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NOTES ON NO-ARBITRAGE CRITERIA

BY PRZEMYSEAW RoLA

Abstract. We consider the closedness of the modified set of hedgeable
claims and new conditions for the absence of arbitrage connected with it
in the classical Dalang—Morton—Willinger Theorem.

1. Introduction and the model. For the standard discrete-time finite
horizon model of security market, the Dalang—Morton—Willinger Theorem as-
serts that there is no arbitrage if and only if the price process is a martingale
with respect to an equivalent probability measure. This remarkable result is
sometimes referred to as the (First) Fundamental Theorem of Asset Pricing
(FTAP). The theorem has been investigated in many works and additional
conditions have been proposed. Going further in this direction we consider
new conditions in which it is enough that the terminal profit of the portfolio is
a sum of certain characteristic functions. As we see in the example, this con-
dition is not equivalent to the absence of arbitrage. The main reason is that
the set of hedgeable claims considered by us might not be convex. In general,
if we want the equivalence it is essential to assume this convexity. Now we
introduce the model as it was done in [4].

Let (2, F, P) be a probability space equipped with a finite discrete-time
filtration F = (F;)L, such that Fr = F. Let S = (S¢)]_, be an d-dimensional
process adapted to F. Put

Rp:={¢(: €=H-Sp,H € P},

where P is the set of all predictable d-dimensional processes (i.e. H; is Fi_i-
measurable) and

T
H-Sp:=Y HAS,  AS;:=8 -5 1.
t=1
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H is very often called a (portfolio) strategy and H - S a value process. We
use notations LY(R?) for the set of d-dimensional (F-measurable) random vec-
tors and LO(R?, F;) for the set of d-dimensional random vectors which are Fj-
measurable. Furthermore, we denote by L°, L°(F;) random variables which
are F-measurable and F;-measurable, respectively.

Put Ar := Ry — L4 where L4 : {A4: A > 0,4 € F} and let A7 be the
closure of Ar in probability.

2. Main result. Now we formulate the main result of the paper.

THEOREM 1. Assume that Ar is convexr. Then the following conditions
are equivalent:

(RT - L?&-) N LEi)- B {0};

—~
54

)
(b)  (Rr—LY)NnLY ={0} and Ap = Ar;
(c) ArnLy = {0} and Ap = Arp;
(d) ArncLy={0}; 3 ~ .
(e)  there is a probability P ~ P with dP/dP € L*> such that S is a P-
martingale.

REMARK 1. To be precise, we need to know Ar to be a convex cone (i.e.
0 € Ap and for all A\, > 0 and =,y € Ap we have that A\x + puy € Ar). It
is obvious that Ay is always a cone but usually is not convex. Moreover, it
is clear that if A7 is convex then the conditions from the above theorem are
equivalent to some different ones (see e.g. [3] and [4]) due to conditions (a),
(e). Especially these conditions are equivalent to:

(f)  RrnLg={0}

(g) {nASi:ne L%F_1)}NL§ = {0} forallt <T;
where LY is the set of non-negative random variables (F-measurable). The
set Ry — LY can be interpreted as the set of hedgeable claims. Conditions (a)
and (f) are often called the no arbitrage (NA) property of the model whereas
condition (g) is the NA property for one-step model.

REMARK 2. The NA property for the class of all strategies (conditions
(a),(f)) is equivalent to the NA property in the narrower class of bounded
strategies H (see [3, Remark, p. 73]).

REMARK 3. Notice that if A7 is convex then ApRp — L(i and the implica-
tions (d) = (e), (e) = (a) follow from the Dalang—Morton—Willinger Theorem
(see e.g. [3L[4]).

PRrROOF. As A1 C Ry — L9r then it is enough to show that Ry — LS’r C Arp.
We will show that Rp — Li C Ar. Let v = (HSy —r) € Ry — LS)F, where
HSr € Rrandr € LS)F. Since r is a non-negative random variable we can write
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r = limr,, where r, are certain simple functions. Hence z = lim(H Sy — ry,),
where (HSt — ry,) € Ap due to the assumption that Ap is a convex cone and
finally x € ZT. As Rp — Lg_ - ZT then Rp — Lg_ - ZT.

Now we show that the above implications easily follow from the Dalang—
Morton-Willinger Theorem. Condition (d) is equivalent to

Rr — Lg_ NLy ={0}.

It implies the condition

(a2)  (Rr —LY) N Ly = {0}.

We prove that (a2) is equivalent to (a). Since £, C LY then it is enough to
show the implication (a2) = (a). Assume that (a2) holds and suppose that
there exists z € (Rp — L)) N LY. such that z # 0. Then z = HSy — h where
HSr € Rr and h € L9r. Moreover, there exists € > 0 such that P(z > ¢) > 0.
Define A := {z > ¢}. Since x —ely > 0 we get HSp —h— (z—ely) € RT—LO+
and the equality el4 = HS7 — h — (x — el 4) contradicts (a2). O

Now we present some lemmas which will be used in the proof of Theorem I}

LEMMA 1. Let X, be a sequence of random vectors taking values in R?
such that for almost all w € Q we have liminf || X,,(w)||g < oco. Then there is
a sequence of random vectors Y, taking values in R satisfying the following
conditions:

(1) Yy, converges pointwise to Y almost surely where Y is a random wvector

taking values in R?,
(2) Yn(w) is a convergent subsequence of Xy (w) for almost all w € ).

REMARK 4. The above claim can be formulated as follows: there exists
an increasing sequence of integer-valued random variables o, such that X,
converges a.s. The proof of this lemma can be found e.g. in 2| and [4]. For
the reader’s convenience we enclose it here.

PROOF. Define random variable X, := liminf || X,,]|4.
Let 0(0) := 0 and o(k) := inf{n > o(k — 1): ||| Xp|la — Xs| < 1}. For the
sequence X, : X, (n) (notice that X, is a well-defined random variable) we will
have sup,, HXan < 0o a. s. on §. In particular, X! := liminf X} < co. Let

5 1
71(0) := 0, (k) :=inf{n > m(k —1): | X} - X}| < E}, k>1.

In a similar way, working with the second component of the sequence Xn (n)
whose first component converges, we construct an increasing sequence 7o(k)
and so on. Finally, the sequence 7, := 740 ... 07 o o(n) has the claimed
property. U
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LEMMA 2. Letry, = A\1a, € L4 and suppose that r, — £ pointwise almost
surely. Then & € L.

PROOF. Notice that ¢ is a random variable as the limit of a convergent a.s.
sequence of measurable functions. If \,l4, converges pointwise to zero a.s.
then ¢ is equal to zero a.s. on 2 and the claim is proved. Suppose that there
exists a set of positive measure such that I4, /# 0 a.s. on it. Accordingly,
define the measurable set A := {w: {(w) # 0} and suppose that P(A) > 0. It
is enough to consider the situation on A, because ¢ is equal to zero on 2\ A.
By the definition of a convergence, for almost all w €

Ve > 03N(w)Vn > N(w): |Apla, (w) —EWw)| <e.
Moreover, for almost all w € A there exists N(w) such that for all n > N(w)

there holds I4,(w) = 1. Summing up, for almost all w € A the following
condition holds:

Ve >03N(w)Vn > N(w): |\ —&(w)] <e.
In particular, the sequence A, converges, so there exists a number A > 0 such

that A\ = lim \,,. Furthermore, for almost all w € A the equality £(w) = A
holds true. Thus, £ = Al4 a.s. on €. O

For t =1,...,T we define the following sets

T
Ri = {Z H,AS,|H, is F,—1 — measurable},
n=t

At = Rt = £+.

Lemma 3. If Ap N Ly = {0} then AyxnN Ly = {0} forallt =1,...,T.
Similarly, if (Rr — LY) N LY. = {0} then (Ry — LY) N LY. = {0} for all t =
1,....T.

PROOF. Suppose that T'> 1 and Ar N L4 = {0}. The case t = 1 is trivial:
fix any t = 2,...,T. To show that 4; N L, = {0} it is enough to prove that
A; C Ap. Suppose that £ € A;. We can assume that fzzzt H,AS, —1
where (H,)I_, is R%valued process which is predictable with respect to the
filtration F and I € £4. Let H, : 0 for n < ¢ and consider the process
(H)T_, € P. Thereis € = 3.0 H,AS, — 1) | H,AS, —1 € Ar. Using
analogous reasoning we prove the second implication. O

LEMMA 4. Let (HM), € P and r, € L.. We can assume that r, =
Anla,, where A, € F and A, > 0. Suppose that Ap N Ly = {0} and
Zthl HI'AS; — r, — ¢ a.s. on Q where ( is a random variable. Then

liminf r,(w) < oo for almost all w € Q. Moreover, if we assume that (Rp —
LY)N LY ={0} and ¢ ¢ Ry then liminf ), < oo.
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PROOF. Define A := {w: liminfr,(w) = oo} and suppose that P(A4) > 0.
There 1mmed1ately follows that A, — co. Dividing by A, we get the following
convergence Y. /\ LAS; — 14, — 0, where the process (Ij’f )L, € P. Using
the same procedure as in the proof of implication (a) = (b) of Theorem |1 1]
below (see also [3,4]) we can construct sequences (H")Z_, € P and i, which
converge a.s. on 2 and Zt:l H,AS;—1, — 0. Moreover, i, (w) is a convergent
subsequence of the sequence I, (w) for almost all w € 2. Hence i, = I

where fln € F. Denote the limits H := lim ﬁn and @ := lim 4, in the sense of
a.s. Notice that H € P and u € L. Hence, in particular, & = I ; for a certain

set A€ F and P(A) > 0 due to the fact that I; — 1as. on A. Therefore,

HSr = I as. on Q, which contradicts the condition A7 N £y = {0}.

Now we show that if (Ry—L9%)NLY = {0} and ¢ ¢ Ry then liminf \,, < co.
As we assumed Zthl HIAS;—r, — (. We know that liminf r, < co a.s. on 2.
Suppose that A, — oco. Hence liminf r,0 a.s. on 2. Using the procedure from
the proof of implication (a) = (b) in the Dalang-Morton-Willinger Theorem
(see [3,14]) we can construct sequences (H)., € P and 4, € LY which
converge a.s. on {2 and thl H,AS; — i, — C. (Notice that we use Lemma
in such a construction.) Moreover, 4, (w) is a convergent subsequence of the
sequence 7, (w) for almost all w € Q. Hence 4, — 0 a.s. on Q and by the
closedness of Ry we get ( € Rp which contradicts the assumption. O

REMARK 5. Notice that the set Rp is always closed irrespective of the ab-
sence of arbitrage (see e.g. [4]). If we are able to prove Lemma [4] without using
the assumption (Ry — L) N LY = {0} then only if Ay is convex, conditions
(a)-(e) in Theorem |1} are equivalent to A7 N L4 = {0}. It is because we use
the fact that liminf \,, < oo in the proof of the closedness of Ap.

LEMMA 5. Let r, = Apla, € Ly be a sequence such that A\, — X > 0.
Moreover, let X, be a sequence of random variables convergent almost surely
on Q such that for almost all w € Q the sequence X, (w) is a convergent sub-
sequence of the sequence ry(w). Define X := lim X,, where the convergence is
pointwise a.s. on 2. Then X € L.

PROOF. The case of A = 0 is trivial. For simplification assume that A > 0.
Define A := {w € Q: X(w) # 0}. Since X is a random variable (as the limit of
a sequence of random variables convergent pointwise a.s.), we obtain A € F.
Therefore, it suffices to consider the situation on A. We know that X, (w) is
the almost surely convergent subsequence of 7, (w). Thus, for almost allw € A
the following equalities hold:

X(w)= nh—>120 Xp(w) = lim ry, (w) = klggo Anla,, (W).

k—o0
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Since X # 0 a.s. on A, hence for almost all w € A there exists N(w) such that
for k > N(w) we have that I, (w)=1. Summing up and taking into consid-
eration the convergence of \,, the following equalities X (w) = limg_y00 An,, =
limy, 00 A, = A hold true for almost all w € A. It means that X € £,. O

Now we formulate a lemma which is similar to the well-known result due
to Kreps and Yan (see e.g. [3}[4]).

LEMMA 6. Let K 2 —L be a closed convex cone in L' such that KnNLy =
{0}. Then there is a probability P ~ P with dP/dP € L*> such that E{ <0
forall€ € K.

ProoOF. By the Hahn—Banach Separation Theorem for any x € L4, x # 0,
there is z, € L such that Fz,§ < Ez,x for all £ € K. Since K is a cone,
there follows that Fz,.& < 0 for all £ € K. Moreover, Ez,xz > 0 for £ = 0.
To show that z, > 0, define A : {z, < 0} and suppose that P(A) > 0.
Considering the sequence &, := —A\,I4 € K, where A\, — oo, we get Fz,&, —
0o, which contradicts the inequality Fz,&, < 0. Normalizing, we assume that
2z < 1. The Halmos—Savage Theorem asserts that the family of measures {2z, P}
contains a countable equivalent subfamily {z,,P,7 € N}. It means (see [1] for
more details) that for every E € F we have the following equivalence

(VzeP: zP(E)=0) & (Vz,P: 2, P(E)=0).

Put p := >.27%,, and ¥ := Itp—0y. Then Ez;z = 0 for all ¢ and, hence,
Ezy& =0 for all z € £,. Thus, & = 0 (otherwise we would have EzzZ > 0)
and the measure P := ¢pP with ¢ = 1 /Ep meets the requirements. Indeed, for
any & € K there is B¢ = E(cpf) = ¢>.2 " Ez,,€ < 0. O

REMARK 6. The proof of the Halmos—Savage Theorem can be found e.g.
in [1]. One can see that Lemma [0] easily follows from Kreps-Yan Theorem.
Indeed, we can show that if the assumptions of the above lemma are satisfied,
then the assumptions of Kreps—Yan Theorem are valid too. The inclusion
K D —LQL follows from the fact that K is a closed convex cone and that
every non-negative random variable is the limit of a sequence of non-negative
simple functions. Now we prove that K N L% = {0}. Suppose that there exists
re Kn Lg such that = # 0. Hence there exists ¢ > 0 such that P(z > ¢) > 0.
Define A := {x > ¢}. Since x—ely > 0 and K O —LY we have —(z—el4) € K.
Because K is a convex cone, then —(x — el4) + zel4 € K, which contradicts
KnL£.{0}.
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PRrROOF OF THE THEOREM 1.

(a) = (b) Consider the case T' =1 first. To simplify the notation define
K, := H and AS : AS;. We will respectively use the notation K* for the
i-th coordinate of the random vector K. Suppose that K,AS —r, — ( in
probability, where K,, € L°(R?, F), 7, € £, (we can assume that r, = A\, 4,
for some A, € F and A\, > 0) and ( is a random variable. By the Riesz
Theorem the sequence K,AS —r, contains a subsequence convergent to ¢ a.s.
Thus, perhaps confining ourselves to this subsequence, we can assume that
K,AS —r, — ¢ a.s. The closedness of A1 means that ( = KAS — r for some
K € L°(RY, Fy) and r € L. Therefore, it is enough to show that ¢ has the
above form. Assume first that liminf \,, < co (we consider opposite case at the
end of the proof). Hence, from the sequence \,, we can choose a convergent
subsequence (let \,, be such a subsequence, i.e. A,, — A > 0). In particular,
K, AS —r,, — ( pointwise a.s. on 2. For simplification we will use again
the same notation K,AS — r, — ( for this subsequence. We will consider
separately certain sets belonging to the o-algebra.

Consider the measurable set ©; := {w: liminf ||K,(w)|ls < oo}. By
Lemma [1} we can find a sequence L; € L°(RY Fy) which converges a.s. on
Oy and Li(w) is a convergent subsequence of the sequence K, (w) for almost
all w € Q. More precisely, by Lemma [I| there exists an increasing sequence
of integer-valued random variables 7 such that Li(w) = K., (,)(w) and the
sequence has the above properties. We define the sequence pi corresponding
to the sequence Ly and having the form py(w) = 77, () (w). In particular, py is
convergent a.s. on {2 (it follows from the convergence of Ly and K,AS —1r,).
Furthermore, since Ly (w)AS(w) — pr(w) = K, () (W)AS(w) — 77, () (w) and
K,AS—r, — ¢, LiAS —pr — ( a.s. on ;. Because the limit of a convergent
sequence of measurable functions is a measurable function, hence L := lim L
is Fo-measurable random vector taking values in R%. It is enough to show
that the random variable on €2y of the form p := lim p; belongs to £. Notice
that the assumptions of Lemma [5| hold. Namely, A, — A, p is a non-negative
random variable on ©; (as the limit of non-negative random variables conver-
gent a.s. on ) and for almost all w € Q;, pr(w) is a convergent subsequence
of rp(w). By Lemma [5| we receive that p € £,. Moreover, if we define the
(measurable) set A := {w € Qq: p(w) # 0}, then p = A4 a.s. on Q.

Thus, if €7 is of full measure, we end our proof for T' = 1. If not, we
continue the proof on the (measurable) set Q9 := {w: liminf || K, (w)||q = oo}
working further with the sequence K,AS —r, — ¢ a.s. on Q (let us recall
we have previously selected it as a subsequence of the original sequence such
that A\, — A). Notice that if € is of measure zero, then our operations
on (27 should be omitted and we should only consider the case of 2. Put

G, = ”Ilé:‘”d and h,, : and observe that G,AS — h,, — 0 a.s. on 9.

= I'n__
1Knlla
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Moreover, by the choice of the sequence r,, (such that \,, — \) and the equality
liminf ||K,||q = oo a.s. on (g, there is h, — 0 a. s. on Q3. Now we will apply
the similar reasoning as on the set 2. By Lemma [l] there exists a sequence
Ji € LOY(RY, Fy) such that Ji(w) is a convergent subsequence of the sequence
Gp(w) for almost all w € Q9. More precisely, by Lemma (1| there exists an
increasing sequence of integer-valued random variables 75 such that Ji(w) =
G, (w)(w) and the above properties are satisfied. In particular, JyAS — 0 a.s.
on {29. Because the limit of a convergent sequence of measurable functions is
a measurable function, hence J := lim Jj (the limit a.s. on 23) is Fy-measurable
random vector taking values in R9.

Therefore, JAS = 0 a.s. on {y. Since J(w) # 0 a.s. on s (because Ji(w)
is a convergent subsequence of the sequence G, (w) for almost all w € €y,
then ||Gp(w)|la = 1 for almost all w € €3), then there exists a partition of
Qs into at most d disjoint subsets Q% € Fy such that Ji(w) # 0 a.s. on Q5.
(Such a partition can be receive putting Q) := {w € Qy: J'(w) # 0} and
then continuing the partition on the set Q9 \ Q1 only, putting Q3 = {w €

0\ Q3: J?(w) # 0} and so on.) Define K, := K, — 3,J, where 3, := I;fl
on the set Q4. Then on each of the sets (2 there is K,AS = K,AS. It is
so, because K,AS = K,AS — 3,JAS and B, is a certain random variable
on QZQ Summing up, since JAS = 0 a.s. on €, then K,AS = K,AS on

Q5. We repeat the entire procedure on each 2% with the sequence K,, knowing

that K, = 0 a.s. on €. Remember that on each subset of Q) such that
liminf || K,||g < 0o a.s. we work with the sequence K,AS —r, selected earlier
so that A, — A. n these subsets of Q% on which liminf || K,|; = oo a.s. we
apply the same arguments based on the elimination of non-zero components.
(Notice that if on a certain subset of Q) we eliminate all coordinates, i.e. we

receive the sequence K, such that m =0 a.s. on thisset foralli=1,...,d
(such a situation might not appear), then on this set, in particular, r,, — ¢
pointwise a.s. and by Lemma 2| the limit belongs to £4. Since A\, — A, then
it is of the form A\Ip, where B € F).

After a finite number of steps we construct the desired sequences.We can
denote them by K, (it is the sequence of Fy-measurable random vectors taking
values in R? and convergent pointwise a.s. on ) and 7, (it is the sequence of
non-negative random variables converges pointwise a.s. on ). Furthermore,
these sequences were constructed so that K, AS —7, — ¢ a.s. on . Therefore,
our limit is of the form ¢ = KAS — 7 a.s. on , where K := lim K,, and 7 :=
lim 7, (limits are pointwise a.s. on ). Moreover, K € L°(R%, Fp) as the limit
of a convergent pointwise a.s. sequence of random vectors taking values in R
The second limit is of the form 7 = Ay, 4,)u, B;), Where 4;, Bj € F. The
first union of the sets A; is finite and appears during continuing the procedure
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on the sets % and its subsets such that at a certain stage liminf || K, ||q < oo
on these sets. The second union of the sets B; is finite and appears during
continuing the procedure on the sets 24 and its subsets such that at every

stage liminf | K, |l¢ = oo and finally K, = 0 a.s. on these sets for i = 1,...,d.
Notice that random vectors K, are the new sequences constructed using the
procedure performed in detail on Q9. All in all (using Lemma , by the choice
of the sequence 1, such that A\, — X and taking into account that the countable
union of sets from og-algebra belongs to o-algebra, we conclude that 7 € L.

Now we show that the claim is true for any 7" > 1. To this end suppose that
S L HPAS; — 1, — ¢ pointwise a.s. on Q where (H)L_, € P and r, € L.
Assume first that liminf A\, < oo (we consider the opposite case at the end of
the proof). Therefore, we can select a subsequence r,, from the sequence ry,
such that Zthl H™AS; —rp, — Cas. on Qand \,, — A > 0. For simplicity,
we will again use the same notations Zthl H!AS; —r, — ¢ and A\, — X for
these subsequences. First we will work with H{' using the similar reasoning as
in the case T'=1 and sometimes the same notation.

Consider the (measurable) set ; := {w: liminf ||H(w)||q < oo}. By
Lemmal[I]there exists an increasing sequence of integer-valued random variables
7 such that H{* € LY(R?, Fy) and H{k(w) (w) is a convergent subsequence of
the sequence HJ'(w) for almost all w € ;. Moreover, (H;*)._, € P. By the
construction Y./, H/*AS; — r,, — ¢ and by the convergence (a.s. on Q) of
the first term of the sum we have Zthz H*AS; — 1., — (1 a.s. on g, where
(1 is a random variable.

Consider now the situation on the set Qg := {w: liminf ||H]'(w)||q = oo}.

Put G} : arh and notice that Zthl G}AS; — hy, — 0 a.s. on

= T i =
Qy. Furthermore, by the choice of the sequence r, (i.e. such that A, — \)
and taking into consideration that liminf || H7'||; = oo a.s. on Q2 we coclude
that h, — 0 a.s. on {25. By Lemma [I| there exists an increasing sequence of
integer-valued random variables oy, such that G{* € LY(R?, Fy) and G7* (w)(w)
is a convergent subsequence of the sequence G7(w) for almost all w € Qs.
Moreover, (G7*)L, € P. By the construction 1, GI*AS; — 0 and by the
convergence (G{* — G7 a.s. on Qg, where G € LO(RY, Fy)) of the first term
of the sum we conclude that 23:2 G7*AS; — (2 a.s. on Qy. By the closedness
of Ry there is (o = Z?:Q GiAS;, where G; € LO(R? F;_1). Summing up,
Zthl GiAS; =0 a. s. on Q9, where (Gt)thl ePp.

Since G1(w) # 0 a.s. on Qg (it is because G{*(w) is a convergent subse-
quence of the sequence G (w) for almost all w € 3 and for almost all w € Qo
there is |G} (w)|l¢ = 1), then there exists a partition of s into at most d
disjoint subsets Q% € Fy such that Gi(w) # 0 a.s. on Q. (We may obtain
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such a partition putting Q3 := {w € Q: G}(w) # 0} and then continuing the
partition on the set Qs \ Q1 only, putting Q3 := {w € Q \ Q}: G (w) # 0}
and so on.) Define H; := H} — ,Gy, where 3, := Igg on the set Q% (HY
denotes the i-th coordinate of H}'). Then on each Q) the following equal-
ity holds Zthl H}AS; = ZtT:1 H]'AS;. 1t is so, because ZtT:1 H}AS; =
Zthl H]'AS; — 5y, Zthl GyAS; and B, is a random variable on 2. Summing
up, since Zthl GiAS; =0 a.s. on Q9, H,AS = H,AS a.s. on y. We repeat
the entire procedure on each with sequences H} and original 7, (i.e. such
as A\, — A > 0), knowing that H;' = 0 a.s. on Q%. It means that on each
subset of Q2 such that liminf |H; |4 < oo a.s. we apply Lemma |1 On these

subsets of Qf on which liminf ||H} |4 = oo a.s. we apply the same arguments
based on the elimination of non-zero components.

After a finite number of steps we construct the sequence (H})L_, € P. We
T .
also get a sequence 7, of non-negative random variables such that >  H]'AS; —
t=1
Tn — ¢ a.s. on ). Moreover, H{* converges a.s. on () and the limit is an Fo-
measurable random vector taking values in R%. By the convergence of the first
term of the sum Zthz HI'AS; — 7y — ¢ a.s. on Q, where ¢ is a certain ran-
dom variable. Working further with this sequence, we continue our reasoning

with sequences ﬁg, , fléi applying analogous arguments. Summing up, we
receive the sequences H, ..., Hp of random vectors taking values in R? which

converge a.s. on () and every ﬁf is F;_1-measurable (in particular, ﬁ]f = HY).
Furthermore, we get the sequence 7, of non-negative random variables such
that by the construction Zthl ﬁfASt — T, — ¢ pointwise a.s. on (2. It fol-
lows from the convergence of previous sequences that the sequence 7,, converges
pointwise a.s. on 2 and for almost all w € Q there is 7, (w) is a convergent sub-
sequence of the sequence 1, (w) where A,, = A. By Lemma 7:=lim7, € L.
Summing up, ¢ = Zthl H;AS; —7 € A, where Hy := limﬁf. This ends the
proof of the closedness for the case T' > 1 and liminf \,, < oo.

We now consider the opposite case. Assume that 23:1 HI'AS; —rp, — ¢
pointwise a.s. on Q and A, — co. Then from condition (a) and Lemmal[4] there
follows ( € Rp C Arp.

(b) = (c) Notice that Ay C Ry — LY and £+ C LY.

(¢) = (d) Trivial.

(d) = (e) Notice that for any random variable 7 there is an equivalent prob-
ability P’ with bounded density such that n € L'(P') (e.g., P' = Ce "lP).
Property (d) is invariant under an equivalent change of probability. This
consideration allows as to assume that all S; are integrable. The convex set
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AL :="Arn L' is closed in L'. Moreover, A%, O —£.. Since A}.N Ly = {0},
Lemma |§| ensures the existence of P ~ P with a bounded density and such
that E¢ < 0 for all € € AL, in particular, for ¢ = £ H;AS; where H; is bounded
and F;_i-measurable. Thus, E(ASt|.7:t,1) =0.

(e) = (a) It follows from the Dalang-Morton-Willinger Theorem. O

REMARK 7. Notice that we use Lemma [4] in the proof of the implication
(a) = (b) only in the case of A\, — oo. Hence, if Zle HPAS; —rp, — C as.
on €2 where (Hf);‘rzl € P, rn =14, € Ly and liminf )\, < co then ¢ € Ar
irrespective of the absence of arbitrage.

REMARK 8. We here enclose the proof of the implication (e¢) = (a) from
the classical Dalang-Morton-Willinger Theorem (see e.g. [3,4]). By Remark 2
we can without lost of generality assume that all strategies H are bounded.
Let ¢ € (Rr —LY)N LY, ie. 0 < &< H-Sp. Since HiE(AS|Fi1) =
E(H;AS¢|Fi_1) = 0, we obtain by conditioning that EH - S; = 0. Thus,
£=0.

3. Characterisation of the convexity of A7 and examples.

REMARK 9. Assume that Ap N Ly = {0} and Fy = {0, Q}. If the market
is complete, i.e. for every contingent claim X € L°(Fr) there exists replicable
strategy (i.e. # € R and H = (H;)L_, € P such that X = x + HSr) then Ar
is convex.

PROOF. Let x—p1la,,y—p2la, € Ar where z,y € Ry and p1la,, pola, €
L. Tt is enough to show that \j(x — u1la,) + Aa(x — pala,) € Ap for every
A1, A2 > 0. Since the market is complete, then ;1114, = a+2 and pola, = b+,
where a,b € R and Z,7 € Ryp. Notice that a,b > 0 due to the condition
Ar N Ly = {0}. Hence, using the fact that Ry is a convex cone, we have

Mz = pala,) + Aoy — pala,) = M+ Aoy — Mi(a+2) — A2(b+9)
= /\1((13 — :E') + )\g(y — ?j) == ()\1@ + )\Qb)IQ S (RT — £+) = Ar.
UJ

We now formulate a proposition stating that certain conditions prevent Ap
from being convex.

PROPOSITION 1. Suppose that Ap C Ry — LQL and A # Ry — L9r. Then
At is not convex.

PROOF. By the assumptions there exists x € Ry — L(J)r such that x ¢ Ar.
Let x = HSp — I, where HSp € Ry and r € Lg. Since [ is a non-negative
random variable we can write [ = lim{,, where [,, = 2?21 AT An are certain
simple functions and k,, > 2 for n large enough. Hence x = lim(H St — [,),



70

where (HSp —1,) € Ry — L9r. Since x ¢ A7 then there is no sequence ¥, € Ar
such that x = limy,,. Therefore, there exists ng € N such that for all n > ng

we have HSp — 1, ¢ Ap. In particular, HSy — l,,, = HSt — Zfﬁg AT yno &
Ar. Notice that x; := HST — knox\?of 4mo € A7 but the convex combination

Zf;‘i %xz = (HSt — lpn,) ¢ Ar. Hence Ar is not convex. O

REMARK 10. If we assume that Ay # Ry — LY and (Rp — L) N LY = {0}
then by Theorem [I] the assumptions of Proposition [I] are satisfied. Notice that
in the proof of the closedness of Ar we did not use the assumption of the
convexity of Ap. Similarly, when we assume that Ap # Ry — Lg and ApAp
then the assumptions of Proposition [I]are also valid. Hence the corollary below
follows easily.

COROLLARY 1. If Ap is convex then A = Rp — LS)r or (Rp — L9r) N L9r #*
{0}. In particular, when Ap is conver and Ap # Rp — Lg_ then we have an
arbitrage in the model, i.e. (R — LY) N LY # {0}.

ExaMPLE 1. Now we show that the assumption of A7 being convex can
not be omitted. Consider the probability space ([0,1],8,A) where B is the
Borel o-algebra on [0, 1] and A is the Lebesgue measure. Fix T'=1, d = 1 and
assume that the probability space is equipped with the filtration Fo = {0, Q},
Fi1 = B. Define AS|(w)w where w € [0,1]. Then (Ry — L4) N Ly = {0},
because hAS] — aly # plg for a, 8 > 0, h € R and A, B € F (of course,
except for case 0). Moreover, the set Ry — L is closed in probability in
this particular case. It can be checked easily. For example, one can take
a sequence h,AS] — A\, l4, € Rr — L4 such that h,AS] — A\ 14, — ¢ as.
on €2, where (¢ is a random variable and show that ( € Ry — £,. Because
hn € R and AS;(w) = w, then by the convergence to ¢ the sequence h,, is
bounded and we can take a convergent subsequence h,, — h € R. Then
P, AST — )\nkIAnk — ( and also )\nkIAnk — My € L. Hence ( € Rp — L.
Therefore, Rr — L1 N Ly = {0}. While there is no arbitrage in the model, the
set Ry — L4 is not convex.

EXAMPLE 2. Assume that 7' =1, d = 1. Let (Q, F, P) be a probability
space equipped with a filtration (Fg, F1), where Fo = {0,Q}, F1 = {0, A, Q\
A,Q} and A € Fissuch that 0 < P(A) < 1. Define AS; = als—fBIg\ 4 where
a, 8> 0. Then Ry = {h(ads— Bl 4): h € R} and (Rp—LY)NLY = {0}. In
particular, Ap is convex and Ap N Ly = {0}. Therefore, there is no arbitrage
in the model, but Ar = Ry — LY, even though £ # Lg_.

4. Concluding remarks. We can also adapt these new no-arbitrage cri-
teria to the case of a model where the investor’s decisions are based on a partial
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information. Such a model was proposed in [5]. It corresponds to the situa-
tion when a filtration can be smaller than a filtration generated by the price
process.
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