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Abstract

The aim of this paper is to give two theorems on the existence and uniqueness of mild and
classical solutions of a nonlocal semilinear integro-differential evolution Cauchy problem for
the first order equation. The method of semigroups, the Banach fixed-point theorem and the
Bochenek theorem are applied to prove the existence and uniqueness of the solutions of the
considered problem.
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Streszczenie

W artykule udowodniono dwa twierdzenia o istnieniu i jednoznacznosci rozwiazan catkowych i
klasycznych nielokalnego semiliniowego calkowo-rézniczkowego ewolucyjnego zagadnienia Cau-
chy’ego dla réwnania rzedu pierwszego. W tym celu zastosowano metode pélgrup, twierdzenie
Banacha o punkcie stalym i twierdzenie Bochenka.
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1. Introduction

In this paper, we give two theorems on the existence and uniqueness of mild and
classical solutions of semilinear integro-differential evolution nonlocal Cauchy problem
for the first order equation. To achieve this, the method of semigroups, the Banach
fixed point theorem and the Bochenek theorem will be used.

Let E be a real Banach space with norm ||| and let A : E — E be a closed
densely defined linear operator. For the operator A, let D(A), p(A) and A* denote its
domain, resolvent set and adjoint, respectively.

For the Banach space E, C(E) denotes the set of closed linear operators from FE
into itself.

We will need the class G(M ,B) of operators A satisfying the conditions:

There exist constants M > 0 and B € R such that

(C1) A €C(E), D(A) = E and (8,+00) C p(—A),
(C2) [[(A+97F|| < M(& — B)~* for each € > Band k=1,2,...

It is known (see [4], p. 485 and [5], p. 20) that for A € G(M, ), there exists
exactly one strongly continuous semigroup 7'(¢t) : E — E for ¢t > 0 such that —A is
its infinitesimal generator and

|T(t)| < MePt for t > 0.

Throughout this paper, we shall use the notation:

J = [to,to+a], wherety>0anda>0,
A = {(t,s) : to<s<t<to+al,
M = sup{|T(®)], t € [0,a]}
and
X = C(J,E).

The Cauchy problem considered here is of the form:
t
W)+ Aut) = Ftu(ou0®) + [ iltsuls)ds +
to

to+a
+ / fa(t, s,u(s))ds, t € (to,to + al, (1)

to

u(to) +g(u) = wuo, (2)

where f, f; (i =1,2), g and b are given functions satisfying some assumptions and
ug € FE.

The results obtained in the paper are a continuation of those given in [3] and they
are based on those from [1] — [6].
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2. The Bochenek theorem

The results of this section were obtained by J. Bochenek (see [2]).
Let us consider the Cauchy problem
u'(t) + Au(t) = k(t), t € T\ {to}, (3)
u(ty) = . (4)
A function u : J — E is said to be a classical solution of problem (3)—(4) if
(i) w is continuous and continuously differentiable on J \ {to},
(ii) o'(t) + Au(t) = k(t) forte T\ {to},
(i) wu(to) = .

Assumption (Z). The adjoint operator A* is densely defined in E*, i.e. D(A*) =
E*.

Theorem 2.1. Let conditions (C1), (C2) and Assumption (Z) be satisfied. More-
over, let k : J — E be Lipshitz continuous on J and x € D(A).
Then u given by the formula

u(t) =Tt —to)xr + /t T(t—s)k(s)ds, te J (5)

to

is the unique classical solution of the Cauchy problem (3)—(4).
3. Theorem about a mild solution

A function v : J — E satisfying the integral equation

u(t) = Tt tohuo ~ Tt~ talg(u) + [ Tt~ ) (£(s,u(s)),u(b(s)) +

to
S

to+a
+ Fi(s, Tu(r))dr + / fz(s,T,u(T))dT)ds, teJ

t() tO

is said to be a mild solution of the integrodifferential evolution nonlocal Cauchy
problem (1)—(2).

Arguing analogously as in [3] we can obtain, by the Banach fixed point theorem,
the following theorem:

Theorem 3.1. Assume that:

(i) the operator A : E — E satisfies conditions (C1) and (Cs),
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(i) f: J x E* = E is continuous with respect to the first variable in J, f; : A x
E — E (i =1,2) are continuous with respect to the variables in A, g : X — E,
b: J — J are continuous and there exist positive constants L, L; (i = 1,2)
and K such that

2
Hf(svzlaZQ) - f(87§1,22)” < LZ H21 - 274“
=1

forse J, zi,Z, € E (i=1,2),
Ifi(s,7,2) = fils, 7, 2)| < L |z = 2| (1 =1,2)

for (s,7) €A, z,Z€FE
and
lg(w) —g(w)|| < K |lw —wllx  for w,w € X.

(iii) M[a(2L + aLy + aLs) + K] < 1.
(IV) ug € F.

Then the integrodifferential evolution nonlocal Cauchy problem (1)—(2) has a unique
mild solution.

4. Theorem about a classical solution

A function v : J — F is said to be a classical solution of the nonlocal Cauchy
problem (1)—(2) on J if :

(1) u is continuous on J and continuously differentiable on J \ {¢o},
(i1) ' (t) + Au(t) = f(t,u(t), u(b(t)) + [ fit,s,u(s))ds+
+f;0+a fo(t,s,u(s))ds forte J\ {to},
(idi) u(to) + g(u) = uo.
Theorem 4.1. Assume that:

(i) the operator A : E — E satisfies conditions (C1) and (Cs3), and Assumption
(2).

() f: IXxE?—E,g: X E, forany (s,2) € J x E and i = 1,2 functions
fi(s,,2) « T 271w f(s,7,2) € E are continuous, b : J — J is continuous on
J and there exist positive constants C, C; (i =1,2) and K such that:

2
(s 21,22) = £(5. 21, 22)] < C(Js =3+ Y I — &)
i=1
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fors,§e€J, 2,2, € E (i=1,2),

I1fi(s, 7, 2) = fi(3, 7, 2)I| < Cills — 5[ + ]2 = Z[])

for (s,7), (8,7) €A, z,Z€ FE
and
lg(w) = g(@)]| < K |lw — @] for w,w € X.

(iii) M(a(QC +aCy + aCy) + K) <1

Then the integrodifferential evolution nonlocal Cauchy problem (1)—(2) has a unique
mild solution (which is denoted by) u. Moreover, if uy € D(A), g(u) € D(A) and if
there exists a positive constant H such that

lu(b(s)) — u(b(3))| < Hllu(s) —u(S)|  fors,se€T
then u is the unique classical solution of the problem (1)—(2).

Proof. Since all the assumptions of Theorem 3.1 are satisfied, it is easy to see that
problem (1)—(2) possesses a unique mild solution which according to the last assumption
is denoted by w.

Now we shall show that w is the classical solution of the problem (1)—(2). To this
end, observe that as in [3| u is Lipschitz continuous on J.

The Lipschitz continuity of © on J combined with the Lipschitz continuity of f on
J x E? and f; (i = 1,2) with respect to the first variables imply that the function

t to+a
Tt~ f(t,u(t),u(b(t))) —|—/t fl(t,s,u(s))ds+/t fa(t, s,u(s))ds

is Lipschitz continuous on J. This property of f together with the assumptions of
Theorem 4.1 imply, by Theorem 2.1 and Theorem 3.1, that the linear Cauchy problem:

v'(t) + Av(t) f(tu),ub®))) +/t fi(t, s,u(s))ds +

to+a
+ / fa(t, s,u(s))ds, t € T\ {to},

vlte) = o — g(w)

has a unique classical solution v and it is given by

v(t) = T(t—to)up —T(t —to)g(u) + / T(t —s) (f(s,u(s),u(b(s))) +

to

+ /ts fi(s,mu(r))dr + /t0+a fg(s,T,u(T))dT)ds =u(t), teJ.

to
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Consequently, u is the unique classical solution of the integrodifferential evolution
Cauchy problem (1)—(2) and, therefore, the proof of Theorem 4.1 is complete.
O
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