpha_2 \lambda)$. By Claims 3 and 4, it follows that $x(t) \geq \delta$ for all $t \geq T_2$. The proof of part (i) is complete. (ii) Let $x_1(t)$ and $x_2(t)$ be two arbitrary solutions of equation [\(2.1\)](#page-1-0) with $x_1(t_0) > 0$ and $x_2(t_0) > 0$. There exist $\delta, \Delta > 0$ and $T \geq t_0$ such that $x_i(t) \in [\delta, \Delta]$ for all $t \geq T$ and $i = 1, 2$. By Lemma [2.1,](#page-2-1) without loss of generality we may assume that $x_1(t) \geq x_2(t)$ for all $t \geq T$. Let $V(t) =$ ln $x_1(t)$ – ln $x_2(t)$. Then $\dot{V}(t) = g(t, x_1(t)) - g(t, x_2(t)) \leqslant -a(t)[x_1(t) - x_2(t)] \leqslant$ $-\delta a(t)V(t)$. Thus, $V(t) \leq V(T) \exp \int_{0}^{t}$ T $-\delta a(s)ds \to 0$ as $t \to +\infty$. This implies $\lim_{t \to +\infty} |x_1(t) - x_2(t)| = 0.$

LEMMA 2.3. Let assumptions (G_1) , (G_2) and (G_3) hold. If (G₄) There exists a positive number $\bar{\lambda}$ such that $\liminf_{t \to -\infty}$ $t+\bar{\lambda}$ R t $g(s, 0)ds > 0$ and (G₅) There exists a positive number $\bar{\omega}$ such that $\liminf_{t\to-\infty}$ $t+\bar{\omega}$ t $a(s)ds > 0,$ then equation [\(2.1\)](#page-1-0) has a unique solution $X^0(.) \in \mathcal{B}_+$.

PROOF. (i) The existence. By the same argument as given in the proof of inequalities [\(2.2\)](#page-2-0) in Lemma [2.2,](#page-2-2) we know that there exist $\bar{p}, \bar{P}, \bar{\varepsilon} > 0$ and $\overline{T} \in \mathbb{R}$ such that

(2.3)
$$
\int_{t}^{t+\bar{\omega}} g(s,\bar{P})ds \leqslant -\bar{\varepsilon}, \quad \int_{t}^{t+\bar{\lambda}} g(s,\bar{p})ds \geqslant \bar{\varepsilon} \quad \text{for all } t \leqslant \bar{T}.
$$

Put $\alpha_1 = \sup_{t \in \mathbb{R}} |g(t, 0)|$, $\bar{\Delta} = \bar{P} \exp(\alpha_1 \bar{\omega})$, $\alpha_2 = \sup_{t \in \mathbb{R}}$ $\{|g(t,p)| + g(t,0)\}\$ and

 $\bar{\delta} = \bar{p} \exp(-\alpha_2 \bar{\lambda})$. By the same argument as given in the proof of part (i) of Lemma [2.2,](#page-2-2) we conclude that if $x(t_0) \in [\bar{p}, \bar{P}]$ then $x(t) \in [\bar{\delta}, \bar{\Delta}]$ for all $t \in [t_0, \overline{T}]$. For each positive integer n such that $-n \leq \overline{T}$, let $x_n(t)$ be a solution of [\(2.1\)](#page-1-0) with $x_n(-n) = \overline{p}$. Then $x_n(t) \in [\overline{\delta}, \overline{\Delta}]$ for all $t \in [-n, \overline{T}]$. In particular, $x_n(\bar{T}) \in [\bar{\delta}, \bar{\Delta}]$. Therefore, there exists a subsequence $\{n_k\}$ of ${n}$ such that $x_{n_k}(T) \to \xi$ as $k \to +\infty$ for some $\xi \in [\bar{\delta}, \bar{\Delta}]$. By Theorem 3.2 in [[2](#page-21-4), p. 14], there exist a solution $X^0(t)$ of [\(2.1\)](#page-1-0) satisfying $X^0(\tilde{T}) = \xi$ with the maximal interval of existence (ω_1, ω_1) and a subsequence $\{n_{k_j}\}\$ of $\{n_k\}$ such that $x_{n_{k_j}}(t)$ converges to $X^0(t)$ uniformly on any compact subset of (ω_1, ω_2) . By Lemma [2.2](#page-2-2) (i), $\omega_2 = +\infty$. We now prove that $\omega_1 = -\infty$. To this end, by the way of contradiction we assume that $\omega_1 > -\infty$. Then there exists $t_0 \in (-\infty, \overline{T}]$ such that $X^0(t_0) \notin [\overline{\delta}, \overline{\Delta}]$. Choose a positive integer j_0 such that $-n_{k_{j_0}} < t_0$. Clearly $x_{n_{k_j}}(t_0) \in [\overline{\delta}, \overline{\Delta}]$ for all $j \geqslant j_0$ and $x_{n_{k_j}}(t_0) \to X^0(t_0)$ as $j \to +\infty$. Thus, $X^0(t_0) \in [\bar{\delta}, \bar{\Delta}]$. This is a contradiction. It implies that $\omega_1 = -\infty$. For each $\bar{t} \in (-\infty, \overline{T}]$, we know that $x_{n_{k_j}}(\bar{t}) \to X^0(\bar{t})$ as $j \to +\infty$. Thus, $X^0(\bar{t}) \in [\bar{\delta}, \bar{\Delta}]$ for all $\bar{t} \in (-\infty, \bar{T}]$. By Lemma [2.2](#page-2-2) $(i), X^0(.) \in \mathcal{B}_+$. (ii) The uniqueness. Suppose in the contrary that equation (2.1) has two

distinct solutions $X^0(t)$ and $X^1(t)$ defined on R and satisfying $\delta \leqslant X^i(t) \leqslant \Delta$ for all $t \in \mathbb{R}$ $(i = 0, 1)$, where δ , Δ are positive constants. By Lemma [2.1,](#page-2-1) without loss of generality, we may assume that $X^0(t) \geq X^1(t)$ for all $t \in \mathbb{R}$. Put $V(t) = \ln X^{0}(t) - \ln X^{1}(t)$. We have $\dot{V}(t) = g(t, X^{0}(t)) - g(t, X^{1}(t)) \le$ $-a(t)[X^0(t) - X^1(t)] \leq -\delta a(t)V(t)$. Thus, since $V(t)$ is bounded, $0 < V(t_0) \leq$ $V(t) \exp \int_0^{t_0}$ $[-\delta a(s)]ds \to 0$ as $t \to -\infty$. This is a contradiction. The proof of Lemma 2.3 is complete. \Box Lemma 2.4. Assume that

 (H_1) For each $i = 1, 2, g_i : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ is continuous and such that the following equation

$$
(2.4i) \t\t\t \dot{x}_i = x_i g_i(t, x_i)
$$

is permanent,

(H_{[2](#page-5-0)}) For each $i = 1, 2$, equation (2.4_i) has a unique solution $X_i^0(.) \in \mathcal{B}_+$, (H₃) The function $g_i(t,.)$ is nonincreasing for each $t \in \mathbb{R}$ and $g_1(t, x) \leq g_2(t, x)$ for all $(t, x) \in \mathbb{R} \times \overline{\mathbb{R}_+}.$ Then $X_1^0(t) \leq X_2^0(t)$ for all $t \in \mathbb{R}$.

PROOF. Suppose in the contrary that there exists $t_1 \in \mathbb{R}$ such that $X_1^0(t_1)$ $X_2^0(t_1)$. By (H_1) , there exists a solution $\bar{x}_2(t)$ of (2.4_2) with $\bar{x}_2(t_1) = X_1^0(t_1)$ and defined on $[t_1, +\infty)$ and bounded from above and from below on $[t_1, +\infty)$ by positive constants. For $t \leq t_1$ let $\tilde{x}_2(t)$ be the minimal solution of (2.4_2) with $\tilde{x}_2(t_1) = X_1^0(t_1)$. By Theorem 4.1 in [2, p. 26], we have $X_1^0(t) \ge \tilde{x}_2(t) \ge X_2^0(t)$ for all $t < t_1$ in the domain of $\tilde{x}_2(t)$. Thus, $\tilde{x}_2(t)$ is defined for all $t \in (-\infty, t_1]$. Let

$$
x^*(t) = \begin{cases} \bar{x}_2(t), & \text{if } t \geq t_1, \\ \tilde{x}_2(t), & \text{if } t < t_1. \end{cases}
$$

Then $x^*(.) \in \mathcal{B}_+$. Moreover, $x^*(.)$ is a solution of (2.4_2) which is different from $X_2^0(.)$. This is a contradiction. The lemma is proved. \Box

LEMMA 2.5. Let hypothesis (H_1) hold. If (H_4) There exist $\omega > 0$ and a function $a : \mathbb{R} \to \mathbb{R}_+$ which is bounded and locally integrable with $\liminf_{t\to+\infty}$ \int ^{t+ω} t $a(s)ds > 0$ such that $D_x^+g_1(t,x) \leq -a(t)$ for all $(t, x) \in \mathbb{R} \times \mathbb{R}_+$, (H_5) For each compact set $S \subset \mathbb{R}_+$, $\lim_{t \to +\infty} \{\sup_{x \in S}$ $\sup_{x \in S} |g_1(t,x) - g_2(t,x)|$ } = 0, then $\lim_{t\to+\infty} |x_1(t) - x_2(t)| = 0$ for any couple of solutions $x_1(t)$ and $x_2(t)$ of equations (2.4₁) and (2.4₂), respectively, with $x_1(t_0) > 0$ and $x_2(t_0) > 0$.

PROOF. For each $i = 1, 2$, let $x_i(t)$ be a solution of (2.4_i) (2.4_i) with $x_i(t_0) > 0$. By (H_1) , there exist δ , $\Delta > 0$ and $T \geq t_0$ such that $\delta \leq x_i(t) \leq \Delta$ for all $t \geqslant T$, $i = 1, 2$. For $t \geqslant T$, let $V(t) = |\ln x_1(t) - \ln x_2(t)|$. By (H_5) , we obtain

$$
D^{+}V(t) = \left[\text{sign}(x_{1}(t) - x_{2}(t))\right]
$$

(2.5)

$$
\cdot \left\{ \left[g_{1}(t, x_{1}(t)) - g_{1}(t, x_{2}(t))\right] + \left[g_{1}(t, x_{2}(t)) - g_{2}(t, x_{2}(t))\right] \right\}
$$

$$
\leq -a(t)|x_{1}(t) - x_{2}(t)| + h(t) \leq -\delta a(t)V(t) + h(t),
$$

where $h(t) = |g_1(t, x_2(t)) - g_2(t, x_2(t))|$. By (H_5) , we have $\lim_{t \to +\infty} h(t) = 0$. Thus, (*H*₄) and [\(2.5\)](#page-5-1) imply that $\lim_{t \to +\infty} V(t) = 0$. Hence, $\lim_{t \to +\infty} |x_1(t) - x_2(t)| = 0$.

Consider the following equation

(2.6) ˙y = f(t, y),

where $f : \mathbb{R} \times \Omega \to \mathbb{R}^d$ ($\Omega \subset \mathbb{R}^d$ is open) is almost periodic in t uniformly for $y \in \Omega$. We recall Bochner's criterion for the almost periodicity (see [[8](#page-21-5)]): $f(t, y)$ is almost periodic in t uniformly for $y \in \Omega$ if and only if for every sequence of numbers $\{\tau_k\}_{k=1}^{\infty}$, there exists a subsequence $\{\tau_{k_l}\}_{l=1}^{\infty}$ such that the sequence of translations $\{f(\tau_{k_l}+t,y)\}_{l=1}^{\infty}$ converges uniformly on $\mathbb{R}\times S$, where S is any compact subset of Ω .

Denote by f_{τ} the τ -translation of f, that is $f_{\tau}(t, y) = f(\tau + t, y); H(f)$ the hull of f, that is the closure of $\{f_\tau : \tau \in \mathbb{R}\}\$ in the topology of uniform convergence on compact subsets of $\mathbb{R} \times \Omega$. We know that $H(f)$ is compact and for $f^* \in H(f)$, $f^*(t, y)$ is almost periodic in t uniformly for $y \in \Omega$. Denote by C the set of continuous functions from $\mathbb{R} \times \Omega$ into \mathbb{R}^d equipped with the topology of uniform convergence on compact subsets of $\mathbb{R} \times \Omega$.

LEMMA 2.6. Let S be a compact subset of Ω . Assume that for each $f^* \in$ $H(f)$, the following equation

$$
(2.7) \qquad \qquad \dot{y} = f^*(t, y)
$$

has a unique solution $y^*(t)$ which is defined on whole R and $y^*(t) \in S$ for all $t \in \mathbb{R}$. Then equation [\(2.6\)](#page-6-0) has a unique almost periodic solution in S and its module is contained in the module of $f(t, y)$.

PROOF. Let $y_0(t)$ be the unique solution of [\(2.6\)](#page-6-0) with $y_0(t) \in S$ for all $t \in \mathbb{R}$. Let $\{\tau_k\}_{k=1}^{\infty}$ be a sequence such that $f_{\tau_k} \to f^*$ as $k \to \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω . We claim that $y_0(\tau_k + t) \to y^*(t)$ as $k \to \infty$ uniformly on R, where $y^*(t)$ is the unique solution of [\(2.7\)](#page-6-1) with $y^*(t) \in S$ for all $t \in \mathbb{R}$. To this end, by the way of contradiction we assume that there exist a subsequence $\{\tau_{k_l}\}_{l=1}^{\infty}$ of $\{\tau_k\}_{k=1}^{\infty}$, a sequence of numbers ${s_l}_{l=1}^{\infty}$ and a positive number α such that $||y_0(s_l + \tau_{k_l}) - y^*(s_l)|| \ge \alpha$ for all l. By Bochner's criterion, we may assume, without loss of generality, that $f_{\tau_{m_l}+s_l} \to \hat{f}$ as $l \to \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω . Thus, $f_{s_l}^* \to \hat{f}$ as $l \to \infty$ uniformly on $\mathbb{R} \times K$, where K is any compact subset of Ω . Since S is compact, we may without loss of generality assume that $y_0(\tau_{k_l} + s_l) \to \xi_0$ and $y^*(s_l) \to \xi^*$ as $l \to \infty$. We know that $\xi_0, \xi^* \in S$ and $\|\xi_0 - \xi^*\| \geq \alpha$. It is clear that $y_0(t + \tau_{k_l} + s_l)$ is a solution of the following equation

(2.8_l)
$$
\dot{y} = f(t + \tau_{k_l} + s_l, y).
$$

Consider the following equation

(2.9) ˙y = ˆf(t, y).

Now $f_{\tau_{k_l}+s_l} \to \hat{f}$ uniformly on any compact subset of $\mathbb{R} \times \Omega$ as $l \to \infty$, Theorem 3.[2](#page-21-4) in [2, p. 14] shows that there exist a solution $y(t)$ of [\(2.9\)](#page-7-0) with $y(0) = \xi_0$ having a maximal interval of existence (ω_1, ω_2) and a subsequence of ${\lbrace \tau_{k_l} + s_l \rbrace}_{l=1}^{\infty}$ therefore, without loss of generality, we may assume that there is $\{\tau_{k_l} + s_l\}_{l=1}^{\infty}$ such that $y_0(t + \tau_{k_l} + s_l) \to y(t)$ uniformly on any compact subset of (ω_1, ω_2) (ω_1, ω_2) (ω_1, ω_2) as $l \to \infty$. Since S is compact, Theorem 3.1 in [2, p. 12] shows that $\omega_1 = -\infty$ and $\omega_2 = +\infty$. Thus, $y(t) \in S$ for all $t \in \mathbb{R}$.

We know that $y^*(t + s_l)$ is a solution of the following equation

(2.10)
$$
\dot{y} = f^*(t + s_k, y).
$$

By the same argument as given above, there exists a solution $\bar{y}(t)$ of [\(2.10\)](#page-7-1) with $\bar{y}(0) = \xi^*$ and $\bar{y}(t) \in S$ for all $t \in \mathbb{R}$. By the uniqueness of solution of [\(2.10\)](#page-7-1) defined on R and contained in S, we have $y(t) = \bar{y}(t)$ for all $t \in \mathbb{R}$. Thus, $\xi_0 = y(0) = \bar{y}(0) = \xi^*$, but this contradicts $\|\xi_0 - \xi^*\| \geq \alpha$. The claim is proved. By Bochner's criterion, $y_0(t)$ is almost periodic.

By the module containment theorem [[8](#page-21-5), p. 18], the module of $y_0(t)$ is contained in the module of $f(t, y)$. \Box

LEMMA 2.7. Assume that $q(t, x)$ is almost periodic in t uniformly for $x \in$ $\mathbb{R} \times \mathbb{R}_+$ and

$$
(G_1^*)\,\lim_{T\to +\infty}\frac{1}{T}\int\limits_0^Tg(s,0)ds>0,
$$

 (G_2^*) There exists an almost periodic function $a : \mathbb{R} \to \mathbb{R}_+$ such that $\lim_{T\to+\infty}$ 1 T $\frac{1}{\sqrt{2}}$ $a(s)ds > 0$ and $D_x^+g(t,x) \leqslant -a(t)$ for all $(t,x) \in \mathbb{R} \times \mathbb{R}_+$.

Then equation [\(2.1\)](#page-1-0) has a unique solution $X^0(.) \in \mathcal{B}_+$. Moreover, $X^0(.)$ is almost periodic, its module is contained in the module of $g(t, x)$ and $\lim_{t \to +\infty} |x(t) X^0(t) = 0$ for any solution $x(t)$ of [\(2.1\)](#page-1-0) with $x(t_0) > 0$. In particular, if $g(t, x)$ is Θ -periodic in t $(\Theta > 0)$, then also the solution $X^0(t)$ is Θ -periodic.

PROOF. By almost periodicity, (G_1^*) and (G_2^*) imply that there exist positve numbers λ and γ such that \int t $g(s,0)ds > \gamma \, \, \text{and} \, \, \int\limits^{t+\lambda}$ t $a(s)ds > \gamma$ for all $t \in \mathbb{R}$. By the same argument as given in the proof of inequalities [\(2.2\)](#page-2-0) of Lemma [2.2,](#page-2-2)

there exist positive numbers p , P and ε such that

(2.11)
$$
\int_{t}^{\lambda+t} g(s,P)ds \leq -\varepsilon, \quad \int_{t}^{\lambda+t} g(s,p)ds \geq \varepsilon \text{ for all } t \in \mathbb{R}.
$$

By almost periodicity of $g(t, x)$, it is easy to see that

(2.12)
$$
\int_{t}^{\lambda+t} g^*(s,P)ds \leq -\varepsilon, \quad \int_{t}^{\lambda+t} g^*(s,p)ds \geq \varepsilon, \text{ for all } t \in \mathbb{R} \text{ and } g^* \in H(g).
$$

Put $\alpha_1 = \sup_{t \in \mathbb{R}}$ $|g^*(t,0)|, \Delta = P \exp(\alpha_1 \lambda), \alpha_2 = \sup_{t \in \mathbb{R}}$ $\{|g^*(t,p)| + g^*(t,0)\}\$ and $\delta = p \exp(-\alpha_2 \lambda)$. It is easy to see that δ and Δ do not depend on the choice of $g^* \in H(g)$.

Let $g^* \in H(g)$; consider the following equation

$$
(2.13) \t\t\t \dot{x} = xg^*(t, x).
$$

By the same argument as given in the proof of Lemma [2.3,](#page-4-0) we can show that [\(2.13\)](#page-8-0) has a unique solution $X^*(t)$ defined on R with $X^*(t) \in [\delta, \Delta]$ for all $t \in \mathbb{R}$. It follows from Lemmas [2.2](#page-2-2) and [2.6](#page-6-2) that equation [\(2.1\)](#page-1-0) has a unique almost periodic solution $X^0(.) \in \mathcal{B}_+$, which satisfies $\lim_{t \to +\infty} |x(t) - X^0(t)| = 0$ for any solution $x(t)$ of equation [\(2.1\)](#page-1-0) with $x(t_0) > 0$ and its module is contained in that of $g(t, x)$. If g is Θ -periodic in t, then $X^0(.)$, $X^0_{\Theta}(.) \in \mathcal{B}_+$ are two solutions of equation [\(2.1\)](#page-1-0). By the uniqueness, $X^0(.) \equiv X^0_{\Theta}(.)$. The lemma is proved. \Box

3. Permanence and bounded solutions of Kolmogorov predator- -prey system. Consider the following Kolmogorov predator-prey system

(3.1)
$$
\dot{u}_i = u_i f_i(t, u_1, \dots, u_n, v_1, \dots, v_m), \quad i = 1, \dots, n, \n\dot{v}_j = v_j h_j(t, u_1, \dots, u_n, v_1, \dots, v_m), \quad j = 1, \dots, m,
$$

where $f_i, h_j : \mathbb{R} \times \mathbb{R}^{n+m}_+ \to \mathbb{R}$ are continuous. For $w, z \in \mathbb{R}^d$, we set $w \leq z$ if $w_i \leqslant z_i$, $i = 1, \ldots, d$. Let $\mathcal{B}_+^d = \{(\phi_1, \ldots, \phi_d) : \mathbb{R} \to \mathbb{R}^d \mid \phi_i \in \mathcal{B}_+, i =$ $1, \ldots, d$. We introduce the following hypotheses:

 (K_1) f_i , h_j are bounded on any set of the form $\mathbb{R} \times S$, where $S \subset \mathbb{R}^{n+m}_+$ is compact, and are such that for each compact set $S \subset \mathbb{R}^{n+m}_+$, for any $\varepsilon > 0$, there exists $\delta > 0$ such that $|f_i(t, u, v) - f_i(t, \bar{u}, \bar{v})| < \varepsilon$, $|h_i(t, u, v) - h_i(t, \bar{u}, \bar{v})| <$ ε for all $t \in \mathbb{R}$, $i = 1, \ldots, n$, $j = 1, \ldots, m$ and $(u, v), (\bar{u}, \bar{v}) \in S$ with $\|(u, v)$ (\bar{u}, \bar{v}) $\Vert < \delta$.

 (K_2) For each $i = 1, \ldots, n$, there exist positive numbers λ_i^+ and λ_i^- such that

$$
\liminf_{t \to +\infty} \int_{t}^{t+\lambda_{i}^{+}} f_{i}(s,0,\ldots,0)ds > 0, \liminf_{t \to -\infty} \int_{t}^{t+\lambda_{i}^{-}} f_{i}(s,0,\ldots,0)ds > 0,
$$

 (K_3) For each $i = 1, ..., n$, there exist positive numbers ω_i^+, ω_i^- and a bounded locally integrable function $a_i : \mathbb{R} \to \mathbb{R}_+$ with

$$
\liminf_{t \to +\infty} \int_{t}^{t+\omega_{i}^{+}} a_{i}(s)ds > 0 \text{ and } \liminf_{t \to -\infty} \int_{t}^{t+\omega_{i}^{-}} a_{i}(s)ds > 0
$$

such that $D_{u_i}^+ f_i(t, u, v) \leq -a_i(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}^{n+m}_+$,

 (K_4) For each $j = 1, \ldots, m$, there exist positive numbers γ_j^+ , γ_j^- and a bounded locally integrable function $e_j : \mathbb{R} \to \mathbb{R}_+$ with

$$
\liminf_{t \to +\infty} \int_{t}^{t+\gamma_{j}^{+}} e_{j}(s)ds > 0 \text{ and } \liminf_{t \to -\infty} \int_{t}^{t+\gamma_{j}^{-}} e_{j}(s)ds > 0
$$

such that $D^+_{vj}h_j(t, u, v)) \leqslant -e_j(t)$ for $(t, u, v) \in \mathbb{R} \times \mathbb{R}^{n+m}_+$,

 (K_5) For each $i = 1, \ldots, n$, $f_i(t, u_1, \ldots, u_n, v_1, \ldots, v_m)$ is nonincreasing in each variable u_l for $l = 1, ..., n$ and in each variable v_k for $k = 1, ..., m$,

 (K_6) For each $j = 1, \ldots, m, h_j(t, u_1, \ldots, u_n, v_1, \ldots, v_m)$ is nondecreasing in each variable u_l for $l = 1, ..., n$ and is nonincreasing in each variable v_k for $k=1,\ldots,m$.

Note that by $(K_1), (K_2), (K_3)$ and Lemma [2.3,](#page-4-0) for each $i = 1, ..., n$, the following equation

(3.2i) ˙uⁱ = uifi(t, 0, . . . , 0, uⁱ , 0, . . . , 0)

has a unique solution $U_i^0(.) \in \mathcal{B}_+$. Put $U^0(t) = (U_1^0(t), \ldots, U_n^0(t))$.

 (K_7) For each $j = 1, \ldots, m$, there exist positive numbers μ_j^+, μ_j^- such that

$$
\liminf_{t \to +\infty} \int_{t}^{t+\mu_{j}^{+}} h_{j}(s, U^{0}(s), 0, \ldots, 0) ds > 0, \liminf_{t \to -\infty} \int_{t}^{t+\mu_{j}^{-}} h_{j}(s, U^{0}(s), 0, \ldots, 0) ds > 0.
$$

Note that by (K_1) , (K_4) , (K_7) and Lemma [2.3,](#page-4-0) for each $j = 1, \ldots, m$, the following equation

(3.3_j)
$$
\dot{v}_j = v_j h_j(t, U^0(t), 0, \dots, 0, v_j, 0, \dots, 0)
$$

has a unique solution $V_j^0(.) \in \mathcal{B}_+$. Put $V^0(t) = (V_1^0(t), \ldots, V_m^0(t)).$

 (K_8) For each $i = 1, \ldots, n$, there exist positive numbers ν_i^+, ν_i^- such that

$$
\liminf_{t \to +\infty} \int_{t+\nu_{i}^{-}}^{t+\nu_{i}^{+}} f_{i}(s, U_{1}^{0}(s), \dots, U_{i-1}^{0}(s), 0, U_{i+1}^{0}(s), \dots, U_{n}^{0}(s), V^{0}(s)) ds > 0,
$$

$$
\liminf_{t \to -\infty} \int_{t}^{t} f_{i}(s, U_{1}^{0}(s), \dots, U_{i-1}^{0}(s), 0, U_{i+1}^{0}(s), \dots, U_{n}^{0}(s), V^{0}(s)) ds > 0.
$$

Note that by $(K_1), (K_3), (K_8)$ and Lemma [2.3,](#page-4-0) for each $i = 1, ..., n$, the following equation

(3.4i) ˙uⁱ = uifi(t, U⁰ 1 (t), . . . , U⁰ i−1 (t), uⁱ , U⁰ i+1(t), . . . , U⁰ n (t), V ⁰ (t))

has a unique solution $u_i^0(.) \in \mathcal{B}_+$. Put $u^0(t) = (u_1^0(t), \ldots, u_n^0(t))$.

 (K_9) For each $j = 1, \ldots, m$, there exist positive numbers $\varepsilon_j^+, \varepsilon_j^-$ such that

$$
\liminf_{t \to +\infty} \int_{t+\epsilon_{j}^{-}}^{t+\epsilon_{j}^{+}} h_{j}(s, u^{0}(s), V_{1}^{0}(s), \dots, V_{j-1}^{0}(s), 0, V_{j+1}^{0}(s), \dots, V_{m}^{0}(s)) ds > 0,
$$

$$
\liminf_{t \to -\infty} \int_{t}^{t+\epsilon_{j}^{-}} h_{j}(s, u^{0}(s), V_{1}^{0}(s), \dots, V_{j-1}^{0}(s), 0, V_{j+1}^{0}(s), \dots, V_{m}^{0}(s)) ds > 0.
$$

Note that by (K_1) , (K_4) , (K_9) and Lemma [2.3,](#page-4-0) for each $j = 1, \ldots, m$, the following equation

$$
(3.5j) \t\t vj = vjhj(t, u0(t), V10(t), ..., Vj-10(t), vj, Vj+10(t), ..., Vm0(t))
$$

has a unique solution $v_j^0(.) \in \mathcal{B}_+$. Put $v^0(t) = (v_1^0(t), \dots, v_m^0(t)).$

THEOREM 3.1. Let (K_1) – (K_9) hold. Then system [\(3.1\)](#page-8-1) is permanent and it has at least one solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$.

PROOF. (i) The existence. By Lemma [2.4,](#page-5-2) $(u^0(t), v^0(t)) \leq (U^0(t), V^0(t))$ for all $t \in \mathbb{R}$. We denote by C the set of continuous functions $(u(.), v(.))$: $\mathbb{R} \to \mathbb{R}^n \times \mathbb{R}^m$ equipped with the topology of uniform convergence on compact subsets of $\mathbb R$. It is well-known that $\mathcal C$ is a Fréchet space. Let

$$
\mathcal{M} = \{ (u(.), v(.)) \in \mathcal{C} : (u^0(t), v^0(t)) \leq (u(t), v(t)) \leq (U^0(t), V^0(t))
$$

for all $t \in \mathbb{R} \}.$

By (K_1) , (K_3) , (K_4) , (K_8) and (K_9) , Lemma [2.3](#page-4-0) implies that for each $(\tilde{u}(.) , \tilde{v}(.)) \in \mathcal{M}$, the following system of $n+m$ uncoupled differential equations (3.6) $\dot{u}_i = u_i f_i(t, \tilde{u}_1(t), \dots, \tilde{u}_{i-1}(t), u_i, \tilde{u}_{i+1}(t), \dots, \tilde{u}_n(t), \tilde{v}(t)), \,\, i=1,\dots,n,$ $\dot{v}_j = v_j h_j(t, \tilde{u}(t), \tilde{v}_1(t), \dots, \tilde{v}_{j-1}(t), v_j, \tilde{v}_{j+1}(t), \dots, \tilde{v}_m(t)), \ j = 1, \dots, m,$

has a unique solution $(\bar{u}(.) , \bar{v}(.)) \in \mathcal{B}^{n+m}_{+}$. By Lemma [2.4,](#page-5-2) $(u^{0}(t), v^{0}(t)) \leq$ $(\bar{u}(t), \bar{v}(t)) \leq (U^0(t), V^0(t))$ for all $t \in \mathbb{R}$. Hence, we can introduce the following operator

$$
\mathcal{T}: \mathcal{M} \to \mathcal{M}, \; (\tilde{u}(.), \tilde{v}(.)) \mapsto (\bar{u}(.), \bar{v}(.)).
$$

Clearly, $(u^*(.) , v^*(.))$ is a solution in M of system [\(3.1\)](#page-8-1) if and only if it is a fixed point of $\mathcal T$. Let

$$
\delta = \inf \{ u_i^0(t), v_j^0(t) : i = 1, \dots, n, j = 1, \dots, m, t \in \mathbb{R} \},
$$

\n
$$
\Delta = \sup \{ U_i^0(t), V_j^0(t) : i = 1, \dots, n, j = 1, \dots, m, t \in \mathbb{R} \},
$$

\n
$$
L = \sup \{ |u_i f_i(t, u, v)|, |v_j h_j(t, u, v)| : i = 1, \dots, n, j = 1, \dots, m, (t, u, v) \in \mathbb{R} \times [\delta, \Delta]^{n+m} \}.
$$

By (K_1) , $0 < L < +\infty$. Let us set

 $\mathcal{M}_1 = \{ \phi \in \mathcal{M} : |\phi_i(t) - \phi_i(\bar{t})| \leq L |t - \bar{t}|, i = 1, \dots, n + m, t, \bar{t} \in \mathbb{R} \}.$

It is easily seen that \mathcal{M}_1 is a closed convex subset of \mathcal{M} . By Ascoli's theorem (see [[4](#page-21-6)]), \mathcal{M}_1 is compact (in the topology of uniform convergence on compact subsets of \mathbb{R}). Moreover, $\mathcal{T}(\mathcal{M}_1) \subset \mathcal{M}_1$.

Claim. The operator $\mathcal T$ is continuous on $\mathcal M_1$ in the topology of uniform convergence on compact subsets of $\mathbb R$. To prove this, let $\{(u^k(.), v^k(.))\}_{k=1}^{\infty} \subset \mathcal M_1$ such that $(u^k(.), v^k(.) \rightarrow (\tilde{u}(.), \tilde{v}(.))$ as $k \rightarrow +\infty$. Since \mathcal{M}_1 is closed, $(\tilde{u}(.), \tilde{v}(.) \in$ \mathcal{M}_1 . We shall show that $\mathcal{T}(u^k(.), v^k(.)) \to \mathcal{T}(\tilde{u}(.) , \tilde{v}(.))$ as $t \to +\infty$. Since $\{\mathcal{T}(u^k(.), v^k(.))\}_{k=1}^{\infty}$ is precompact, it suffices to show that if a subsequence $\{\mathcal{T}(u^{k_s}(.),v^{k_s}(.))\}\)$ converges to $(\bar{u}(.),\bar{v}(.)\)$ then $(\bar{u}(.),\bar{v}(.)\) = \mathcal{T}(\tilde{u}(.),\tilde{v}(.)\)$. To this end, let us consider two systems

$$
(3.7_{k_s})
$$

\n
$$
\begin{cases}\n\dot{u}_i = u_i f_i(t, u_1^{k_s}(t), \dots, u_{i-1}^{k_s}(t), u_i, u_{i+1}^{k_s}(t), \dots, u_n^{k_s}(t), v^{k_s}(t)), \ i = 1, \dots, n, \\
\dot{v}_j = v_j h_j(t, u^{k_s}(t), v_1^{k_s}(t), \dots, v_{j-1}^{k_s}(t), v_j, v_{j+1}^{k_s}(t), \dots, v_m^{k_s}(t)), \ j = 1, \dots, m,\n\end{cases}
$$

(3.8)

$$
\begin{cases}\n\dot{u}_i = u_i f_i(t, \tilde{u}_1(t), \dots, \tilde{u}_{i-1}(t), u_i, \tilde{u}_{i+1}(t), \dots, \tilde{u}_n(t), \tilde{v}(t)), \ i = 1, \dots, n, \\
\dot{v}_j = v_j h_j(t, \tilde{u}(t), \tilde{v}_1(t), \dots, \tilde{v}_{j-1}(t), v_j, \tilde{v}_{j+1}(t), \dots, \tilde{v}_m(t)), \ j = 1, \dots, m.\n\end{cases}
$$

Clearly, the right hand side of (3.7_{k_s}) (3.7_{k_s}) converges to the right hand side of (3.8) uniformly on any compact subset of $\mathbb{R} \times \mathbb{R}^{n+m}_+$. By Theorem [2](#page-21-4).4 in [2, p. 4], it

follows that $(\bar{u}(.) , \bar{v}(.))$ is a solution of [\(3.8\)](#page-11-1). Since (3.8) has a unique solution in M (by Lemma [2.3\)](#page-4-0), $\mathcal{T}(\tilde{u}(.) , \tilde{v}(.)) = (\bar{u}(.) , \bar{v}(.))$. The claim is proved.

By Tychonov's fixed point theorem (see [[1](#page-21-7)]), there exists $(u^*(.) , v^*(.)) \in$ \mathcal{M}_1 such that $\mathcal{T}(u^*(.), v^*(.)) = (u^*(.), v^*(.)).$ Thus, $(u^*(.), v^*(.))$ is a solution of system (3.1) .

(ii) The permanence. Let $(u(t), v(t))$ be a solution of (3.1) with $(u_i(t_0), v_i(t_0)) \in$ int \mathbb{R}^{n+m}_+ . For each $i=1,\ldots,n$, let $\bar{u}_i(t)$ be a solution of (3.2_i) (3.2_i) with $\bar{u}_i(t_0)$ = $u_i(t_0)$. By Lemma [2.1](#page-2-1) and the comparison theorem,

(3.9)
$$
\bar{u}_i(t) \geq u_i(t) \text{ for all } t \geq t_0, i = 1, \dots, n.
$$

By Lemma [2.2,](#page-2-2)

(3.10)
$$
\lim_{t \to +\infty} |\bar{u}_i(t) - U_i^0(t)| = 0 \text{ for } i = 1, ..., n.
$$

From (3.9) and (3.10) , we have

(3.11)
$$
\limsup_{t \to +\infty} u_i(t) \leq \limsup_{t \to +\infty} U_i^0(t) \leq \Delta \text{ for } i = 1, ..., n.
$$

For each $j = 1, \ldots, m$, let $\bar{v}_j(t)$ be a solution with $\bar{v}_j(t_0) = v_j(t_0)$ of the following equation

(3.12_j)
$$
\dot{v}_j = v_j h_j(t, \bar{u}(t), 0, \ldots, 0, v_j, 0, \ldots, 0).
$$

By [\(3.10\)](#page-12-1), (K_1) , (K_4) and (K_7) , we can apply Lemma [2.5](#page-5-3) to equations (3.3_j) (3.3_j) and (3.12_i) (3.12_i) (3.12_i) and obtain

(3.13)
$$
\lim_{t \to +\infty} |\bar{v}_j(t) - V_j^0(t)| = 0 \text{ for } j = 1, ..., m.
$$

By Lemma [2.1](#page-2-1) and the comparison theorem,

(3.14)
$$
\overline{v}_j(t) \geq v_j(t) \text{ for all } t \geq t_0, \ j = 1, \ldots, m.
$$

From (3.13) and (3.14) , we have

(3.15)
$$
\limsup_{t \to +\infty} v_j(t) \le \limsup_{t \to +\infty} V_j^0(t) \le \Delta \text{ for } j = 1, ..., m.
$$

For $i = 1, \ldots, n$, let $\tilde{u}_i(t)$ be a solution with $\tilde{u}_i(t_0) = u_i(t_0)$ of the following equation

(3.16i) ˙uⁱ = uifi(t, u¯1(t), . . . , u¯i−1(t), uⁱ , u¯i+1(t), . . . , u¯n(t), v¯(t)).

By (3.10) , (3.13) , (K_1) , (K_3) and (K_8) , we can apply Lemma [2.5](#page-5-3) to equations (3.4_i) (3.4_i) and (3.16_i) (3.16_i) (3.16_i) and obtain

(3.17)
$$
\lim_{t \to +\infty} |\tilde{u}_i(t) - u_i^0(t)| = 0 \text{ for } i = 1, ..., n.
$$

By Lemma [2.1](#page-2-1) and the comparison theorem,

(3.18)
$$
u_i(t) \ge \tilde{u}_i(t) \text{ for all } t \ge t_0, i = 1,...,n.
$$

From (3.17) and (3.18) we have

(3.19)
$$
\liminf_{t \to +\infty} u_i(t) \geqslant \liminf_{t \to +\infty} u_i^0(t) \geqslant \delta \text{ for } i = 1, \dots n.
$$

For each $j = 1, \ldots, m$, let $\tilde{v}_j(t)$ be a solution with $\tilde{v}_j(t_0) = v_j(t_0)$ of the following equation

$$
(3.20j) \t\t\t $\dot{v}_j = v_j h_j(t, \tilde{u}(t), \bar{v}_1(t), \dots, \bar{v}_{j-1}(t), v_j, \bar{v}_{j+1}(t), \dots, \bar{v}_m(t)).$
$$

By $(3.13), (3.17), (K_1), (K_4)$ $(3.13), (3.17), (K_1), (K_4)$ $(3.13), (3.17), (K_1), (K_4)$ $(3.13), (3.17), (K_1), (K_4)$ and (K_9) , we can apply Lemma [2.5](#page-5-3) to equations (3.5_j) (3.5_j) and (3.20_j) (3.20_j) (3.20_j) and obtain

(3.21)
$$
\lim_{t \to +\infty} |\tilde{v}_j(t) - v_j^0(t)| = 0 \text{ for } j = 1, ..., m.
$$

By Lemma [2.1](#page-2-1) and the comparison theorem,

(3.22)
$$
v_j(t) \geq \tilde{v}_j(t) \text{ for all } t \geq t_0, \ j = 1, \dots, m.
$$

From (3.21) and (3.22) we have

(3.23)
$$
\liminf_{t \to +\infty} v_j(t) \geq \liminf_{t \to +\infty} v_j^0(t) \geq \delta \text{ for } j = 1, \dots m.
$$

By [\(3.11\)](#page-12-8), [\(3.15\)](#page-12-9), [\(3.19\)](#page-13-3) and [\(3.23\)](#page-13-4), system [\(3.1\)](#page-8-1) is permanent.

REMARK. Theorem [3.1](#page-10-2) is an extension of Theorem 1 in [[5](#page-21-3)] to system (3.1) . It is also an extension of Theorem 2.5 in [[6](#page-21-1)] to the nonperiodic case.

 \Box

Using Theorem [3.1,](#page-10-2) we have the following corollary:

COROLLARY 3.2. Assume that f_i , h_j $(i = 1, \ldots, n, j = 1, \ldots, m)$ are almost periodic in t uniformly for $(u, v) \in \mathbb{R}^{n+m}$ and satisfy (K_5) , (K_6) and the following hypotheses:

$$
(K_2^*) \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} f_i(t, 0, \dots, 0) dt > 0 \text{ for } i = 1, \dots, n,
$$

\n
$$
(K_3^*) \text{ For each } i = 1, \dots, n, \text{ there exists a nonnegative almost periodic function } a_i(t) \text{ with } \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} a_i(t) dt > 0 \text{ such that } D_{u_i}^+ f_i(t, u, v) \le -a_i(t) \text{ for}
$$

\n
$$
(t, u, v) \in \mathbb{R} \times \mathbb{R}^{n+m}_+,
$$

\n
$$
(K_4^*) \text{ For each } j = 1, \dots, m, \text{ there exists a nonnegative almost periodic function}
$$

\n
$$
e_j(t) \text{ with } \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} e_j(t) dt > 0 \text{ such that } D_{v_j}^+ h_j(t, u, v) \le -e_j(t) \text{ for}
$$

\n
$$
(t, u, v) \in \mathbb{R} \times \mathbb{R}^{n+m}_+,
$$

$$
(K_7^*) \lim_{T \to +\infty} \frac{1}{T} \int_0^T h_j(t, U^0(t), 0, \dots, 0) dt > 0 \text{ for } j = 1, \dots, m,
$$

\n
$$
(K_8^*) \lim_{T \to +\infty} \frac{1}{T} \int_0^T f_i(t, U_1^0(t), \dots, U_{i-1}^0(t), 0, U_{i+1}^0(t), \dots, U_n^0(t), V^0(t)) dt > 0 \text{ for}
$$

\n
$$
i = 1, \dots, n,
$$

\n
$$
(K_9^*) \lim_{T \to +\infty} \frac{1}{T} \int_0^T h_j(t, u^0(t), V_1^0(t), \dots, V_{j-1}^0(t), 0, V_{j+1}^0(t), \dots, V_m^0(t)) dt > 0 \text{ for}
$$

\n
$$
j = 1, \dots, m.
$$

Then system [\(3.1\)](#page-8-1) is permanent and it has at least one solution $(u^*(.) , v^*(.)) \in$ \mathcal{B}^{n+m}_+ . In particular, if f_i , h_j $(i = 1, \ldots, n, j = 1, \ldots, m)$ are Θ -periodic $(\Theta > 0)$ in t, then system (3.1) has least one Θ -periodic solution $(u^*(.) , v^*(.)) \in$ \mathcal{B}^{n+m}_+ .

4. Lotka–Volterra predator-prey system. Consider the following Lotka–Volterra predator-prey system

(4.1)

$$
\dot{u}_i = u_i \Big[b_i(t) - \sum_{k=1}^n a_{ik}(t) u_k - \sum_{k=1}^m c_{ik}(t) v_k \Big], \ i = 1, ..., n,
$$

$$
\dot{v}_j = v_j \Big[r_j(t) + \sum_{k=1}^n d_{jk}(t) u_k - \sum_{k=1}^m e_{jk}(t) v_k \Big], \ j = 1, ..., m,
$$

where $a_{ik}(t)$, $c_{ik}(t)$, $d_{jk}(t)$, $e_{jk}(t)$ are continuous, nonnegative and bounded on $\mathbb{R}, b_i(t), r_i(t)$ are continuous and bounded on \mathbb{R} . We introduce the following hypotheses:

 (L_1) For each $i = 1, \ldots, n$, there exist positive numbers λ_i^+ and λ_i^- such that

$$
\liminf_{t \to +\infty} \int_{t}^{t+\lambda_i^+} b_i(s)ds > 0, \quad \liminf_{t \to -\infty} \int_{t}^{t+\lambda_i^-} b_i(s)ds > 0,
$$

 (L_2) For each $i = 1, ..., n$, there exist positive numbers ω_i^+ and ω_i^- such that

$$
\liminf_{t \to +\infty} \int_{t}^{t+\omega_i^+} a_{ii}(s)ds > 0, \quad \liminf_{t \to -\infty} \int_{t}^{t+\omega_i^-} a_{ii}(s)ds > 0,
$$

 (L_3) For each $j = 1, \ldots, m$, there exist positive numbers γ_j^+ and γ_j^- such that

$$
\liminf_{t \to +\infty} \int_{t}^{t+\gamma_{j}^{+}} e_{jj}(s)ds > 0, \quad \liminf_{t \to -\infty} \int_{t}^{t+\gamma_{j}^{-}} e_{jj}(s)ds > 0,
$$

 (L_4) For each $i = 1, \ldots, n$, there exist positive numbers μ_j^+ , μ_j^- such that

$$
\liminf_{t \to +\infty} \int_{t+\mu_{j}^{-}}^{t+\mu_{j}^{+}} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) U_{k}^{0}(s) \right] ds > 0,
$$
\n
$$
\liminf_{t \to -\infty} \int_{t}^{t+\mu_{j}^{-}} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) U_{k}^{0}(s) \right] ds > 0,
$$

where $U_i^0(.)$ is a unique solution in \mathcal{B}_+ of the following equation

(4.2_i)
$$
\dot{u}_i = u_i[b_i(t) - a_{ii}(t)u_i].
$$

 (L_5) For each $i = 1, ..., n$, there exist positive numbers ν_i^+ and ν_i^- such that

$$
\liminf_{t \to +\infty} \int_{t+\nu_i^-}^{t+\nu_i^+} \left[b_i(s) - \sum_{k=1, k \neq i}^n a_{ik}(s)U_k^0(s) - \sum_{k=1}^m c_{ik}(s)V_k^0(s) \right] ds > 0,
$$

\n
$$
\liminf_{t \to -\infty} \int_{t}^{\nu_i^-} \left[b_i(s) - \sum_{k=1, k \neq i}^n a_{ik}(s)U_k^0(s) - \sum_{k=1}^m c_{ik}(s)V_k^0(s) \right] ds > 0,
$$

where $V_j^0(.)$ is a unique solution in B_+ of the following equation

(4.3_j)
$$
\dot{v}_j = v_j \Big[r_j(t) + \sum_{k=1}^m d_{jk}(t) U_k^0(t) - e_{jj}(t) v_j \Big],
$$

 (L_6) For each $j = 1, \ldots, m$, there exist positive numbers ε_j^+ and ε_j^- such that

$$
\liminf_{t \to +\infty} \int_{t+\varepsilon_{j}^{-}}^{t+\varepsilon_{j}^{+}} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) u_{k}^{0}(s) - \sum_{k=1, k \neq j}^{m} e_{jk}(s) V_{k}^{0}(s) \right] ds > 0,
$$

$$
\liminf_{t \to -\infty} \int_{t}^{t+\varepsilon_{j}^{-}} \left[r_{j}(s) + \sum_{k=1}^{m} d_{jk}(s) u_{k}^{0}(s) - \sum_{k=1, k \neq j}^{m} e_{jk}(s) V_{k}^{0}(s) \right] ds > 0,
$$

where $u_i^0(.)$ is the unique solution in B_+ of the following equation

(4.4i) ˙uⁱ = uⁱ h bi(t) − Xn k=1, k6=i aik(t)U 0 k (t) − Xm k=1 cik(t)V 0 k (t) − aii(t)uⁱ i .

Applying Theorem [3.1](#page-10-2) to system [\(4.1\)](#page-14-0) we obtain the following corollary:

COROLLARY 4.1. Let (L_1) – (L_6) hold. Then system (4.1) is permanent and it has at least one solution $(u^*(.), v^*(.)) \in \mathcal{B}^{n+m}_+$.

Definition. A solution $(\bar{u}(t), \bar{v}(t))$ of (3.1) with $(\bar{u}(t_0), \bar{v}(t_0)) \in \text{int } \mathbb{R}^{n+m}_+$ is said to be globally attractive, if for any solution $(u(t), v(t))$ with $(u(t_0), v(t_0)) \in$ $\inf \mathbb{R}^{n+m}_+$ there is $\lim_{t \to +\infty} ||(u(t), v(t)) - (\bar{u}(t), \bar{v}(t))|| = 0.$

THEOREM 4.2. Let (L_1) – (L_6) hold. If (L_7) There exist positive numbers s_i , β_j $(i = 1, \ldots, n, j = 1, \ldots, m)$ and a continuous nonnegative function $\alpha : \mathbb{R} \to \mathbb{R}$ with $\int^{+\infty}$ 0 $\alpha(t)dt = +\infty, \quad \int_0^0$ $-\infty$ $\alpha(t)dt =$ $+\infty$ such that

$$
s_i a_{ii}(t) - \sum_{k=1, k \neq i}^{n} s_k a_{ki}(t) - \sum_{k=1}^{m} \beta_k d_{ki}(t) \geq \alpha(t) \text{ for all } t \in \mathbb{R}, i = 1, \dots, n,
$$

$$
\beta_j e_{jj}(t) - \sum_{k=1}^n s_k c_{jk}(t) - \sum_{k=1, k \neq j}^m \beta_k e_{kj}(t) \geq \alpha(t) \text{ for all } t \in \mathbb{R}, j = 1, \dots, m,
$$

then system [\(4.1\)](#page-14-0) has a unique globally attractive solution $(u^*(.) , v^*(.)) \in$ \mathcal{B}^{n+m}_+ .

PROOF. The existence of a solution $(u^*(t), v^*(t))$ follows from Corollary [4.1.](#page-16-0)

 (i) The uniqueness. For the contrary, suppose that there are two distinct solutions $(u^1(t), v^1(t))$ and $(u^2(t), v^2(t))$ of system [\(4.1\)](#page-14-0) defined on R and satisfying $u_i^l(t) \in [\delta, \Delta], v_j^l(t) \in [\delta, \Delta] \text{ for all } t \in \mathbb{R}, i = 1, \ldots, n, j = 1, \ldots, m \text{ and } l = 1, 2,$ where δ and Δ are positive constants. Let $(u^1(t_0), v^1(t_0)) \neq (u^2(t_0), v^2(t_0))$ for some $t_0 \in \mathbb{R}$. Let $V(t) = \sum_{i=1}^n s_i |\ln u_i^1(t) - \ln u_i^2(t)| + \sum_{j=1}^m \beta_j |\ln v_j^1(t) \ln v_j^2(t)$. Then

$$
D^{+}V(t) \leqslant \sum_{i=1}^{n} \Big[\sum_{k=1, k\neq i}^{n} s_{k} a_{ki}(t) + \sum_{k=1}^{m} \beta_{i} d_{ki}(t) - s_{i} a_{ii}(t) \Big] |u_{i}^{1}(t) - u_{i}^{2}(t)|
$$

+
$$
\sum_{j=1}^{m} \Big[\sum_{k=1}^{n} s_{k} c_{kj}(t) + \sum_{k=1, k\neq j}^{m} \beta_{k} e_{kj}(t) - \beta_{j} e_{jj}(t) \Big] |v_{j}^{1}(t) - v_{j}^{2}(t)|
$$

$$
\leqslant - \alpha(t) \Big\{ \sum_{i=1}^{n} |u_{i}^{1}(t) - u_{i}^{2}(t)| + \sum_{j=1}^{m} |v_{j}^{1}(t) - v_{j}^{2}(t)| \Big\} \leqslant -\gamma \alpha(t) V(t),
$$

where $\gamma = \min \left\{ \frac{\delta}{n} \right\}$ $\frac{\delta}{s_i}, \frac{\delta}{\beta}$ β_j : $i = 1, \ldots, n, j = 1, \ldots, m$. Thus,

$$
0 < V(t_0) \le V(t) \exp\Big\{-\int\limits_t^{t_0} \gamma \alpha(s) ds\Big\}, \ t \leq t_0.
$$

Since $V(t)$ is bounded and $\lim_{t\to-\infty} \exp\left\{-\int_t^{t_0}$ t $\gamma \alpha(s) ds$ = 0, we have $V(t_0) = 0$. This is a contradiction. The uniqueness is proved.

(ii) The global attractivity. Let $(u(t), v(t))$ be a solution of (4.1) with $(u(t_0), v(t_0)) \in \text{int } \mathbb{R}^{n+m}$. By Corollary [4.1,](#page-16-0) there exist $\delta > 0, \Delta > 0$ and $T \geq t_0$ such that $(u(t), v(t)), (u^*(t), v^*(t)) \in [\delta, \Delta]^{n+m}$ for all $t \geq T$. Let $V(t) = \sum_{n=1}^{n}$ $i=1$ $s_i |\ln u_i(t) - \ln u_i^*(t)| + \sum_{i=1}^m$ $j=1$ $\beta_j |\ln v_j(t) - \ln v_j^*(t)|$. By calculating the upper right derivative of $V(t)$ as given above, we obtain $D^+V(t) \leq -\gamma \alpha(t)V(t)$

}. Thus, $V(t) \leqslant V(T) \exp \left\{-\int_{0}^{t}$ $\int \frac{\delta}{\delta}$ $\frac{\delta}{s_i}, \frac{\delta}{\beta}$ $\gamma\alpha(s)ds$ for $t \geqslant T$, where $\gamma = \min_{i,j}$ β_j for each $t \geq T$. This implies that $\lim_{t \to +\infty} V(t) = 0$, then $\lim_{t \to +\infty} \left\| \begin{array}{l} T(u(t), v(t)) - T(u(t)) \right\|_2^2$ $(u^*(t), v^*(t))\| = 0.$ \Box

THEOREM 4.3. Let $a_{ik}(t)$, $c_{ik}(t)$, $d_{jk}(t)$, $e_{jk}(t)$, $b_i(t)$ and $r_j(t)$ $(i = 1, ..., n,$ $j = 1, \ldots, m$) be almost periodic. Assume that

$$
(4.6) \liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} b_i(s)ds > 0, \liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} a_{ii}(s)ds > 0, \ i = 1, ..., n,
$$

$$
(4.7) \liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} e_{jj}(s)ds > 0, \ \liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \left[r_j(s) + \sum_{k=1}^{m} d_{jk}(s)U_k^0(s) \right] ds > 0,
$$

$$
j = 1, ..., m,
$$

(4.8)
$$
\liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \left[b_i(s) - \sum_{k=1, k \neq i}^{n} a_{ik}(s) U_k^0(s) - \sum_{k=1}^{m} c_{ik}(s) V_k^0(s) \right] ds > 0,
$$

\n $i = 1, ..., n,$

$$
(4.9) \quad \liminf_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \left[r_j(s) + \sum_{k=1}^{m} d_{jk}(s) u_k^0(s) - \sum_{k=1, \ k \neq j}^{m} e_{jk}(s) V_k^0(s) \right] ds > 0, \quad j = 1, \dots, m
$$

where $U_i^0(.)$ ($u_i^0(.)$ and $V_j^0(.)$) is the unique almost periodic solution in \mathcal{B}_+ of (4.2_i) (4.2_i) (4.2_i) , $((4.4_i)$ and (4.3_j) , respectively). Then (4.1) is permanent and it has least one solution $(u^*(.), v^*(.) \in \mathcal{B}^{n+m}_+$. If, in addition, (L_7) holds, then there exists a unique globally attractive almost periodic solution $(u^*(.) , v^*(.) \in \mathcal{B}_+^{n+m}$ and its module is contained in that of $F(t, u, v)$, where $F(t, u, v)$ is the right hand side of [\(4.1\)](#page-14-0). In particular, if $a_{ik}(t)$, $c_{ik}(t)$, $d_{jk}(t)$, $e_{jk}(t)$, $b_i(t)$ and $r_j(t)$ $(i = 1, \ldots, n, j = 1, \ldots, m)$ are Θ -periodic, then also the above solution $(u^*(.), v^*(.)$ is Θ -periodic.

PROOF. By Corollary 4.1, system (4.1) is permanent and it has least one solution $(u^*(.), v^*(.) \in \mathcal{B}^{n+m}_+$. We know that for each $F^* \in H(F)$ (the hull of F), there exist $a_{ik}^* \in H(a_{ik}), c_{ik}^* \in H(c_{ik}), d_{jk}^* \in H(d_{jk}), e_{jk}^* \in H(e_{jk}),$ $b_i^* \in H(b_i)$ and $r_j^* \in H(r_j)$ $(i = 1, \ldots, n, j = 1, \ldots, m)$ such that $F^*(t, u, v)$ is the right hand side of the following system

(4.10)

$$
\dot{u}_i = u_i \Big[b_i^*(t) - \sum_{k=1}^n a_{ik}^*(t) u_k - \sum_{k=1}^m c_{ik}^*(t) v_k \Big], \ i = 1, \dots, n,
$$

$$
\dot{v}_j = v_j \Big[r_j^*(t) + \sum_{k=1}^n d_{jk}^*(t) u_k - \sum_{k=1}^m e_{jk}^*(t) v_k \Big], \ j = 1, \dots, m.
$$

For $i = 1, \ldots, n$ and $j = 1, \ldots, m$, let us consider

$$
(4.11i) \t\t\t\t\t\dot{u}_{i} = u_{i}[b_{i}^{*}(t) - a_{ii}^{*}(t)u_{i}],
$$

\n
$$
(4.12j) \t\t\t\t\dot{v}_{j} = v_{j}\Big[r_{j}^{*}(t) + \sum_{k=1}^{m} d_{jk}^{*}(t)U_{k}^{*0}(t) - e_{jj}^{*}(t)v_{j}\Big],
$$

$$
(4.13i) \t\t\t\t\t\dot{u}i = ui \Big[bi*(t) - \sum_{k=1, k \neq i}^{n} aik*(t)Uk*(t) - \sum_{k=1}^{m} cik*(t)Vk*(t) - aii*(t)ui \Big],
$$

$$
(4.14j) \t\t \dot{v}_j = v_j \Big[r_j^*(t) + \sum_{k=1}^m d_{jk}^*(t) u_k^{*0}(t) - \sum_{k=1, \ k \neq j}^m e_{jk}^*(t) V_k^{*0}(t) - e_{jj}^*(t) v_j \Big].
$$

By Lemma [2.7,](#page-7-2) each of equations (4.11_i) (4.11_i) (4.11_i) , (4.12_i) (4.12_i) (4.12_i) , (4.13_i) (4.13_i) (4.13_i) , (4.14_i) (4.14_i) (4.14_i) has a unique almost periodic solution $U_i^{*0}(.)$, $V_j^{*0}(.)$, $u_i^{*0}(.)$ and $v_j^{*0}(.)$ in \mathcal{B}_+ , respectively. Let ${\{\tau_k\}}_{k=1}^{\infty}$ be a sequence of numbers such that $b_{i\tau_k} \to b_i^*$, $a_{ii\tau_k} \to a_{ii}^*$ as $k \to \infty$ uniformly on R. Without loss of generality, we may assume that $U_{i\tau_k}^0 \to \bar{U}_i^0$ as $k \to \infty$ uniformly on R. It is easy to see that \bar{U}_i^0 is a solution of equation as $\kappa \to \infty$ unnormly on κ . It is easy to see that U_i is a (4.11_i) (4.11_i) (4.11_i) and thus $U_i^{*0}() \equiv \bar{U}_i^0(.)$. This implies that sup $_{t\in\mathbb{\bar{R}}}$ $U_i^{*0}(t) = \sup_{n \to \infty}$ $t\in\mathbb{\bar{R}}$ $U_i^0(t)$. Similarly, sup $t\bar{\in}\mathbb{\bar{R}}$ $V_j^{*0}(t) = \sup$ $t\in\mathbb{\bar{R}}$ $V_j^0(t)$, $\inf_{t \in \mathbb{R}} u_i^{*0}(t) = \inf_{t \in \mathbb{R}} u_i^0(t)$, $\inf_{t \in \mathbb{R}} v_j^{*0}(t) = \inf_{t \in \mathbb{R}} v_j^0(t)$. Clearly that sup (t,u,v) ∈ $\mathbb{R}\times S$ $|\bar{F}_k^*(t, u, v)| = \sup$ $(t,u,v) \in \mathbb{R} \times S$ $|F_k(t, u, v)|$ for any compact set $S \subset \mathbb{R}^{n+m}$. Let

$$
\delta = \inf \{ u_i^0(t), v_j^0(t) : i = 1, \dots, n, \ j = 1, \dots, m, \ t \in \mathbb{R} \},
$$

$$
\Delta = \sup \{ U_i^0(t), V_j^0(t) : i = 1, \dots, n, \ j = 1, \dots, m, \ t \in \mathbb{R} \},
$$

$$
L = \max_{k=1,\dots,n+m} \left\{ \sup_{(t,u,v) \in \mathbb{R} \times [\delta, \Delta]^{n+m}} |F_k^*(t,u,v)| \right\}.
$$

By the same argument as given in the proof of Theorem [3.1,](#page-10-2) we know that system [\(4.10\)](#page-18-4) has at least one solution $(\bar{u}(t), \bar{v}(t))$ in \mathcal{M}_1^* where

$$
\mathcal{M}_{1}^{*} = \left\{ (u(.), v(.)) : (u^{*0}(t), v^{*0}(t)) \leq (u(t), v(t)) \leq (U^{*0}(t), V^{*0}(t)), |u_{i}(t) - u_{i}(\bar{t})| \leq L|t - \bar{t}|, i = 1, ..., n, |v_{j}(t) - v_{j}(\bar{t})| \leq L|t - \bar{t}|, j = 1, ..., m, t, \bar{t} \in \mathbb{R} \right\}.
$$

It is easy to see that system [\(4.10\)](#page-18-4) satisfies all conditions in Theorem [4.2.](#page-16-2) Thus, for each $F^* \in H(F)$, system [\(4.10\)](#page-18-4) has a unique solution $(\bar{u}(t), \bar{v}(t))$ with $(\bar{u}(t), \bar{v}(t)) \in [\delta, \Delta]^{n+m}$ for all $t \in \mathbb{R}$. Since δ and Δ do not depend on the choice of $F^* \in H(F)$, from Lemma [2.6](#page-6-2) and Theorem [4.2](#page-16-2) it follows that there exists a unique globally attractive almost periodic solution $(u^*(.) , v^*(.)) \in \mathcal{B}^{n+m}_+$ of system [\(4.1\)](#page-14-0). Moreover, the module of $(u^*(t), v^*(t))$ is contained in that of $F(t, u, v)$. If F is Θ -periodic in t, then $(u^*(.), v^*(.)$ and $(u^*_{\Theta}(.), v^*_{\Theta}(.))$ are two solutions in \mathcal{B}_{+}^{n+m} of (4.1). By the uniqueness, $(u^*(.) , v^*(.)) = (u^*_{\Theta}(.) , v^*_{\Theta}(.)).$ The theorem is proved.

REMARK. In [[7](#page-21-2)], the authors considered system [\(4.1\)](#page-14-0) with $b_i(t)$, $-r_i(t)$, $a_{ik}(t)$ $(i \neq k)$, $e_{il}(t)$ $(j \neq l)$, $c_{il}(t)$ and $d_{ik}(t)$ nonnegative almost periodic; $a_{ii}(t)$ and $e_{jj}(t)$ are almost periodic and bounded from above and from below by positive constants. If $f : \mathbb{R} \to \mathbb{R}$ is almost periodic, we set $f^h = \inf_{t \in \mathbb{R}} f(t)$ and $f^H = \sup$ $f(t)$. Moreover, we set

$$
p_i = \frac{b_i^H}{a_{ii}^h}, \quad q_j = \frac{1}{e_{jj}^h} \left(\sum_{k=1}^n d_{jk}^H p_k + r_j^H \right), \quad \alpha_i = \frac{1}{a_{ii}^H} \left(b_i^h - \sum_{k=1, k \neq i}^n a_{ik}^H p_k - \sum_{k=1}^m c_{ik}^H q_k \right),
$$

$$
\beta_j = \frac{1}{e_{jj}^H} \Big(r_j^h + \sum_{k=1}^n d_{jk}^h \alpha_k - \sum_{k=1, k \neq j}^m c_{jk}^H q_k \Big), \ i = 1, \dots, n, \ j = 1, \dots, m.
$$

In $\left[7\right]$ $\left[7\right]$ $\left[7\right]$ it was shown that: If

(4.15)
$$
\alpha_i > 0, \ \beta_j > 0, \ q_j > 0
$$

and (L_7) hold, then system (4.1) has a unique globally attractive almost periodic solution $(u^*(.), v^*(.) \in \mathcal{B}^{n+m}_+$ and its module is contained in that of $F(t, u, v)$, where $F(t, u, v)$ is the right hand side of (4.1) .

It is easy to see that sup $t\in\mathbb{\bar{R}}$ $U_i^0(t) \leqslant p_i$ $(i = 1, ..., n)$ and sup $\underset{t \in \mathbb{R}}{\text{sup}}$ $V_j^0(t) \leqslant q_j$ (j = $1, \ldots, m$. Thus condition [\(4.15\)](#page-20-0) implies conditions [\(4.6\)](#page-17-0), [\(4.7\)](#page-17-1), [\(4.8\)](#page-18-5) and [\(4.9\)](#page-18-6). The following example shows that Theorem [4.3](#page-17-2) generalizes and improves the above result in [[7](#page-21-2)].

Example. Consider the following system

(4.16)
$$
\dot{u} = u[(0.5 - 0.5(\cos t + \cos \sqrt{2}t)) - (1.1 - 0.5(\cos t + \cos \sqrt{2}t))u - 0.04v],
$$

$$
\dot{v} = v[\sin t + \sin \sqrt{3}t + u - v].
$$

By Lemma [2.7,](#page-7-2) the equation $\dot{u} = u[0.5 - 0.5(\cos t + \cos \sqrt{2}t) - (1.1 - 0.5(\cos t +$ by Lemma 2.1, the equation $u = u_0 \cdot 3 - 0.3(\cos t + \cos \sqrt{2}t) - (1.1 - 0.3(\cos t + \cos \sqrt{2}t))u$ has a unique almost periodic solution $U^0(.) \in \mathcal{B}_+$. It is easy to see that

$$
\sup_{t \in \mathbb{R}} U^0(t) \leqslant \sup_{t \in \mathbb{R}} \frac{0.5 - 0.5(\cos t + \cos \sqrt{2}t)}{1.1 - 0.5(\cos t + \cos \sqrt{2}t)} \leqslant \frac{1.5}{2.1}.
$$

By Lemma [2.7,](#page-7-2) the equation $\dot{v} = v[\sin t + \sin \sqrt{3}t + U^0(t) - v]$ has a unique almost periodic solution $V^0(.) \in \mathcal{B}_+$. Since $\lim_{T \to +\infty}$ 1 T $\frac{7}{1}$ 0 $V^0(t)dt = \lim_{T \to +\infty}$ 1 T $\frac{7}{1}$ 0 $\left[\sin t + \right]$ $\sin \sqrt{3}t + U^{0}(t) dt \leq \frac{1.5}{2.1}$ $\frac{1}{2.1}$, we have $\lim_{T \to +\infty}$ 1 T T 0 $[0.5 - 0.5(\cos t + \cos \sqrt{2}t)]$ –

 $0.04V^0(t)$ dt > 0. It follows that the equation

$$
\dot{u} = u[(0.5 - 0.5(\cos t + \cos \sqrt{2}t)) - 0.04V^{0}(t) - (1.1 - 0.5(\cos t + \cos \sqrt{2}t))u]
$$

has a unique almost periodic solution $u^0(.) \in \mathcal{B}_+$. Now, it is easy to verify that system [\(4.1\)](#page-14-0) satisfies all conditions [\(4.6\)](#page-17-0)–[\(4.9\)](#page-18-6). Moreover, condition (L_7) holds for $s = 0.5$, $\beta = 0.04$. Therefore, by Theorem [4.3,](#page-17-2) system [\(4.16\)](#page-20-1) has a unique globally attractive almost periodic solution $(u^*(.) , v^*(.)) \in \mathcal{B}^2_+$, whereas system [\(4.16\)](#page-20-1) does not satisfy [\(4.15\)](#page-20-0).

References

- 1. Deimling K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
- 2. Hartman P., Ordinary Differential Equations, Birkhauser, Boston, 1982.
- 3. Hutson V., Schmitt K., Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1–71.
- 4. Munkres J., Topology: A First Course, Prentice-Hall, 1975.
- 5. Trinh T. Anh, Tran V. Nhung, Le H. Lan, Permanence and positive bounded solutions of Kolmogorov competing species system, Acta Math. Vietnam., 25 (2000), 251–261.
- 6. Wen X., Wang Z., Global attractivity of the periodic Kolmogorov system, ANZIAM J., 44 (2003), 569–581.
- 7. Xia Y., Chen F., Chen A., Cao J., Existence and global attractivity of an almost periodic ecological model, Appl. Math. Comput., 157 (2004), 449–475.
- 8. Yoshizawa T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975.

Received September 21, 2012

Faculty of Mathematics and Informatics Hanoi University of Education Vietnam e-mail: anhtt@hnue.edu.vn

Faculty of Mathematics Taybac University Vietnam e-mail: thongpm2000@taybacuniversity.edu.vn