
JERZY RASZKA AND LECH JAMROŻ∗

MAX-PLUS LINEAR SYSTEM IN CONTROL OF DATA
PROCESSING

LINIOWY SYSTEM MAX-PLUS W STEROWANIU
PROCESAMI PRZETWARZANIA DANYCH

Abs t r a c t
The increasing complexity of information processing in distributed computer systems and micro-
processors requires the use of time-saving devices and extended capacities of transmission channels.
Processes in computers systems need effective processing time. This article describes an application
of the theory of the Max Plus Linear System (MPLS) to controlling digital information processing
and transmission time in information systems. System processes are described by an MPLS state
equation and an MPLS output equation. The MPLS model makes use of formal mathematical
methods of max-plus algebra which include maximization and addition operations in the domain
of non-negative real numbers with the addition of minus infinity. The input data and the structure
of the processes under consideration are represented by the Timed Event Graph (TEG) formal-
ism constituting a special case of Timed Petri Nets. The suggested MPLS methods are useful for
investigating selected properties of network models. They may be applied, among others, to eval-
uate performance criteria, cycle time, predictive control etc. This article presents the theoretical
considerations used to determine the input signals controlling discrete processes, which are then
illustrated with examples of numerical computations.

Keywords: max-plus algebra, Petri nets, data processing, discrete processes

S t r e s z c z e n i e

Zwiększająca się złożoność procesów przetwarzania informacji w rozproszonych systemach kompute-
rowych i mikroprocesorowych wymaga oszczędnego wykorzystania czasu pracy urządzeń i zwiększo-
nej pojemności kanałów transmisyjnych. Procesy w systemach komputerowych potrzebują efektyw-
nego czasu przetwarzania W niniejszym opracowaniu przedstawiono zastosowanie teorii max-plus
liniowego systemu (MPLS) w sterowaniu czasem przetwarzania informacji i czasem transmisji infor-
macji cyfrowej w systemach informatycznych. System procesów opisany jest w przestrzeni MPLS
równaniem stanu i równaniem wyjścia. Model MPLS jest oparty na formalnych matematycznych me-
todach max plus algebry, które są wyposażone w operacje maksymalizacji i dodawania w dziedzinie
nieujemnych liczb rzeczywistych rozszerzonych o minus nieskończoność. Dane wejściowe i struktura
rozważanych procesów są określone przez formalizm czasowych sieci zdarzeń jako szczególnego przy-
padku czasowych sieci Petri’ego. Zaproponowane metody MPLS są użyteczne w badania wybranych
właściwości sieci. Między innymi mogą być one zastosowane do oceny wydajności, czasu cyklu, ste-
rowania predykcyjnego, itp. W artykule zastosowano teoretyczne rozważania określające wejściowe
sygnały sterujące procesem dyskretnym oraz przedstawiono przykładowy wyniki z numerycznych
obliczeń.

Słowa kluczowe: max-plus algebra, sieć Petri’ego, przetwarzanie danych, procesy dyskretne

∗Institute of Computer Science, Cracow University of Technology; jraszka@pk.edu.pl, ljam-
roz@pk.edu.pl

114
1. Introduction

Technological advances in the field of computer information processing require the
use of more effective methods to analyze and model these processes. The Internet
evolved from a simple store-and-send network into a more complex communications
infrastructure. The security and flexibility of ICT connections require extra processing
(e.g. filtering, encryption and prediction) as well as resources, all of which delay
signal data transmission. Furthermore, the amount of information in distributed
microprocessors and computer systems is growing rapidly (as exemplified by weather
information systems or communication networks). The time of both digital information
processing and its transmission is increasing (computer networks might soon reach
out into the interplanetary space). Consequently, processes in computer systems
require effective time control. Measurements of event occurrence times are generally
not as susceptible to noise as those of continuous signals, namely variables such as
the temperature, speed, pressure, etc. The suggested methods are used to control
and minimize the delay of output results compared to selected values by varying the
starts of processing tasks and moments of data entry at different points of the studied
system.

Discrete systems, and particularly discrete-event dynamic systems, often appear in
the context of parallel computing, manufacturing [6] or project management systems,
railway [5] or telecommunication networks etc. Recent years have seen a quantitative
growth of research on discrete systems that can be modelled as max-plus linear systems.
Most of the earlier literature concerning this class of systems discussed modelling,
performance and properties analysis rather than control [1, 6] and so did many other
authors e.g. J. Bernd Heidergott, Geert Jan Olsder, Didier Dubois, Jean-Pierre
Quadrat and Jacob van der Woude. However, articles have recently been published on
the control of max plus systems. The authors in [7] designed a feedback controller
to guarantee that the system evolves without violating time restrictions . In [10],
authors describe a bus network as a non-stationary linear state model and determine
eigenvalues as well as eigenvectors used to evaluate the cycle time. Most of existing
publications about controlling general discrete systems are presented by B. De Schutter
[11].

The work reported in this paper is but a part of a more general study aimed
at evaluating and controlling computation on multiprocessor platforms, using some
classical analysis and control methods from systems theory utilizing (max, +) algebra.
Mikel Cordovilla [12] has worked on the real-time execution of dependent periodic
task sets on multiprocessor platforms and I. Elmahi [4] has used max-plus algebra and
Petri Nets for supply chain logistics.

Petri nets (PN) [8, 14] are very popular formal mathematical methods of analyzing
and representing parallel and distributed computing in concurrent systems, and they
draw much attention to modelling and verifying these types of systems. P systems, also
referred to as membrane systems [9], are a class of parallel and distributed computing

115
models [6]. The interest in linking P systems with the PN computation model has
produced several important results in simulation and decidability issues. Some efforts
have been made to simulate P systems with Petri nets and thus to verify many useful
behavioral properties such as reachability, boundedness, liveness, terminating, etc.

With regard to manufacturing or chemical engineering processes, their behavior
can often be adequately represented by a discrete event model accounting for the
usually discrete sensor and the actual equipment for these processes. In addition, the
behavior of these processes is often adequately described by a sequence of transitions
between discrete process states. This contribution focuses on a particular class of
such discrete event systems in which computational processes are synchronized and
controlled. This system class has attracted significant interest in recent years because
sequences of event times for such processes can be described by equations that are
linear in one specific algebra, namely maxplus algebra [1]. The resulting equations are
structurally equivalent to system descriptions from conventional control engineering
such as transfer functions or state space models.

Hence, a system theory for these max–plus linear systems has been developed,
and various concepts known well from control engineering have been adapted to this
system class in the control design and diagnosis.

Timed Event Graphs (TEG’s) are a subclass of timed Petri nets which can be
used for modelling Discrete Event Dynamic Systems (DEDS) in which synchronization
phenomena occur, such as manufacturing, multiprocessor and transportation systems
in particular.

In this paper, we have introduced a deterministic Petri net model of a computational
system that can be considered to be a discrete event system. Moreover, as such
DEDS can be easily modelled with a subclass of Petri nets for evaluation purposes,
we subsequently suggest a TEG approach to the model, analyze and control the
computational process from this TEG model, and formulate a mathematical model
based on max-plus algebra. In this algebra, the behavior of the DEDS can be easily
described by a linear system. In the second part, we introduce a computational process
model. The third part presents an overview of the max algebra theory and an analysis
of a specific model. The last part contains simulation results.

2.Data Processing

Let us consider a data process that allows event-driven applications to take advantage
of multiprocessors by running the code for event handlers in parallel. To achieve
high performance, servers must overlap computation with the I/O. Programs typically
achieve this overlap by using threads or events. Threaded programs usually process
every request in a separate thread; while one thread block is waiting for the I/O,
another thread can run. Event-based programs are structured as a collection of call-back
functions which are called by the main loop when I/O events occur. Threads provide
an intuitive programming model but require coordinating the access of different threads

116

Fig. 1: The structure of the process.

to the shared state, even on a uniprocessor. Event-based programs execute call-backs
sequentially so the programmer need not worry about concurrency control; however,
event-based programs have so far been unable to make good use of multiprocessors.
Much of the effort required to make existing event-driven programs take advantage of
multiprocessors is in specifying which events can be handled in parallel.

This paper exemplifies the simple problem of designing the control of a system in
which the cost is chosen so that it provides a trade-off between minimizing the delays
of the end time of computational process operations (the real time to complete all the
tasks in a cyclic computational process, times of final results of one cycle) and the
periodicity of the desired output (the time desired or needed) to complete the process

Simple data processing consists of several tasks linked by the waiting for I/O data
(Fig. 1). To illustrate our approach, let us consider a process that consists of some
tasks (jobs): Ji which runs on microprocessors: µPi for i=1..n. Each of these tasks is
executed on a dedicated microprocessor. In this process, the digital information flows
as input/output processing data and a control signal. Outer input data is processed as
the first task on the µP1 and its output data has to be saved to memory while it waits
to be processed. The other microprocessors operate in the same way, but their input
data simultaneously constitutes the output result from the previous microprocessor
and may need extra outer data.

The aim of this modelling exercise is to evaluate the command of the process
according to pre-established criteria. For instance, to ensure continuous computation,
we have to input data at a certain specified time and have enough memory to save
input, output and temporary data. A good schedule will keep the costs to a minimum
and optimize the size of the memory required.

117
3.Net Representation

Petri nets, – graph-oriented formalism – facilitate modelling and analyzing systems
which feature such properties as concurrency and synchronization. The Petri net
model of a dynamical system consists of two parts: the net structure and marking
with tokens. The net structure is a weighed-bipartite directed graph representing the
static part of the system. The tokens represent the distributed overall state of the
structure. This separation allows one to reason on a net based model on two levels –
structural and behavioral.

The net structure is built of two disjoint sets of objects - places and transitions -
which are connected by arcs. In a graphic representation, places are drawn as circles,
transitions are drawn as thin bars, and arcs as arrows. Places may contain tokens
which are drawn as dots. The vector representing the number of tokens in every place
is the state of the Petri net and is referred to as its marking. This marking can be
changed by the firing of the transitions. Petri nets do not include any notion of time
and are aimed at modelling only the logical behavior of systems. The introduction of
a timing specification is essential if we want to use this model class to consider the
performance problem.

More formally, timed Petri nets (TPN) are 5-tuples: TPN= (P,T,F,M0,τ), where
P=(p1, p2, ..., pn), |P|6=0; T=(t1, t2, ..., tm), |T|6=0 is a finite, disjoint set of suitable
places and transitions; M0: P→ N is the initial marking function which defines the
initial number of tokens for every place. (N={0,1,...}); τ : T→ R is the firing time
function; and

F ⊂ (PxT) ∪ (TxP) is the set of arcs.
Many different models of timed Petri nets are evolved from the fundamental

definition. Its include models in which the parameter of time is also assigned to the
places and edges ([15] and others). In this article, the type of DEDS is represented
graphically using a Timed Event Graph (TEG), is a class of timed Petri nets in which
all places have only one upstream and only one downstream transition and as also
mentioned, time delays. The model proposed in chapter 2 has the three microprocessors
and time parameters which are represented by τ in the basic definition of Petri nets.

Fig. 2 show the TEG in which time parameters have been moved to the places
and practically are described as ti, - mathematically in the next chapters that will be
expressed as ti. This net has three inputs u1, u2, and u3, and one output y. The firing
time units u1, u2, and u3 are the start times of jobs J1, J2, J3, respectively. Finally,
the end time of the process is represented by the firing time of transition y.

4.Max-Plus Linear System

In recent years, the concept of a max-plus linear system (MPLS) has been increasingly
frequently used in the literature [11]. It is based on a mathematical formalism, namely
max-plus algebra. The basic operations of max-plus algebra [1] are maximization and

118

Fig. 2: Timed Event Graphs - a process model.

addition, which will be represented, respectively, by ⊕ and ⊗:x⊕ y = max(x, y) and
x⊗ y = x+ y for

x, y ∈ Rε , Rε =def R ∪ {−∞}

The reason for using these symbols is that there is a remarkable analogy between
⊕ and conventional addition, and between ⊗ and conventional multiplication: many
concepts and properties from linear algebra (such as the Cayley-Hamilton theorem,
eigenvectors and eigenvalues, Cramer’s rule,...) can be translated to max-plus algebra
by replacing + with ⊕ and × with ⊗. Hence we also call ⊕ the max-plus algebraic
addition, and ⊗ the max-plus algebraic multiplication. Note, however, that a major
difference between conventional algebra and max-plus algebra is that, in general, there
are no inverse elements with respect to ⊕ in Rε. The zero element for ⊕ is ε =def −∞
and we have a⊕ ε = a = ε+ a for all a ∈ Rε. The structure (Rε,⊕,⊗) is referred to
as max-plus algebra.

Let r ∈ R. The rth max-plus algebraic power of x ∈ R is denoted by x⊗rand
corresponds to rx in conventional algebra. If r ∈ R, then x⊗0 = 0 and the inverse
element of x w.r.t.⊗ is x⊗−1 = −x. There is no inverse element for ε since ε is
absorbing for ⊗. If r > 0, then ε⊗r = ε, and if r < 0, then ε⊗r is not defined. In this
paper, we have ε⊗0 = 0 by definition.

The rules for the order of evaluation of max-plus algebraic operators correspond
to those of conventional algebra. So the max-plus algebraic power has the highest
priority, and max-plus algebraic multiplication has a higher priority than max-plus
algebraic addition.

The basic max-plus algebraic operations are extended to matrices as follows. If
A,B ∈ Rm×nε and C ∈ Rm× pε , then:

119
(A⊕B)ij = a ij ⊕ b ij = max(a ij , b ij)

(A⊗C)ij =
n
⊕
k=1

a ik ⊗ c kj = max
k=1...n

(a ik ⊗ c ki)

for all i, j. Note the analogy with the definitions of the matrix sum and the product
in conventional linear algebra.

The matrix εm×n is the m×n max-plus algebraic zero matrix: (εm×n)i,j = ε for
all i, j; and the matrix En is the n×n max-plus algebraic identity matrix: (En)i i = 0
for all i and E (En)i j = ε i, j with i 6= j. If the size of the max-plus algebraic
identity matrix or the max-plus algebraic zero matrix is not specified, it should be
clear from the context. The max-plus algebraic matrix power of A ∈ Rn×nε is defined
as follows: A⊗0 = En and A⊗k = A⊗A⊗(k−1)for k = 1,2, . . .

Discrete event systems with synchronization only and no concurrency can be
modeled by a max-plus algebraic model. The state equation of a max-plus linear
system has the following form [1]:

x(k) = A⊗ x(k − 1) ⊕ B⊗ u(k) (1)
y(k) = C⊗ x(k) (2)

with A ∈ Rn×nε , B ∈ Rn×mε , C ∈ Rl×nε and
x ∈ Rmε −represents the state vector with the initial value x(0) = x0,
u ∈ Rnε −the input vector,
y ∈ Rlε −the output vector,

where
m - the number of inputs,
l−the number of outputs.

5. Process model

5.1. Investigation

The purpose of this study is to show that the process satisfying the above assumptions
can be modelled in max-plus algebra to determine the input vector u(k) for known
values of y(k) and to evaluate the error between the actual and the desired output.

Let u(k) = [ul, u2, u3]T be the input vector, x(k) = [xl , x2 , x3]T the state
vector and y(k) the output vector coinciding with the model output y(k). For each
transition, xi and ui are associated with the indicators xi(k) and ui(k) respectively,
which correspond to the steps of the kth firing of transition xi (resp. ui) and y(k) is
obtained by analogy. The state system in the max plus algebra is as follows:

For example, the kth firing of transition x1(when J1 starts) must wait for t1 time
units until the kth input data u1 for task J1 is ready and the kth input data u2 is

120
x1 (k) = t1 ⊗ u1 (k) ⊕ u2 (k) ⊕ t22 ⊗ x2 (k − 1) ⊕ t1 ⊗ x1 (k − 1)
x2 (k) = t21 ⊗ x1 (k)
x3 (k) = x2 (k) ⊕ u3 (k) ⊕ y (k − 1)

provided. Thus, the linear equation of evolution inRε of this discrete event dynamic
system is as follows:

x(k) = A0 ⊗ x(k) ⊕ A1 ⊗ x(k − 1) ⊕ B0 ⊗ u(k) ⊕ D0 ⊗ y(k − 1) (3)

where

A0=

 ε ε ε
t21 ε ε
ε e ε

 , A1=

 t1 t22 ε
ε ε ε
ε ε ε

 , B0=

 t1 e ε
ε ε ε
ε ε e

 , D0=

 ε
ε
e

 .
The solution of (3) is

x(k) = A∗0 ⊗ (A1 ⊗ x(k − 1) ⊕ B0 ⊗ u(k) ⊕ D0 ⊗ y(k − 1))

where

A∗0= E⊕A⊕0 A2
0 ⊕A3

0...

A∗0 =

 e ε ε
t21 e ε
t21 e e

 , A = A∗0 ⊗A1 =

 ε t22 ε
ε t22 ⊗ t21 ε
ε t22 ⊗ t21 ε

 .

B = A∗0 ⊗B0 =

 t1 e ε
t1 ⊗ t21 t21 ε
t1 ⊗ t21 t21 e

 , D = A∗0 ⊗D0 =

 ε
ε
e

 .
Then, the model turns into:

x(k) = A⊗ x(k − 1) ⊕ B⊗ u(k) ⊕ D⊗ y(k − 1)) (4)

Recurrence gives us the expression:

x(k) = Ak−1 ⊗ x(1) ⊕
k∑
i=2

Ak−i ⊗B⊗ u(i) ⊕
k−1∑
i=3

Ak−i−1 ⊗D⊗ y(i) (5)

121
To determine the command of the process, first we have to define the whole order-l

model which describes its global behavior:
x(k) = A⊗ x(k − 1) ⊕ B⊗ u(k) ⊕D⊗ y(k − 1))
y(k) = C⊗ x(k)

u(1) =
[
u1(1) u2(1) u3(1)

]T
x(1) =

[
x1(1) x2(1) x3(1)

]T (6)

Where C =
[
ε ε t3

]
, u(1) and x(1) are the initial conditions that we are going

to determine below.

5.2. Initial conditions

To comply with the previous assumptions, we determine the initial values of u(1) and
x(1) according to the end process y(1).

y (1) = t1 ⊗ t21 ⊗ t3 ⊗ u1 (1) = t21 ⊗ t3 ⊗ u2 (1) = t3 ⊗ u3 (1)

Then, the initial control is: u1(1)
u2(1)
u3(1)

 =

 y(1)φ (t1 ⊗ t21 ⊗ t3)
y(1)φ (t21 ⊗ t3)
y(1)φ t3

 (7)

where “φ” represents the conventional subtraction.
Consequently, the initial value of the state vector is x1(1)

x2(1)
x3(1)

 =

 t1 ⊗ u1(1)
t21 ⊗ u2(1)
u3(1)

 . (8)

These two initial vectors mean that if task J1 begins e.g. at t = 0, t1 time units
later the data for task J2 (u2) must be prepared and that task can begin. This ensures
a good start-up without the signal of the model being delayed.

5.3. Procedure

As indicated before, the network operates under a schedule defined for the final result;
this schedule is used to find the suitable inputs of the model. We formulate the model
output more explicitly as:

122

y(k) = C⊗Ak−1⊗ x(1) ⊕
k∑
i=2

C⊗Ak−i⊗B⊗u(i) ⊕
k−1∑
i=3

C⊗Ak−i−1⊗D⊗y(i) (9)

or

y(k) > max {C ⊗Ak−1 ⊗ x(1) ,
k∑
i=2

C⊗Ak−i ⊗ B ⊗ u(i),
k−1∑
i=3

C⊗Ak−i−1 ⊗

D⊗ y(i) }

which is equivalent to:

y(k) > C⊗Ak−1 ⊗ x(1) (10)

y(k) >
k∑
i=2

C⊗Ak−i ⊗B⊗ u(i) (11)

y(k) >
k−1∑
i=3

C⊗Ak−i−1 ⊗D⊗ y(i) (12)

We are more interested in the second equation (11) which is transformed into the
form below:

y(k) =
k∑
i=2

C⊗Ak−1 ⊗B⊗ u(i) (13)

It is now straightforward that from (13), we can formulate the command u(k) for
the process if the values of the output y(k) are known. For all of the rest y(k), there
will be the need to find the final result.

For k= 2, 3, 4, . . .

y(2) = C⊗B⊗ u(2)
y(3) = C⊗A1 ⊗B⊗ u(2) ⊕ C⊗B⊗ u(3) (14)
y(4) = C⊗A2 ⊗B⊗ u(2) ⊕ C⊗A1 ⊗B⊗ u(3) ⊕ C⊗B⊗ u(4)
. . .

Since our aim is to compute u(k) for the specified y(k), we have to solve the
following equation:

y(k) = C⊗B⊗ u(k) (15)

For example, to calculate u(2) which is the solution of y(2) > C⊗B⊗ u(2), we
solve its equation form (14) and keep its smallest solution to be sure that it is also

123
verified in the equation. Note that we proceed by simplifying terms such as the ones
in the expression of y(k). Indeed, these terms constitute the first condition for the
desired output y(k). More explicitly, if we consider that all expressions y(k) are equal
to C⊗ B⊗ u(k) , then :

C⊗A2 ⊗B⊗ u(2) ⊕ ... ⊕ C⊗A1 ⊗B⊗ u(k − 1) 6 C⊗B⊗ u(k)

Which means that we must have

y (k) > t1 ⊗ t21 ⊗ t3 ⊗ u1 (k − 1) ⊕ t21 ⊗ t3 ⊗ u2 (k − 1) ⊕ t3 ⊗ u3 (k − 1)

5.4. Cyclic processing

We assume that the output of the process, i.e. the final results, will be produced at
regular intervals TC . We shall later see how the network reacts depending on various
values of TC .

Let y(k) > T kC ⊗ y(0), where TC is the periodicity of the desired output. We apply
this condition in our computations in the following form:

TC > max(t1 + t21 + t3 +u1 (k − 1) , t21 + t3 +u2 (k − 1) , t3 +u3 (k − 1))/k

We solve equation (13) and determine the control vector as follows:

uj(k) = y(k)φ (C⊗B)i,j ; k = 2, 3, ...; i = 1 and j = 1, 2, 3 .

Where:

C⊗B =
[
ε ε t3

]
⊗

 t1 e ε
t1 ⊗ t21 t21 ε
t1 ⊗ t21 t21 e

 =
[
t1 ⊗ t21 ⊗ t3 t21 ⊗ t3 t3

]

More explicitly, for every k > 1, the general solutions are:

u1(k) = y(k)φ (C⊗B)1,1

u2(k) = y(k)φ (C⊗B)1,2

u3(k) = y(k)φ (C⊗B)1,3

(16)

These equations determine appropriate control of the modelled process. On the
other hand, (10) and (12) contain two constraints of the desired outputs of the

124
system. At the same time, TC is periodic in relation to these outputs, y(k) >
T k−1
C ⊗ y(1) = T kC . On the basis of (10) and this assumption, we conclude that:

y (k) = T kC > C⊗Ak−1 ⊗ x(1) or T kC > t3 ⊗ (t1 ⊗ t21)k−1 ⊗ x2(1)

In practice, TC > (t3 + (t1 + t21)(k − 1) + x2(1))/k means that the periodicity
must be superior at a certain value in order to have good control.

The subsequent constraint of TC results from (14):

y(k) = T kC >
k−1∑
i=3

C⊗Ak−i−1 ⊗D⊗ y(i) , this constraint is continuously verified

since the product C⊗Ak−i−1 ⊗D is null.
To conclude this section, we have introduced the following steps:
1- Determine state equations in max-plus algebra as (6).
2- Calculate the global recurrence equation of the linear evolution of the system.
3- Determine initial conditions (7,8).
4- Calculate constraints of the desired model output.
5- Calculate the control vector (16).

6. Simulation and Results

In order to simulate the process model (Fig. 2) for t1 = 3, t21 = 5, t22= 5 and
t3= 2, we apply a fixed interval TC to the desired outputs, which are: y′ (k) =
y′ (k − 1)⊗ TC ; k = 2, 3, Using (16), we can compute vectors u(k) and consider
the initial values. Figures 3 - 4 show the time evolution of the interpolated values of
activity counts - particularly the desired y′(t) and real y(t) outputs represented by
the signs H and N, respectively.

All example results are obtained for various values of TC . In the first examples,
the periodicity of computations equals 10 and 15 (Fig. 3 and Fig. 4, respectively).
The TC value is large enough to contain all tasks of the process and no error occurs
between the desired and actual outputs.

7. Conclusion

Engineers who build discrete event systems have to confront dynamic problems as
a matter of fact. In particular, even though dynamical systems are well understood
based on classical methods, they have had little mathematical support for this. This
article suggests and introduces a max-plus linear system: a methodology applied to
modeling and simulating discrete event processes. The control of process tasks in
a simple multi-processor computational system is considered as an example. This,
however, is only a small part of the studies carried out, which require additional testing
and even broader-ranging experience, especially in terms of practical applications.

125

Fig. 3: Activity count of: y’ H, y N, x1 � , x2 • for TC = 10.

Fig. 4: Activity count of: y’ H, y N, x1 � , x2 • for TC = 15.

126
Furthermore, there is a need to develop a way of controlling these processes and
the analyzed conditions for the periodicity of the required results. Further research
will include applying the system to larger models and improving the efficiency of the
optimization procedure. Future research will focus on design methods, synthesizing
process control with output and/or state feedback and using models for predictive and
adaptive control.

R e f e r e n c e s

[1] Bacceli F., Cohen G., Olsder G., Quadrat J., Synchronization and Linearity. An
Algebra for Discrete Event Systems, London, John Wiley & Sons Ltd, 1992.

[2] Balduzzi F., Giua Has., Menga G., First-order hybrid Petri net: In model for
optimisation and control, IEEE Trans. On Rob. And Aut. 1 6 (4), 2000 382—399.

[3] Cassandras Ch., Lafortune St., Introduction to Discrete Event Systems, Springer,
Kluwer Academic Publishers, 2008.

[4] Elmahi I., Grunder O., Elmoudni A., A max plus algebra approach for modeling
and control of lots delivery. Industrial Technology, IEEE ICIT ’04 Vol. 2, 8-10
Dec. 2004, 926—931.

[5] Goverde Rob M.P., Railway timetable stability analysis using max-plus system
theory, Elsevier, Transportation Research Part B 41, 2007, p. 179–201

[6] Jamroż L., Raszka J., Simulation method for the performance evaluation of system
of discrete cyclic processes. 16-th IASTED International Conference on Modelling,
Identification and Control, Innsbruck, Austria, 17-19.02.1997, 190—193

[7] Maia C.A., Andrade C.R., Hardouin L., On the control of max-plus linear system
subject to state restriction, Automatica, Volume 47, Issue 5, May 2011, 988—992.

[8] Murata T., Petri nets: properties, analysis and applications. Proceedings of the
IEEE, vol. 77, no. 4, p.541-580, 1989.

[9] Guţuleac E., Balmuş I. et alt., Descriptive Timed Membrane Petri Nets for
Modelling of Parallel Computing, International Journal of Computers, Communi-
cations & Control, Vol. I No. 3, 2006, 33—39.

[10] Nait-Sidi-Moh A., Manier M.-A., El Moudni A., Spectral analysis for performance
evaluation in a bus network, European Journal of Operational Research Volume
193: Issue 1, 16 February 2009, 289—302.

[11] De Schutter B., van den Boom T., Model predictive control for max-plus linear
discrete event systems. Automatica 37(7), July 2001, 1049—1056.

127
[12] Cordovilla M., Boniol F., et alt., Off-line Optimal Multiprocessor Scheduling

of Dependent Periodic Tasks, Journées FAC’2011, Formalisation des Activités
Concurrentes, 6 et 7 avril 2011- LAAS – CNRS, 2011.

[13] Iwaniak M., Khadzhynov W., Usage of Petri nets for distributed transactions
modeling Studia Informatica vol. 33, no 105, Silesian University of Technology,
2012.

[14] Szpyrka M., Sieci Petriego w modelowaniu i analizie systemów współbieżnych,
ISBN 9789788304333, WNT Warszawa, 2008.

[15] Coolahan J.E.jr, Roussopoulos N., Timing Requirements for Time-Driven Systems
Using Augmented Petri Nets, IEEE Trans. on Software Eng. v. SE-9, no. 5, 1983,
603—616.

