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PERMANENCE AND POSITIVE BOUNDED SOLUTIONS OF

KOLMOGOROV PREDATOR-PREY SYSTEM

by Trinh Tuan Anh and Pham Minh Thong

Abstract. Our main purpose is to present some criteria for the perma-
nence and existence of a positive bounded solution of Kolmogorov predator-
-prey system. Under certain conditions, it is shown that the system is per-
manent and there exists a solution which is defined on the whole R and
whose components are bounded from above and from below by positive
constants.

1. Introduction. We consider the following Kolmogorov predator-prey
system

(1.1)

{
u̇i = uifi(t, u1, . . . , un, v1, . . . , vm), i = 1, . . . , n,

v̇j = vjhj(t, u1, . . . , un, v1, . . . , vm), j = 1, . . . , m,

where fi, hj : R×Rn+m
+ → R are continuous, ui(t) denotes the quantity of the

ith prey at time t and vj(t) denotes the quantity of the jth predator at time t.
A special case of (1.1) is the system of Lotka–Volterra type:

(1.2)

{
u̇i = ui [bi(t)−

∑n
k=1 aik(t)uk −

∑m
k=1 cik(t)vk] , i = 1, . . . , n,

v̇j = vj [rj(t) +
∑n

k=1 djk(t)uk −
∑m

k=1 ejk(t)vk] , j = 1, . . . ,m,

where aik(t), cik(t), djk(t), ejk(t), bi(t), rj(t) are continuous and bounded
on R.

A fundamental ecological question associated with the study of multispecies
population interactions is the long-term coexistence of the involved popula-
tions. Such questions also arise in many other situations (see [3]). Mathemat-
ically, this is equivalent to the so-called permanence of the populations. We
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recall that system (1.1) is permanent if there exist positive constants δ and ∆
(δ < ∆) such that any noncontinuable solution (u1(.), . . . , un(.), v1(.), . . . , vm(.))
of (1.1) with (u1(t0), . . . , un(t0), v1(t0), . . . , vm(t0)) ∈ intRn+m

+ – the interior of

Rn+m
+ , is defined on [t0,+∞) and for i = 1, . . . , n, j = 1, . . . ,m the following

inequalities are satisfied:

δ 6 lim inf
t→+∞

ui(t) 6 lim sup
t→+∞

ui(t) 6 ∆, δ 6 lim inf
t→+∞

vj(t) 6 lim sup
t→+∞

vj(t) 6 ∆.

The permanence, the existence and global attractivity of a positive periodic
solution of system (1.1) and (1.2) in the periodic case have been studied by Wen
and Wang (see [6]), as well as many other authors. Some results on sufficient
conditions for the existence and global attractivity of a unique positive almost
periodic solution of system (1.2) in the almost periodic case were mentioned in
[7]. For the Kolmogorov competing system, the authors in [5] have obtained a
sufficient condition for the permanence and the existence of a positive bounded
solution. As a continuation of [5–7] and some recent results, in this paper we
study the permanence and the existence of a positive bounded solution of
the Kolmogorov predator-prey system under certain conditions. The paper is
organized as follows: Section 2 contains preliminaries, in which we present the
relevant results on the permanence and asymptotic behaviour of solutions of a
single-species model. In Section 3, we prove our main result on the permanence
and existence of a positive bounded solution of system (1.1). In the last section,
we study the permanence, existence and global attractivity of a unique positive
almost periodic solution of Lotka–Volterra system (1.2).

2. Preliminaries. Consider the following equation

(2.1) ẋ = xg(t, x),

where g : R × [0,+∞) → R is continuous. Let R+ =: [0,+∞). We assume
that:

(G1) The function g(., 0) is bounded and lim
x→0
{sup
t∈R
|g(t, x)− g(t, 0)|} = 0,

(G2) There exists λ > 0 such that lim inf
t→+∞

t+λ∫
t

g(s, 0)ds > 0,

(G3) There exist a positive number ω and a function a : R→ R+, which is

bounded and locally integrable with lim inf
t→+∞

t+ω∫
t

a(s)ds >0 such thatD+
x g(t, x)) 6

−a(t) for all (t, x) ∈ R× R+, where D+
x is the upper right derivative with re-

spect to x.
Let B+ = {b : R→ R is continuous and 0 < inf

t∈R
b(t) 6 sup

t∈R
b(t) < +∞}.
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Lemma 2.1. If g(t, x) is nonincreasing in x, then for each initial value
x(t0) = x0 ∈ R+, equation (2.1) has a unique solution x(t) for t > t0.

Proof. By the way of contradiction we assume that there exists (t0, x0) ∈
R×R+ such that there are two distinct solutions x1(t) and x2(t) on [t0, t1] (t1 >
t0) of (2.1) with x1(t0) = x2(t0) = x0. Without loss of generality, we may
assume that x1(t) > x2(t) for t ∈ (t0, t1]. There are two possible cases:

+) If x0 > 0 then [lnx1(t) − lnx2(t)]′ = g(t, x1(t)) − g(t, x2(t)) 6 0 for all
t ∈ [t0, t1]. Hence, 0 < lnx1(t1)− lnx2(t1) 6 lnx1(t0)− lnx2(t0) = 0. This is
a contradiction.

+) If x0 = 0 then x1(t) > 0 for all t ∈ (t0, t1]. Hence, ẋ1(t) = x1(t)g(t, x1(t)) 6
γx1(t) for t ∈ [t0, t1] and for some γ > 0. By Gronwall’s inequality, x1(t) = 0
for all t ∈ [t0, t1]. This is a contradiction. The lemma is proved.

Remark. Assumption (G3) directly implies that g(t, x) is nonincreasing
in x.

Lemma 2.2. If assumptions (G1), (G2) and (G3) hold, then
(i) Equation (2.1) is permanent,
(ii) lim

t→+∞
|x1(t) − x2(t)| = 0 for every couple of solutions x1(t) and x2(t) of

(2.1) with x1(t0) > 0 and x2(t0) > 0.

Proof. (i) By (G3), we have
t+ω∫
t

g(s, x)ds =
t+ω∫
t

[g(s, 0)+g(s, x)−g(s, 0)]ds6

t+ω∫
t

g(s, 0)ds−x
t+ω∫
t

a(s)ds, and then lim sup
t→+∞

t+ω∫
t

g(s, x)ds 6 lim sup
t→+∞

t+ω∫
t

g(s, 0)ds−

x lim inf
t→+∞

t+ω∫
t

a(s)ds. Thus, by (G1) and (G3), there exists positive number P

such that lim sup
t→+∞

t+ω∫
t

g(s, P )ds < 0. By (G1) and (G2), there exists positive

number p (p < P ) such that lim inf
t→+∞

t+λ∫
t

g(s, p)ds > 0. Thus, there exist ε > 0

and T ∈ R such that

(2.2)

t+ω∫
t

g(s, P )ds 6 −ε,
t+λ∫
t

g(s, p)ds > ε for all t > T.

Claim 1. If t1 > T such that x(t1) = P and x(t) > P for all t ∈ [t1, t2], then
t2 − t1 < ω. Indeed, by the way of contradiction we assume that t2 − t1 > ω,
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then

x(t1 + ω) = x(t1) exp
{ t1+ω∫

t1

g(t, x(t))dt
}

6 x(t1) exp
{ t1+ω∫

t1

g(t, P )dt
}
6 Pe−ε < P,

which is a contradiction, since x(t1 + ω) > P . The claim is proved.

Claim 2. There exists T1 > T such that x(T1) 6 P . Indeed, suppose in the

contrary that x(t) > P for all t > T . Then x(t) 6 x(T ) exp
t∫
T

g(s, P )ds for all

t > T . Thus, (2.2) implies that lim
t→+∞

x(t) = 0. This is a contradiction that

proves the claim.
Let us put α1 = sup

t∈R
|g(t, 0)| and ∆ = P exp(α1ω). By Claims 1 and 2, it

follows that x(t) 6 ∆ for all t > T1.

Claim 3. If t1 > T such that x(t1) = p and x(t) 6 p for all t ∈ [t1, t2] then
t2 − t1 < λ. Indeed, by the way of contradiction we assume that t2 − t1 > λ,

then x(t1 + λ) = x(t1) exp
t1+λ∫
t1

g(t, x(t))dt > x(t1) exp
t1+λ∫
t1

g(t, p)dt > peε > p,

which is a contradiction, since x(t1 + λ) 6 p. The claim is proved.

Claim 4. There exists T2 > T such that x(T2) > p. Indeed, suppose in the

contrary that x(t) < p for all t > T . Then x(t) > x(T ) exp
t∫
T

g(s, p)ds for

all t > T . Thus, (2.2) implies that lim
t→+∞

x(t) = +∞. This is a contradiction

which proves the claim.

Let us put α2 = sup
t∈R
{|g(t, p)|+ g(t, 0)} and δ = p exp(−α2λ). By Claims 3

and 4, it follows that x(t) > δ for all t > T2. The proof of part (i) is complete.
(ii) Let x1(t) and x2(t) be two arbitrary solutions of equation (2.1) with
x1(t0) > 0 and x2(t0) > 0. There exist δ,∆ > 0 and T > t0 such that
xi(t) ∈ [δ,∆] for all t > T and i = 1, 2. By Lemma 2.1, without loss of
generality we may assume that x1(t) > x2(t) for all t > T . Let V (t) =

lnx1(t)− lnx2(t). Then V̇ (t) = g(t, x1(t))−g(t, x2(t)) 6 −a(t)[x1(t)−x2(t)] 6

−δa(t)V (t). Thus, V (t) 6 V (T ) exp
t∫
T

−δa(s)ds→ 0 as t→ +∞. This implies

lim
t→+∞

|x1(t)− x2(t)| = 0.



29

Lemma 2.3. Let assumptions (G1), (G2) and (G3) hold. If

(G4) There exists a positive number λ̄ such that lim inf
t→−∞

t+λ̄∫
t

g(s, 0)ds > 0 and

(G5) There exists a positive number ω̄ such that lim inf
t→−∞

t+ω̄∫
t

a(s)ds > 0,

then equation (2.1) has a unique solution X0(.) ∈ B+.

Proof. (i) The existence. By the same argument as given in the proof
of inequalities (2.2) in Lemma 2.2, we know that there exist p̄, P̄ , ε̄ > 0 and
T̄ ∈ R such that

(2.3)

t+ω̄∫
t

g(s, P̄ )ds 6 −ε̄,
t+λ̄∫
t

g(s, p̄)ds > ε̄ for all t 6 T̄ .

Put α1 = sup
t∈R
|g(t, 0)|, ∆̄ = P̄ exp(α1ω̄), α2 = sup

t∈R
{|g(t, p)| + g(t, 0)} and

δ̄ = p̄ exp(−α2λ̄). By the same argument as given in the proof of part (i)
of Lemma 2.2, we conclude that if x(t0) ∈ [p̄, P̄ ] then x(t) ∈ [δ̄, ∆̄] for all
t ∈ [t0, T̄ ]. For each positive integer n such that −n 6 T̄ , let xn(t) be a
solution of (2.1) with xn(−n) = p̄. Then xn(t) ∈ [δ̄, ∆̄] for all t ∈ [−n, T̄ ].
In particular, xn(T̄ ) ∈ [δ̄, ∆̄]. Therefore, there exists a subsequence {nk} of
{n} such that xnk

(T̄ ) → ξ as k → +∞ for some ξ ∈ [δ̄, ∆̄]. By Theorem 3.2
in [2, p. 14], there exist a solution X0(t) of (2.1) satisfying X0(T̄ ) = ξ with the
maximal interval of existence (ω1, ω1) and a subsequence {nkj} of {nk} such

that xnkj
(t) converges to X0(t) uniformly on any compact subset of (ω1, ω2).

By Lemma 2.2 (i), ω2 = +∞. We now prove that ω1 = −∞. To this end,
by the way of contradiction we assume that ω1 > −∞. Then there exists
t0 ∈ (−∞, T̄ ] such that X0(t0) /∈ [δ̄, ∆̄]. Choose a positive integer j0 such that
−nkj0 < t0. Clearly xnkj

(t0) ∈ [δ̄, ∆̄] for all j > j0 and xnkj
(t0) → X0(t0)

as j → +∞. Thus, X0(t0) ∈ [δ̄, ∆̄]. This is a contradiction. It implies that
ω1 = −∞. For each t̄ ∈ (−∞, T̄ ], we know that xnkj

(t̄) → X0(t̄) as j → +∞.
Thus, X0(t̄) ∈ [δ̄, ∆̄] for all t̄ ∈ (−∞, T̄ ]. By Lemma 2.2 (i), X0(.) ∈ B+.
(ii) The uniqueness. Suppose in the contrary that equation (2.1) has two
distinct solutions X0(t) and X1(t) defined on R and satisfying δ 6 Xi(t) 6 ∆
for all t ∈ R (i = 0, 1), where δ, ∆ are positive constants. By Lemma 2.1,
without loss of generality, we may assume that X0(t) > X1(t) for all t ∈ R.

Put V (t) = lnX0(t) − lnX1(t). We have V̇ (t) = g(t,X0(t)) − g(t,X1(t)) 6
−a(t)[X0(t)−X1(t)] 6 −δa(t)V (t). Thus, since V (t) is bounded, 0 < V (t0) 6

V (t) exp
t0∫
t

[−δa(s)]ds → 0 as t → −∞. This is a contradiction. The proof of

Lemma 2.3 is complete.
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Lemma 2.4. Assume that
(H1) For each i = 1, 2, gi : R × R+ → R is continuous and such that the
following equation

(2.4i) ẋi = xigi(t, xi)

is permanent,
(H2) For each i = 1, 2, equation (2.4i) has a unique solution X0

i (.) ∈ B+,
(H3) The function gi(t, .) is nonincreasing for each t ∈ R and g1(t, x) 6 g2(t, x)
for all (t, x) ∈ R× R+.

Then X0
1 (t) 6 X0

2 (t) for all t ∈ R.

Proof. Suppose in the contrary that there exists t1 ∈ R such thatX0
1 (t1)>

X0
2 (t1). By (H1), there exists a solution x̄2(t) of (2.42) with x̄2(t1) = X0

1 (t1)
and defined on [t1,+∞) and bounded from above and from below on [t1,+∞)
by positive constants. For t 6 t1 let x̃2(t) be the minimal solution of (2.42) with
x̃2(t1) = X0

1 (t1). By Theorem 4.1 in [2, p. 26], we have X0
1 (t) > x̃2(t) > X0

2 (t)
for all t < t1 in the domain of x̃2(t). Thus, x̃2(t) is defined for all t ∈ (−∞, t1].
Let

x∗(t) =

{
x̄2(t), if t > t1,

x̃2(t), if t < t1.

Then x∗(.) ∈ B+. Moreover, x∗(.) is a solution of (2.42) which is different from
X0

2 (.). This is a contradiction. The lemma is proved.

Lemma 2.5. Let hypothesis (H1) hold. If
(H4) There exist ω > 0 and a function a : R → R+ which is bounded and

locally integrable with lim inf
t→+∞

t+ω∫
t

a(s)ds > 0 such that D+
x g1(t, x)) 6 −a(t) for

all (t, x) ∈ R× R+,
(H5) For each compact set S ⊂ R+, lim

t→+∞
{sup
x∈S
|g1(t, x)− g2(t, x)|} = 0,

then lim
t→+∞

|x1(t) − x2(t)| = 0 for any couple of solutions x1(t) and x2(t) of

equations (2.41) and (2.42), respectively, with x1(t0) > 0 and x2(t0) > 0.

Proof. For each i = 1, 2, let xi(t) be a solution of (2.4i) with xi(t0) > 0.
By (H1), there exist δ, ∆ > 0 and T > t0 such that δ 6 xi(t) 6 ∆ for all
t > T , i = 1, 2. For t > T , let V (t) = | lnx1(t)− lnx2(t)|. By (H5), we obtain

(2.5)

D+V (t) = [sign(x1(t)− x2(t))]

·
{

[g1(t, x1(t))− g1(t, x2(t))] + [g1(t, x2(t))− g2(t, x2(t))]
}

6 −a(t)|x1(t)− x2(t)|+ h(t) 6 −δa(t)V (t) + h(t),
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where h(t) = |g1(t, x2(t))−g2(t, x2(t))|. By (H5), we have lim
t→+∞

h(t) = 0. Thus,

(H4) and (2.5) imply that lim
t→+∞

V (t) = 0. Hence, lim
t→+∞

|x1(t)−x2(t)| = 0.

Consider the following equation

(2.6) ẏ = f(t, y),

where f : R × Ω → Rd (Ω ⊂ Rd is open) is almost periodic in t uniformly for
y ∈ Ω. We recall Bochner’s criterion for the almost periodicity (see [8]): f(t, y)
is almost periodic in t uniformly for y ∈ Ω if and only if for every sequence of
numbers {τk}∞k=1, there exists a subsequence {τkl}∞l=1 such that the sequence of
translations {f(τkl + t, y)}∞l=1 converges uniformly on R × S, where S is any
compact subset of Ω.

Denote by fτ the τ -translation of f , that is fτ (t, y) = f(τ + t, y); H(f)
the hull of f , that is the closure of {fτ : τ ∈ R} in the topology of uniform
convergence on compact subsets of R×Ω. We know that H(f) is compact and
for f∗ ∈ H(f), f∗(t, y) is almost periodic in t uniformly for y ∈ Ω. Denote
by C the set of continuous functions from R × Ω into Rd equipped with the
topology of uniform convergence on compact subsets of R× Ω.

Lemma 2.6. Let S be a compact subset of Ω. Assume that for each f∗ ∈
H(f), the following equation

(2.7) ẏ = f∗(t, y)

has a unique solution y∗(t) which is defined on whole R and y∗(t) ∈ S for all
t ∈ R. Then equation (2.6) has a unique almost periodic solution in S and its
module is contained in the module of f(t, y).

Proof. Let y0(t) be the unique solution of (2.6) with y0(t) ∈ S for all
t ∈ R. Let {τk}∞k=1 be a sequence such that fτk → f∗ as k →∞ uniformly on
R×K, where K is any compact subset of Ω. We claim that y0(τk + t)→ y∗(t)
as k → ∞ uniformly on R, where y∗(t) is the unique solution of (2.7) with
y∗(t) ∈ S for all t ∈ R. To this end, by the way of contradiction we assume
that there exist a subsequence {τkl}∞l=1 of {τk}∞k=1, a sequence of numbers
{sl}∞l=1 and a positive number α such that ‖y0(sl + τkl) − y∗(sl)‖ > α for all
l. By Bochner’s criterion, we may assume, without loss of generality, that
fτml

+sl → f̂ as l → ∞ uniformly on R ×K, where K is any compact subset

of Ω. Thus, f∗sl → f̂ as l → ∞ uniformly on R×K, where K is any compact
subset of Ω. Since S is compact, we may without loss of generality assume
that y0(τkl + sl) → ξ0 and y∗(sl) → ξ∗ as l → ∞. We know that ξ0, ξ

∗ ∈ S
and ‖ξ0− ξ∗‖ > α. It is clear that y0(t+ τkl + sl) is a solution of the following
equation

(2.8l) ẏ = f(t+ τkl + sl, y).
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Consider the following equation

(2.9) ẏ = f̂(t, y).

Now fτkl+sl → f̂ uniformly on any compact subset of R × Ω as l → ∞,

Theorem 3.2 in [2, p. 14] shows that there exist a solution y(t) of (2.9) with
y(0) = ξ0 having a maximal interval of existence (ω1, ω2) and a subsequence of
{τkl + sl}∞l=1 therefore, without loss of generality, we may assume that there is
{τkl + sl}∞l=1 such that y0(t+ τkl + sl)→ y(t) uniformly on any compact subset
of (ω1, ω2) as l→∞. Since S is compact, Theorem 3.1 in [2, p. 12] shows that
ω1 = −∞ and ω2 = +∞. Thus, y(t) ∈ S for all t ∈ R.

We know that y∗(t+ sl) is a solution of the following equation

(2.10) ẏ = f∗(t+ sk, y).

By the same argument as given above, there exists a solution ȳ(t) of (2.10)
with ȳ(0) = ξ∗ and ȳ(t) ∈ S for all t ∈ R. By the uniqueness of solution of
(2.10) defined on R and contained in S, we have y(t) = ȳ(t) for all t ∈ R.
Thus, ξ0 = y(0) = ȳ(0) = ξ∗, but this contradicts ‖ξ0 − ξ∗‖ > α. The claim is
proved. By Bochner’s criterion, y0(t) is almost periodic.

By the module containment theorem [8, p. 18], the module of y0(t) is con-
tained in the module of f(t, y).

Lemma 2.7. Assume that g(t, x) is almost periodic in t uniformly for x ∈
R× R+ and

(G∗1) lim
T→+∞

1

T

T∫
0

g(s, 0)ds > 0,

(G∗2) There exists an almost periodic function a : R→ R+ such that

lim
T→+∞

1

T

T∫
0

a(s)ds > 0 and D+
x g(t, x)) 6 −a(t) for all (t, x) ∈ R× R+.

Then equation (2.1) has a unique solution X0(.) ∈ B+. Moreover, X0(.) is al-
most periodic, its module is contained in the module of g(t, x) and lim

t→+∞
|x(t)−

X0(t)| = 0 for any solution x(t) of (2.1) with x(t0) > 0. In particular, if g(t, x)
is Θ-periodic in t (Θ > 0), then also the solution X0(t) is Θ-periodic.

Proof. By almost periodicity, (G∗1) and (G∗2) imply that there exist positve

numbers λ and γ such that

t+λ∫
t

g(s, 0)ds > γ and

t+λ∫
t

a(s)ds > γ for all t ∈ R.

By the same argument as given in the proof of inequalities (2.2) of Lemma 2.2,
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there exist positive numbers p, P and ε such that

(2.11)

λ+t∫
t

g(s, P )ds 6 −ε,
λ+t∫
t

g(s, p)ds > ε for all t ∈ R.

By almost periodicity of g(t, x), it is easy to see that

(2.12)

λ+t∫
t

g∗(s, P )ds 6 −ε,
λ+t∫
t

g∗(s, p)ds > ε, for all t ∈ R and g∗ ∈ H(g).

Put α1 = sup
t∈R
|g∗(t, 0)|, ∆ = P exp(α1λ), α2 = sup

t∈R
{|g∗(t, p)| + g∗(t, 0)} and

δ = p exp(−α2λ). It is easy to see that δ and ∆ do not depend on the choice
of g∗ ∈ H(g).

Let g∗ ∈ H(g); consider the following equation

(2.13) ẋ = xg∗(t, x).

By the same argument as given in the proof of Lemma 2.3, we can show that
(2.13) has a unique solution X∗(t) defined on R with X∗(t) ∈ [δ,∆] for all
t ∈ R. It follows from Lemmas 2.2 and 2.6 that equation (2.1) has a unique
almost periodic solution X0(.) ∈ B+, which satisfies lim

t→+∞
|x(t)−X0(t)| = 0 for

any solution x(t) of equation (2.1) with x(t0) > 0 and its module is contained
in that of g(t, x). If g is Θ-periodic in t, then X0(.), X0

Θ(.) ∈ B+ are two
solutions of equation (2.1). By the uniqueness, X0(.) ≡ X0

Θ(.). The lemma is
proved.

3. Permanence and bounded solutions of Kolmogorov predator-
-prey system. Consider the following Kolmogorov predator-prey system

(3.1)
u̇i = uifi(t, u1, . . . , un, v1, . . . , vm), i = 1, . . . , n,

v̇j = vjhj(t, u1, . . . , un, v1, . . . , vm), j = 1, . . . , m,

where fi, hj : R × Rn+m
+ → R are continuous. For w, z ∈ Rd, we set w 6 z

if wi 6 zi, i = 1, . . . , d. Let Bd+ = {(φ1, . . . , φd) : R → Rd | φi ∈ B+, i =
1, . . . , d}. We introduce the following hypotheses:

(K1) fi, hj are bounded on any set of the form R × S, where S ⊂ Rn+m
+ is

compact, and are such that for each compact set S ⊂ Rn+m
+ , for any ε > 0,

there exists δ > 0 such that |fi(t, u, v)−fi(t, ū, v̄)| < ε, |hj(t, u, v)−hj(t, ū, v̄)| <
ε for all t ∈ R, i = 1, . . . , n, j = 1, . . . ,m and (u, v), (ū, v̄) ∈ S with ‖(u, v) −
(ū, v̄)‖ < δ.
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(K2) For each i = 1, . . . , n, there exist positive numbers λ+
i and λ−i such that

lim inf
t→+∞

t+λ+i∫
t

fi(s, 0, . . . , 0)ds > 0, lim inf
t→−∞

t+λ−i∫
t

fi(s, 0, . . . , 0)ds > 0,

(K3) For each i = 1, . . . , n, there exist positive numbers ω+
i , ω

−
i and a bounded

locally integrable function ai : R→ R+ with

lim inf
t→+∞

t+ω+
i∫

t

ai(s)ds > 0 and lim inf
t→−∞

t+ω−
i∫

t

ai(s)ds > 0

such that D+
uifi(t, u, v)) 6 −ai(t) for (t, u, v) ∈ R× Rn+m

+ ,

(K4) For each j = 1, . . . ,m, there exist positive numbers γ+
j , γ

−
j and a bounded

locally integrable function ej : R→ R+ with

lim inf
t→+∞

t+γ+j∫
t

ej(s)ds > 0 and lim inf
t→−∞

t+γ−j∫
t

ej(s)ds > 0

such that D+
vjhj(t, u, v)) 6 −ej(t) for (t, u, v) ∈ R× Rn+m

+ ,

(K5) For each i = 1, . . . , n, fi(t, u1, . . . , un, v1, . . . , vm) is nonincreasing in each
variable ul for l = 1, . . . , n and in each variable vk for k = 1, . . . ,m,

(K6) For each j = 1, . . . ,m, hj(t, u1, . . . , un, v1, . . . , vm) is nondecreasing in
each variable ul for l = 1, . . . , n and is nonincreasing in each variable vk for
k = 1, . . . ,m.

Note that by (K1), (K2), (K3) and Lemma 2.3, for each i = 1, . . . , n, the
following equation

(3.2i) u̇i = uifi(t, 0, . . . , 0, ui, 0, . . . , 0)

has a unique solution U0
i (.) ∈ B+. Put U0(t) = (U0

1 (t), . . . , U0
n(t)).

(K7) For each j = 1, . . . ,m, there exist positive numbers µ+
j , µ

−
j such that

lim inf
t→+∞

t+µ+j∫
t

hj(s, U
0(s), 0, . . . , 0)ds > 0, lim inf

t→−∞

t+µ−j∫
t

hj(s, U
0(s), 0, . . . , 0)ds > 0.

Note that by (K1), (K4), (K7) and Lemma 2.3, for each j = 1, . . . ,m, the
following equation

(3.3j) v̇j = vjhj(t, U
0(t), 0, . . . , 0, vj , 0, . . . , 0)

has a unique solution V 0
j (.) ∈ B+. Put V 0(t) = (V 0

1 (t), . . . , V 0
m(t)).
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(K8) For each i = 1, . . . , n, there exist positive numbers ν+
i , ν

−
i such that

lim inf
t→+∞

t+ν+i∫
t

fi(s, U
0
1 (s), . . . , U0

i−1(s), 0, U0
i+1(s), . . . , U0

n(s), V 0(s))ds > 0,

lim inf
t→−∞

t+ν−i∫
t

fi(s, U
0
1 (s), . . . , U0

i−1(s), 0, U0
i+1(s), . . . , U0

n(s), V 0(s))ds > 0.

Note that by (K1), (K3), (K8) and Lemma 2.3, for each i = 1, . . . , n, the
following equation

(3.4i) u̇i = uifi(t, U
0
1 (t), . . . , U0

i−1(t), ui, U
0
i+1(t), . . . , U0

n(t), V 0(t))

has a unique solution u0
i (.) ∈ B+. Put u0(t) = (u0

1(t), . . . , u0
n(t)).

(K9) For each j = 1, . . . ,m, there exist positive numbers ε+
j , ε

−
j such that

lim inf
t→+∞

t+ε+j∫
t

hj(s, u
0(s), V 0

1 (s), . . . , V 0
j−1(s), 0, V 0

j+1(s), . . . , V 0
m(s))ds > 0,

lim inf
t→−∞

t+ε−j∫
t

hj(s, u
0(s), V 0

1 (s), . . . , V 0
j−1(s), 0, V 0

j+1(s), . . . , V 0
m(s))ds > 0.

Note that by (K1), (K4), (K9) and Lemma 2.3, for each j = 1, . . . ,m, the
following equation

(3.5j) v̇j = vjhj(t, u
0(t), V 0

1 (t), . . . , V 0
j−1(t), vj , V

0
j+1(t), . . . , V 0

m(t))

has a unique solution v0
j (.) ∈ B+. Put v0(t) = (v0

1(t), . . . , v0
m(t)).

Theorem 3.1. Let (K1)–(K9) hold. Then system (3.1) is permanent and
it has at least one solution (u∗(.), v∗(.)) ∈ Bn+m

+ .

Proof. (i) The existence. By Lemma 2.4, (u0(t), v0(t)) 6 (U0(t), V 0(t))
for all t ∈ R. We denote by C the set of continuous functions (u(.), v(.)) :
R→ Rn×Rm equipped with the topology of uniform convergence on compact
subsets of R. It is well-known that C is a Fréchet space. Let

M = {(u(.), v(.)) ∈ C : (u0(t), v0(t)) 6(u(t), v(t)) 6 (U0(t), V 0(t))

for all t ∈ R}.
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By (K1), (K3), (K4), (K8) and (K9), Lemma 2.3 implies that for each
(ũ(.), ṽ(.)) ∈M, the following system of n+m uncoupled differential equations

(3.6)
u̇i = uifi(t, ũ1(t), . . . , ũi−1(t), ui, ũi+1(t), . . . , ũn(t), ṽ(t)), i=1, . . . , n,

v̇j = vjhj(t, ũ(t), ṽ1(t), . . . , ṽj−1(t), vj , ṽj+1(t), . . . , ṽm(t)), j=1, . . . ,m,

has a unique solution (ū(.), v̄(.)) ∈ Bn+m
+ . By Lemma 2.4, (u0(t), v0(t)) 6

(ū(t), v̄(t)) 6 (U0(t), V 0(t)) for all t ∈ R. Hence, we can introduce the follow-
ing operator

T :M→M, (ũ(.), ṽ(.)) 7→ (ū(.), v̄(.)).

Clearly, (u∗(.), v∗(.)) is a solution in M of system (3.1) if and only if it is a
fixed point of T . Let

δ = inf{u0
i (t), v

0
j (t) : i = 1, . . . , n, j = 1, . . . ,m, t ∈ R},

∆ = sup{U0
i (t), V 0

j (t) : i = 1, . . . , n, j = 1, . . . ,m, t ∈ R},
L = sup{|uifi(t, u, v)|, |vjhj(t, u, v)| : i = 1, . . . , n, j = 1, . . . ,m,

(t, u, v) ∈ R× [δ,∆]n+m}.

By (K1), 0 < L < +∞. Let us set

M1 = {φ ∈M : |φi(t)− φi(t̄)| 6 L|t− t̄|, i = 1, . . . , n+m, t, t̄ ∈ R}.
It is easily seen that M1 is a closed convex subset of M. By Ascoli’s theorem
(see [4]), M1 is compact (in the topology of uniform convergence on compact
subsets of R). Moreover, T (M1) ⊂M1.

Claim. The operator T is continuous onM1 in the topology of uniform conver-
gence on compact subsets of R. To prove this, let {(uk(.), vk(.))}∞k=1 ⊂M1 such

that (uk(.), vk(.))→ (ũ(.), ṽ(.)) as k → +∞. Since M1 is closed, (ũ(.), ṽ(.)) ∈
M1. We shall show that T (uk(.), vk(.)) → T (ũ(.), ṽ(.)) as t → +∞. Since
{T (uk(.), vk(.))}∞k=1 is precompact, it suffices to show that if a subsequence

{T (uks(.), vks(.))} converges to (ū(.), v̄(.)) then (ū(.), v̄(.)) = T (ũ(.), ṽ(.)). To
this end, let us consider two systems
(3.7ks){
u̇i = uifi(t, u

ks
1 (t), . . . , uksi−1(t), ui, u

ks
i+1(t), . . . , uksn (t), vks(t)), i=1, . . . , n,

v̇j = vjhj(t, u
ks(t), vks1 (t), . . . , vksj−1(t), vj , v

ks
j+1(t), . . . , vksm (t)), j=1, . . . ,m,

and
(3.8){

u̇i = uifi(t, ũ1(t), . . . , ũi−1(t), ui, ũi+1(t), . . . , ũn(t), ṽ(t)), i=1, . . . , n,

v̇j = vjhj(t, ũ(t), ṽ1(t), . . . , ṽj−1(t), vj , ṽj+1(t), . . . , ṽm(t)), j=1, . . . ,m.

Clearly, the right hand side of (3.7ks) converges to the right hand side of (3.8)
uniformly on any compact subset of R×Rn+m

+ . By Theorem 2.4 in [2, p. 4], it
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follows that (ū(.), v̄(.)) is a solution of (3.8). Since (3.8) has a unique solution
in M (by Lemma 2.3), T (ũ(.), ṽ(.)) = (ū(.), v̄(.)). The claim is proved.

By Tychonov’s fixed point theorem (see [1]), there exists (u∗(.), v∗(.)) ∈
M1 such that T (u∗(.), v∗(.)) = (u∗(.), v∗(.)). Thus, (u∗(.), v∗(.)) is a solution
of system (3.1).

(ii) The permanence. Let (u(t), v(t)) be a solution of (3.1) with (ui(t0), vj(t0)) ∈
intRn+m

+ . For each i = 1, . . . , n, let ūi(t) be a solution of (3.2i) with ūi(t0) =
ui(t0). By Lemma 2.1 and the comparison theorem,

(3.9) ūi(t) > ui(t) for all t > t0, i = 1, . . . , n.

By Lemma 2.2,

(3.10) lim
t→+∞

|ūi(t)− U0
i (t)| = 0 for i = 1, . . . , n.

From (3.9) and (3.10), we have

(3.11) lim sup
t→+∞

ui(t) 6 lim sup
t→+∞

U0
i (t) 6 ∆ for i = 1, . . . , n.

For each j = 1, . . . ,m, let v̄j(t) be a solution with v̄j(t0) = vj(t0) of the
following equation

(3.12j) v̇j = vjhj(t, ū(t), 0, . . . , 0, vj , 0, . . . , 0).

By (3.10), (K1), (K4) and (K7), we can apply Lemma 2.5 to equations (3.3j)
and (3.12j) and obtain

(3.13) lim
t→+∞

|v̄j(t)− V 0
j (t)| = 0 for j = 1, . . . ,m.

By Lemma 2.1 and the comparison theorem,

(3.14) v̄j(t) > vj(t) for all t > t0, j = 1, . . . ,m.

From (3.13) and (3.14), we have

(3.15) lim sup
t→+∞

vj(t) 6 lim sup
t→+∞

V 0
j (t) 6 ∆ for j = 1, . . . ,m.

For i = 1, . . . , n, let ũi(t) be a solution with ũi(t0) = ui(t0) of the following
equation

(3.16i) u̇i = uifi(t, ū1(t), . . . , ūi−1(t), ui, ūi+1(t), . . . , ūn(t), v̄(t)).

By (3.10), (3.13), (K1), (K3) and (K8), we can apply Lemma 2.5 to equations
(3.4i) and (3.16i) and obtain

(3.17) lim
t→+∞

|ũi(t)− u0
i (t)| = 0 for i = 1, . . . , n.

By Lemma 2.1 and the comparison theorem,

(3.18) ui(t) > ũi(t) for all t > t0, i = 1, . . . , n.
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From (3.17) and (3.18) we have

(3.19) lim inf
t→+∞

ui(t) > lim inf
t→+∞

u0
i (t) > δ for i = 1, . . . n.

For each j = 1, . . .m, let ṽj(t) be a solution with ṽj(t0) = vj(t0) of the following
equation

(3.20j) v̇j = vjhj(t, ũ(t), v̄1(t), . . . , v̄j−1(t), vj , v̄j+1(t), . . . , v̄m(t)).

By (3.13), (3.17), (K1), (K4) and (K9), we can apply Lemma 2.5 to equations
(3.5j) and (3.20j) and obtain

(3.21) lim
t→+∞

|ṽj(t)− v0
j (t)| = 0 for j = 1, . . . ,m.

By Lemma 2.1 and the comparison theorem,

(3.22) vj(t) > ṽj(t) for all t > t0, j = 1, . . . ,m.

From (3.21) and (3.22) we have

(3.23) lim inf
t→+∞

vj(t) > lim inf
t→+∞

v0
j (t) > δ for j = 1, . . .m.

By (3.11), (3.15), (3.19) and (3.23), system (3.1) is permanent.

Remark. Theorem 3.1 is an extension of Theorem 1 in [5] to system (3.1).
It is also an extension of Theorem 2.5 in [6] to the nonperiodic case.

Using Theorem 3.1, we have the following corollary:

Corollary 3.2. Assume that fi, hj (i = 1, . . . , n, j = 1, . . . ,m) are
almost periodic in t uniformly for (u, v) ∈ Rn+m

+ and satisfy (K5), (K6) and
the following hypotheses:

(K∗2 ) lim
T→+∞

1

T

T∫
0

fi(t, 0, . . . ., 0)dt > 0 for i = 1, . . . , n,

(K∗3 ) For each i = 1, . . . , n, there exists a nonnegative almost periodic func-

tion ai(t) with lim
T→+∞

1

T

T∫
0

ai(t)dt > 0 such that D+
uifi(t, u, v)) 6 −ai(t) for

(t, u, v) ∈ R× Rn+m
+ ,

(K∗4 ) For each j = 1, . . . ,m, there exists a nonnegative almost periodic func-

tion ej(t) with lim
T→+∞

1

T

T∫
0

ej(t)dt > 0 such that D+
vjhj(t, u, v)) 6 −ej(t) for

(t, u, v) ∈ R× Rn+m
+ ,
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(K∗7 ) lim
T→+∞

1

T

T∫
0

hj(t, U
0(t), 0, . . . ., 0)dt > 0 for j = 1, . . . ,m,

(K∗8 ) lim
T→+∞

1

T

T∫
0

fi(t, U
0
1 (t), . . . , U0

i−1(t), 0, U0
i+1(t), . . . , U0

n(t), V 0(t))dt > 0 for

i = 1, . . . , n,

(K∗9 ) lim
T→+∞

1

T

T∫
0

hj(t, u
0(t), V 0

1 (t), . . . , V 0
j−1(t), 0, V 0

j+1(t), . . . , V 0
m(t))dt > 0 for

j = 1, . . . ,m.
Then system (3.1) is permanent and it has at least one solution (u∗(.), v∗(.))∈

Bn+m
+ . In particular, if fi, hj (i = 1, . . . , n, j = 1, . . . ,m) are Θ-periodic

(Θ > 0) in t, then system (3.1) has least one Θ-periodic solution (u∗(.), v∗(.)) ∈
Bn+m

+ .

4. Lotka–Volterra predator-prey system. Consider the following
Lotka–Volterra predator-prey system

(4.1)

u̇i = ui

[
bi(t)−

n∑
k=1

aik(t)uk −
m∑
k=1

cik(t)vk

]
, i = 1, . . . , n,

v̇j = vj

[
rj(t) +

n∑
k=1

djk(t)uk −
m∑
k=1

ejk(t)vk

]
, j = 1, . . . ,m,

where aik(t), cik(t), djk(t), ejk(t) are continuous, nonnegative and bounded on
R, bi(t), rj(t) are continuous and bounded on R. We introduce the following
hypotheses:

(L1) For each i = 1, . . . , n, there exist positive numbers λ+
i and λ−i such that

lim inf
t→+∞

t+λ+i∫
t

bi(s)ds > 0, lim inf
t→−∞

t+λ−i∫
t

bi(s)ds > 0,

(L2) For each i = 1, . . . , n, there exist positive numbers ω+
i and ω−i such that

lim inf
t→+∞

t+ω+
i∫

t

aii(s)ds > 0, lim inf
t→−∞

t+ω−
i∫

t

aii(s)ds > 0,
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(L3) For each j = 1, . . . ,m, there exist positive numbers γ+
j and γ−j such that

lim inf
t→+∞

t+γ+j∫
t

ejj(s)ds > 0, lim inf
t→−∞

t+γ−j∫
t

ejj(s)ds > 0,

(L4) For each i = 1, . . . , n, there exist positive numbers µ+
j , µ

−
j such that

lim inf
t→+∞

t+µ+j∫
t

[
rj(s) +

m∑
k=1

djk(s)U
0
k (s)

]
ds > 0,

lim inf
t→−∞

t+µ−j∫
t

[rj(s) +
m∑
k=1

djk(s)U
0
k (s)]ds > 0,

where U0
i (.) is a unique solution in B+ of the following equation

(4.2i) u̇i = ui[bi(t)− aii(t)ui].

(L5) For each i = 1, . . . , n, there exist positive numbers ν+
i and ν−i such that

lim inf
t→+∞

t+ν+i∫
t

[
bi(s)−

n∑
k=1, k 6=i

aik(s)U
0
k (s)−

m∑
k=1

cik(s)V
0
k (s)

]
ds > 0,

lim inf
t→−∞

t+ν−i∫
t

[
bi(s)−

n∑
k=1, k 6=i

aik(s)U
0
k (s)−

m∑
k=1

cik(s)V
0
k (s)

]
ds > 0,

where V 0
j (.) is a unique solution in B+ of the following equation

(4.3j) v̇j = vj

[
rj(t) +

m∑
k=1

djk(t)U
0
k (t)− ejj(t)vj

]
,

(L6) For each j = 1, . . . ,m, there exist positive numbers ε+
j and ε−j such that

lim inf
t→+∞

t+ε+j∫
t

[
rj(s) +

m∑
k=1

djk(s)u
0
k(s)−

m∑
k=1, k 6=j

ejk(s)V
0
k (s)

]
ds > 0,

lim inf
t→−∞

t+ε−j∫
t

[
rj(s) +

m∑
k=1

djk(s)u
0
k(s)−

m∑
k=1, k 6=j

ejk(s)V
0
k (s)

]
ds > 0,
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where u0
i (.) is the unique solution in B+ of the following equation

(4.4i) u̇i = ui

[
bi(t)−

n∑
k=1, k 6=i

aik(t)U
0
k (t)−

m∑
k=1

cik(t)V
0
k (t)− aii(t)ui

]
.

Applying Theorem 3.1 to system (4.1) we obtain the following corollary:

Corollary 4.1. Let (L1)–(L6) hold. Then system (4.1) is permanent and
it has at least one solution (u∗(.), v∗(.)) ∈ Bn+m

+ .

Definition. A solution (ū(t), v̄(t)) of (3.1) with (ū(t0), v̄(t0)) ∈ intRn+m
+ is

said to be globally attractive, if for any solution (u(t), v(t)) with (u(t0), v(t0)) ∈
intRn+m

+ there is lim
t→+∞

‖(u(t), v(t))− (ū(t), v̄(t))‖ = 0.

Theorem 4.2. Let (L1)–(L6) hold. If
(L7) There exist positive numbers si, βj (i = 1, . . . , n, j = 1, . . . ,m) and a con-

tinuous nonnegative function α : R → R with
+∞∫
0

α(t)dt = +∞,
0∫
−∞

α(t)dt =

+∞ such that

siaii(t)−
n∑

k=1, k 6=i
skaki(t)−

m∑
k=1

βkdki(t) > α(t) for all t ∈ R, i = 1, . . . , n,

βjejj(t)−
n∑
k=1

skcjk(t)−
m∑

k=1, k 6=j
βkekj(t) > α(t) for all t ∈ R, j = 1, . . . ,m,

then system (4.1) has a unique globally attractive solution (u∗(.), v∗(.)) ∈
Bn+m

+ .

Proof. The existence of a solution (u∗(t), v∗(t)) follows from Corollary
4.1.
(i) The uniqueness. For the contrary, suppose that there are two distinct solu-
tions (u1(t), v1(t)) and (u2(t), v2(t)) of system (4.1) defined on R and satisfying
uli(t) ∈ [δ,∆], vlj(t) ∈ [δ,∆] for all t ∈ R, i = 1, . . . , n, j = 1, . . . ,m and l = 1, 2,

where δ and ∆ are positive constants. Let (u1(t0), v1(t0)) 6= (u2(t0), v2(t0)) for
some t0 ∈ R. Let V (t) =

∑n
i=1 si| lnu1

i (t) − lnu2
i (t)| +

∑m
j=1 βj | ln v1

j (t) −
ln v2

j (t)|. Then
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D+V (t) 6
n∑
i=1

[ n∑
k=1, k 6=i

skaki(t) +
m∑
k=1

βidki(t)− siaii(t)
]
|u1
i (t)− u2

i (t)|

+
m∑
j=1

[ n∑
k=1

skckj(t) +
m∑

k=1, k 6=j
βkekj(t)− βjejj(t)

]
|v1
j (t)− v2

j (t)|

6− α(t)
{ n∑
i=1

|u1
i (t)− u2

i (t)|+
m∑
j=1

|v1
j (t)− v2

j (t)|
}
6 −γα(t)V (t),

where γ = min
{ δ
si
,
δ

βj
: i = 1, . . . , n, j = 1, . . . ,m

}
. Thus,

0 < V (t0) 6 V (t) exp
{
−

t0∫
t

γα(s)ds
}
, t 6 t0.

Since V (t) is bounded and lim
t→−∞

exp
{
−

t0∫
t

γα(s)ds
}

= 0, we have V (t0) = 0.

This is a contradiction. The uniqueness is proved.

(ii) The global attractivity. Let (u(t), v(t)) be a solution of (4.1) with
(u(t0), v(t0)) ∈ intRn+m. By Corollary 4.1, there exist δ > 0,∆ > 0 and
T > t0 such that (u(t), v(t)), (u∗(t), v∗(t)) ∈ [δ,∆]n+m for all t > T . Let

V (t) =
n∑
i=1

si| lnui(t)− lnu∗i (t)|+
m∑
j=1

βj | ln vj(t)− ln v∗j (t)|. By calculating the

upper right derivative of V (t) as given above, we obtain D+V (t) 6 −γα(t)V (t)

for t > T , where γ = min
i,j

{ δ
si
,
δ

βj

}
. Thus, V (t) 6 V (T ) exp

{
−

t∫
T

γα(s)ds
}

for each t > T . This implies that lim
t→+∞

V (t) = 0, then lim
t→+∞

‖(u(t), v(t)) −
(u∗(t), v∗(t))‖ = 0.

Theorem 4.3. Let aik(t), cik(t), djk(t), ejk(t), bi(t) and rj(t) (i = 1, . . . , n,
j = 1, . . . ,m) be almost periodic. Assume that

lim inf
T→+∞

1

T

T∫
0

bi(s)ds > 0, lim inf
T→+∞

1

T

T∫
0

aii(s)ds > 0, i = 1, . . . , n,(4.6)

lim inf
T→+∞

1

T

T∫
0

ejj(s)ds > 0, lim inf
T→+∞

1

T

T∫
0

[
rj(s) +

m∑
k=1

djk(s)U
0
k (s)

]
ds > 0,(4.7)

j = 1, . . . ,m,
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lim inf
T→+∞

1

T

T∫
0

[
bi(s)−

n∑
k=1, k 6=i

aik(s)U
0
k (s)−

m∑
k=1

cik(s)V
0
k (s)

]
ds > 0,(4.8)

i = 1, . . . , n,

lim inf
T→+∞

1

T

T∫
0

[
rj(s) +

m∑
k=1

djk(s)u
0
k(s)−

m∑
k=1, k 6=j

ejk(s)V
0
k (s)

]
ds > 0,(4.9)

j = 1, . . . ,m

where U0
i (.) (u0

i (.) and V 0
j (.)) is the unique almost periodic solution in B+ of

(4.2i), ((4.4i) and (4.3j), respectively). Then (4.1) is permanent and it has
least one solution (u∗(.), v∗(.)) ∈ Bn+m

+ . If, in addition, (L7) holds, then there

exists a unique globally attractive almost periodic solution (u∗(.), v∗(.) ∈ Bn+m
+

and its module is contained in that of F (t, u, v), where F (t, u, v) is the right
hand side of (4.1). In particular, if aik(t), cik(t), djk(t), ejk(t), bi(t) and
rj(t) (i = 1, . . . , n, j = 1, . . . ,m) are Θ-periodic, then also the above solution
(u∗(.), v∗(.)) is Θ-periodic.

Proof. By Corollary 4.1, system (4.1) is permanent and it has least one
solution (u∗(.), v∗(.)) ∈ Bn+m

+ . We know that for each F ∗ ∈ H(F ) (the hull
of F ), there exist a∗ik ∈ H(aik), c

∗
ik ∈ H(cik), d

∗
jk ∈ H(djk), e

∗
jk ∈ H(ejk),

b∗i ∈ H(bi) and r∗j ∈ H(rj) (i = 1, . . . , n, j = 1, . . . ,m) such that F ∗(t, u, v) is
the right hand side of the following system

(4.10)

u̇i = ui

[
b∗i (t)−

n∑
k=1

a∗ik(t)uk −
m∑
k=1

c∗ik(t)vk

]
, i = 1, . . . , n,

v̇j = vj

[
r∗j (t) +

n∑
k=1

d∗jk(t)uk −
m∑
k=1

e∗jk(t)vk

]
, j = 1, . . . ,m.

For i = 1, . . . , n and j = 1, . . . ,m, let us consider

u̇i = ui[b
∗
i (t)− a∗ii(t)ui],(4.11i)

v̇j = vj

[
r∗j (t) +

m∑
k=1

d∗jk(t)U
∗0
k (t)− e∗jj(t)vj

]
,(4.12j)

u̇i = ui

[
b∗i (t)−

n∑
k=1, k 6=i

a∗ik(t)U
∗0
k (t)−

m∑
k=1

c∗ik(t)V
∗0
k (t)− a∗ii(t)ui

]
,(4.13i)

v̇j = vj

[
r∗j (t) +

m∑
k=1

d∗jk(t)u
∗0
k (t)−

m∑
k=1, k 6=j

e∗jk(t)V
∗0
k (t)− e∗jj(t)vj

]
.(4.14j)
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By Lemma 2.7, each of equations (4.11i), (4.12j), (4.13i), (4.14j) has a unique
almost periodic solution U∗0i (.), V ∗0j (.), u∗0i (.) and v∗0j (.) in B+, respectively.

Let {τk}∞k=1 be a sequence of numbers such that biτk → b∗i , aiiτk → a∗ii as k →∞
uniformly on R. Without loss of generality, we may assume that U0

iτk
→ Ū0

i

as k → ∞ uniformly on R. It is easy to see that Ū0
i is a solution of equation

(4.11i) and thus U∗0i (.) ≡ Ū0
i (.). This implies that sup

t∈R
U∗0i (t) = sup

t∈R
U0
i (t).

Similarly, sup
t∈R

V ∗0j (t) = sup
t∈R

V 0
j (t), inf

t∈R
u∗0i (t) = inf

t∈R
u0
i (t), inf

t∈R
v∗0j (t) = inf

t∈R
v0
j (t).

Clearly that sup
(t,u,v)∈R×S

|F ∗k (t, u, v)| = sup
(t,u,v)∈R×S

|Fk(t, u, v)| for any compact

set S ⊂ Rn+m. Let

δ = inf{u0
i (t), v

0
j (t) : i = 1, . . . , n, j = 1, . . . ,m, t ∈ R},

∆ = sup{U0
i (t), V 0

j (t) : i = 1, . . . , n, j = 1, . . . ,m, t ∈ R},

L = max
k=1,...,n+m

{
sup

(t,u,v)∈R×[δ,∆]n+m

|F ∗k (t, u, v)|
}
.

By the same argument as given in the proof of Theorem 3.1, we know that
system (4.10) has at least one solution (ū(t), v̄(t)) in M∗1 where

M∗1 =
{

(u(.), v(.)) : (u∗0(t), v∗0(t)) 6 (u(t), v(t)) 6 (U∗0(t), V ∗0(t)),

|ui(t)− ui(t̄)| 6 L|t− t̄|, i = 1, . . . , n,

|vj(t)− vj(t̄)| 6 L|t− t̄|, j = 1, . . . ,m, t, t̄ ∈ R
}
.

It is easy to see that system (4.10) satisfies all conditions in Theorem 4.2.
Thus, for each F ∗ ∈ H(F ), system (4.10) has a unique solution (ū(t), v̄(t)) with
(ū(t), v̄(t)) ∈ [δ,∆]n+m for all t ∈ R. Since δ and ∆ do not depend on the choice
of F ∗ ∈ H(F ), from Lemma 2.6 and Theorem 4.2 it follows that there exists
a unique globally attractive almost periodic solution (u∗(.), v∗(.)) ∈ Bn+m

+ of
system (4.1). Moreover, the module of (u∗(t), v∗(t)) is contained in that of
F (t, u, v). If F is Θ-periodic in t, then (u∗(.), v∗(.)) and (u∗Θ(.), v∗Θ(.)) are two
solutions in Bn+m

+ of (4.1). By the uniqueness, (u∗(.), v∗(.)) = (u∗Θ(.), v∗Θ(.)).
The theorem is proved.

Remark. In [7], the authors considered system (4.1) with bi(t), −rj(t),
aik(t) (i 6= k), ejl(t) (j 6= l), cil(t) and djk(t) nonnegative almost periodic;
aii(t) and ejj(t) are almost periodic and bounded from above and from below

by positive constants. If f : R → R is almost periodic, we set fh = inf
t∈R

f(t)

and fH = sup
t∈R

f(t). Moreover, we set

pi =
bHi
ahii
, qj =

1

ehjj

( n∑
k=1

dHjkpk+rHj

)
, αi =

1

aHii

(
bhi −

n∑
k=1,k 6=i

aHikpk−
m∑
k=1

cHikqk

)
,
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βj =
1

eHjj

(
rhj +

n∑
k=1

dhjkαk −
m∑

k=1,k 6=j
cHjkqk

)
, i = 1, . . . , n, j = 1, . . . ,m.

In [7] it was shown that: If

(4.15) αi > 0, βj > 0, qj > 0

and (L7) hold, then system (4.1) has a unique globally attractive almost periodic
solution (u∗(.), v∗(.)) ∈ Bn+m

+ and its module is contained in that of F (t, u, v),
where F (t, u, v) is the right hand side of (4.1).

It is easy to see that sup
t∈R

U0
i (t) 6 pi (i = 1, . . . , n) and sup

t∈R
V 0
j (t) 6 qj (j =

1, . . . ,m). Thus condition (4.15) implies conditions (4.6), (4.7), (4.8) and (4.9).
The following example shows that Theorem 4.3 generalizes and improves the
above result in [7].

Example. Consider the following system

(4.16)
u̇ = u[(0.5−0.5(cos t+ cos

√
2t))−(1.1−0.5(cos t+ cos

√
2t))u−0.04v],

v̇ = v[sin t+ sin
√

3t+u−v].

By Lemma 2.7, the equation u̇ = u[0.5−0.5(cos t+cos
√

2t)− (1.1−0.5(cos t+
cos
√

2t))u] has a unique almost periodic solution U0(.) ∈ B+. It is easy to see
that

sup
t∈R

U0(t) 6 sup
t∈R

0.5− 0.5(cos t+ cos
√

2t)

1.1− 0.5(cos t+ cos
√

2t)
6

1.5

2.1
.

By Lemma 2.7, the equation v̇ = v[sin t+sin
√

3t+U0(t)−v] has a unique almost

periodic solution V 0(.) ∈ B+. Since lim
T→+∞

1

T

T∫
0

V 0(t)dt = lim
T→+∞

1

T

T∫
0

[sin t +

sin
√

3t + U0(t)]dt 6
1.5

2.1
, we have lim

T→+∞

1

T

T∫
0

[0.5 − 0.5(cos t + cos
√

2t) −

0.04V 0(t)]dt > 0. It follows that the equation

u̇ = u[(0.5− 0.5(cos t+ cos
√

2t))− 0.04V 0(t)− (1.1− 0.5(cos t+ cos
√

2t))u]

has a unique almost periodic solution u0(.) ∈ B+. Now, it is easy to verify
that system (4.1) satisfies all conditions (4.6)–(4.9). Moreover, condition (L7)
holds for s = 0.5, β = 0.04. Therefore, by Theorem 4.3, system (4.16) has a
unique globally attractive almost periodic solution

(
u∗(.), v∗(.)

)
∈ B2

+, whereas
system (4.16) does not satisfy (4.15).
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