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NOTES ON NO-ARBITRAGE CRITERIA

by Przemys law Rola

Abstract. We consider the closedness of the modified set of hedgeable
claims and new conditions for the absence of arbitrage connected with it
in the classical Dalang–Morton–Willinger Theorem.

1. Introduction and the model. For the standard discrete-time finite
horizon model of security market, the Dalang–Morton–Willinger Theorem as-
serts that there is no arbitrage if and only if the price process is a martingale
with respect to an equivalent probability measure. This remarkable result is
sometimes referred to as the (First) Fundamental Theorem of Asset Pricing
(FTAP). The theorem has been investigated in many works and additional
conditions have been proposed. Going further in this direction we consider
new conditions in which it is enough that the terminal profit of the portfolio is
a sum of certain characteristic functions. As we see in the example, this con-
dition is not equivalent to the absence of arbitrage. The main reason is that
the set of hedgeable claims considered by us might not be convex. In general,
if we want the equivalence it is essential to assume this convexity. Now we
introduce the model as it was done in [4].

Let (Ω,F , P ) be a probability space equipped with a finite discrete-time
filtration F = (Ft)Tt=0 such that FT = F . Let S = (St)

T
t=0 be an d-dimensional

process adapted to F. Put

RT := {ξ : ξ = H · ST , H ∈ P},

where P is the set of all predictable d-dimensional processes (i.e. Ht is Ft−1-
measurable) and

H · ST :=

T∑
t=1

Ht∆St, ∆St := St − St−1.
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H is very often called a (portfolio) strategy and H · S a value process. We
use notations L0(Rd) for the set of d-dimensional (F-measurable) random vec-
tors and L0(Rd,Ft) for the set of d-dimensional random vectors which are Ft-
measurable. Furthermore, we denote by L0, L0(Ft) random variables which
are F-measurable and Ft-measurable, respectively.

Put AT := RT − L+ where L+ : {λIA : λ > 0, A ∈ F} and let AT be the
closure of AT in probability.

2. Main result. Now we formulate the main result of the paper.

Theorem 1. Assume that AT is convex. Then the following conditions
are equivalent:

(a) (RT − L0
+) ∩ L0

+ = {0};
(b) (RT − L0

+) ∩ L0
+ = {0} and AT = AT ;

(c) AT ∩ L+ = {0} and AT = AT ;
(d) AT ∩ L+ = {0};
(e) there is a probability P̃ ∼ P with dP̃ /dP ∈ L∞ such that S is a P̃ -

martingale.

Remark 1. To be precise, we need to know AT to be a convex cone (i.e.
0 ∈ AT and for all λ, µ > 0 and x, y ∈ AT we have that λx + µy ∈ AT ). It
is obvious that AT is always a cone but usually is not convex. Moreover, it
is clear that if AT is convex then the conditions from the above theorem are
equivalent to some different ones (see e.g. [3] and [4]) due to conditions (a),
(e). Especially these conditions are equivalent to:

(f) RT ∩ L+
0 = {0};

(g) {η∆St : η ∈ L0(Ft−1)} ∩ L+
0 = {0} for all t ≤ T ;

where L0
+ is the set of non-negative random variables (F-measurable). The

set RT −L0
+ can be interpreted as the set of hedgeable claims. Conditions (a)

and (f) are often called the no arbitrage (NA) property of the model whereas
condition (g) is the NA property for one-step model.

Remark 2. The NA property for the class of all strategies (conditions
(a),(f)) is equivalent to the NA property in the narrower class of bounded
strategies H (see [3, Remark, p. 73]).

Remark 3. Notice that if AT is convex then ATRT − L0
+ and the implica-

tions (d)⇒ (e), (e)⇒ (a) follow from the Dalang–Morton–Willinger Theorem
(see e.g. [3,4]).

Proof. As AT ⊆ RT −L0
+ then it is enough to show that RT − L0

+ ⊆ AT .

We will show that RT − L0
+ ⊆ AT . Let x = (HST − r) ∈ RT − L0

+, where
HST ∈ RT and r ∈ L0

+. Since r is a non-negative random variable we can write
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r = lim rn, where rn are certain simple functions. Hence x = lim(HST − rn),
where (HST − rn) ∈ AT due to the assumption that AT is a convex cone and

finally x ∈ AT . As RT − L0
+ ⊆ AT then RT − L0

+ ⊆ AT .
Now we show that the above implications easily follow from the Dalang–

Morton–Willinger Theorem. Condition (d) is equivalent to

RT − L0
+ ∩ L+ = {0}.

It implies the condition

(a2) (RT − L0
+) ∩ L+ = {0}.

We prove that (a2) is equivalent to (a). Since L+ ⊆ L0
+ then it is enough to

show the implication (a2) ⇒ (a). Assume that (a2) holds and suppose that
there exists x ∈ (RT − L0

+) ∩ L0
+ such that x 6= 0. Then x = HST − h where

HST ∈ RT and h ∈ L0
+. Moreover, there exists ε > 0 such that P (x ≥ ε) > 0.

Define A := {x ≥ ε}. Since x−εIA ≥ 0 we get HST −h− (x−εIA) ∈ RT −L0
+

and the equality εIA = HST − h− (x− εIA) contradicts (a2).

Now we present some lemmas which will be used in the proof of Theorem 1.

Lemma 1. Let Xn be a sequence of random vectors taking values in Rd
such that for almost all ω ∈ Ω we have lim inf ‖Xn(ω)‖d < ∞. Then there is
a sequence of random vectors Yn taking values in Rd satisfying the following
conditions:

(1) Yn converges pointwise to Y almost surely where Y is a random vector
taking values in Rd,

(2) Yn(ω) is a convergent subsequence of Xn(ω) for almost all ω ∈ Ω.

Remark 4. The above claim can be formulated as follows: there exists
an increasing sequence of integer-valued random variables σk such that Xσk
converges a.s. The proof of this lemma can be found e.g. in [2] and [4]. For
the reader’s convenience we enclose it here.

Proof. Define random variable X∗ := lim inf ‖Xn‖d.
Let σ(0) := 0 and σ(k) := inf{n > σ(k − 1) : |‖Xn‖d − X∗| ≤ 1

k}. For the

sequence X̃n : Xσ(n) (notice that X̃n is a well-defined random variable) we will

have supn ‖X̃n‖d <∞ a. s. on Ω. In particular, X1
∗ := lim inf X1

n <∞. Let

τ1(0) := 0, τ1(k) := inf{n > τ1(k − 1) : |X̃1
n −X1

∗ | ≤
1

k
}, k ≥ 1.

In a similar way, working with the second component of the sequence X̃τ1(n)

whose first component converges, we construct an increasing sequence τ2(k)
and so on. Finally, the sequence τn := τd ◦ . . . ◦ τ1 ◦ σ(n) has the claimed
property.
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Lemma 2. Let rn = λnIAn ∈ L+ and suppose that rn → ξ pointwise almost
surely. Then ξ ∈ L+.

Proof. Notice that ξ is a random variable as the limit of a convergent a.s.
sequence of measurable functions. If λnIAn converges pointwise to zero a.s.
then ξ is equal to zero a.s. on Ω and the claim is proved. Suppose that there
exists a set of positive measure such that IAn 6→ 0 a.s. on it. Accordingly,
define the measurable set A := {ω : ξ(ω) 6= 0} and suppose that P (A) > 0. It
is enough to consider the situation on A, because ξ is equal to zero on Ω \ A.
By the definition of a convergence, for almost all ω ∈ Ω

∀ε > 0 ∃N(ω) ∀n ≥ N(ω) : |λnIAn(ω)− ξ(ω)| < ε.

Moreover, for almost all ω ∈ A there exists N(ω) such that for all n ≥ N(ω)
there holds IAn(ω) = 1. Summing up, for almost all ω ∈ A the following
condition holds:

∀ε > 0 ∃N(ω) ∀n ≥ N(ω) : |λn − ξ(ω)| < ε.

In particular, the sequence λn converges, so there exists a number λ ≥ 0 such
that λ = limλn. Furthermore, for almost all ω ∈ A the equality ξ(ω) = λ
holds true. Thus, ξ = λIA a.s. on Ω.

For t = 1, . . . , T we define the following sets

Rt := {
T∑
n=t

Hn∆Sn|Hn is Fn−1 −measurable},

At := Rt − L+.

Lemma 3. If AT ∩ L+ = {0} then At ∩ L+ = {0} for all t = 1, . . . , T .
Similarly, if (RT − L0

+) ∩ L0
+ = {0} then (Rt − L0

+) ∩ L0
+ = {0} for all t =

1, . . . , T .

Proof. Suppose that T > 1 and AT ∩L+ = {0}. The case t = 1 is trivial:
fix any t = 2, . . . , T . To show that At ∩ L+ = {0} it is enough to prove that

At ⊂ AT . Suppose that ξ ∈ At. We can assume that ξ
∑T

n=tHn∆Sn − l

where (Hn)Tn=t is Rd-valued process which is predictable with respect to the
filtration F and l ∈ L+. Let Hn : 0 for n < t and consider the process

(Hn)Tn=1 ∈ P. There is ξ =
∑T

n=tHn∆Sn − l
∑T

n=1Hn∆Sn − l ∈ AT . Using
analogous reasoning we prove the second implication.

Lemma 4. Let (Hn
t )Tt=1 ∈ P and rn ∈ L+. We can assume that rn =

λnIAn, where An ∈ F and λn > 0. Suppose that AT ∩ L+ = {0} and∑T
t=1H

n
t ∆St − rn → ζ a.s. on Ω where ζ is a random variable. Then

lim inf rn(ω) < ∞ for almost all ω ∈ Ω. Moreover, if we assume that (RT −
L0

+) ∩ L0
+ = {0} and ζ /∈ RT then lim inf λn <∞.
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Proof. Define A := {ω : lim inf rn(ω) =∞} and suppose that P (A) > 0.
There immediately follows that λn →∞. Dividing by λn we get the following

convergence
∑T

t=1
Hn

t
λn

∆St − IAn → 0, where the process (
Hn

t
λn

)Tt=1 ∈ P. Using

the same procedure as in the proof of implication (a) ⇒ (b) of Theorem 1

below (see also [3, 4]) we can construct sequences (H̃n
t )Tt=1 ∈ P and ũn which

converge a.s. on Ω and
∑T

t=1 H̃n∆St−ũn → 0. Moreover, ũn(ω) is a convergent
subsequence of the sequence IAn(ω) for almost all ω ∈ Ω. Hence ũn = IÃn

where Ãn ∈ F . Denote the limits H̃ := lim H̃n and ũ := lim ũn in the sense of
a.s. Notice that H̃ ∈ P and ũ ∈ L+. Hence, in particular, ũ = IÃ for a certain

set Ã ∈ F and P (Ã) > 0 due to the fact that IÃn
→ 1 a.s. on A. Therefore,

H̃ST = IÃ a.s. on Ω, which contradicts the condition AT ∩ L+ = {0}.
Now we show that if (RT−L0

+)∩L0
+ = {0} and ζ /∈ RT then lim inf λn <∞.

As we assumed
∑T

t=1H
n
t ∆St−rn → ζ. We know that lim inf rn <∞ a.s. on Ω.

Suppose that λn →∞. Hence lim inf rn0 a.s. on Ω. Using the procedure from
the proof of implication (a) ⇒ (b) in the Dalang–Morton–Willinger Theorem

(see [3, 4]) we can construct sequences (Ĥn
t )Tt=1 ∈ P and ûn ∈ L0

+ which

converge a.s. on Ω and
∑T

t=1 Ĥn∆St − ûn → ζ. (Notice that we use Lemma
3 in such a construction.) Moreover, ûn(ω) is a convergent subsequence of the
sequence rn(ω) for almost all ω ∈ Ω. Hence ûn → 0 a.s. on Ω and by the
closedness of RT we get ζ ∈ RT which contradicts the assumption.

Remark 5. Notice that the set RT is always closed irrespective of the ab-
sence of arbitrage (see e.g. [4]). If we are able to prove Lemma 4 without using
the assumption (RT − L0

+) ∩ L0
+ = {0} then only if AT is convex, conditions

(a)–(e) in Theorem 1 are equivalent to AT ∩ L+ = {0}. It is because we use
the fact that lim inf λn <∞ in the proof of the closedness of AT .

Lemma 5. Let rn = λnIAn ∈ L+ be a sequence such that λn → λ ≥ 0.
Moreover, let Xn be a sequence of random variables convergent almost surely
on Ω such that for almost all ω ∈ Ω the sequence Xn(ω) is a convergent sub-
sequence of the sequence rn(ω). Define X := limXn where the convergence is
pointwise a.s. on Ω. Then X ∈ L+.

Proof. The case of λ = 0 is trivial. For simplification assume that λ > 0.
Define A := {ω ∈ Ω: X(ω) 6= 0}. Since X is a random variable (as the limit of
a sequence of random variables convergent pointwise a.s.), we obtain A ∈ F .
Therefore, it suffices to consider the situation on A. We know that Xn(ω) is
the almost surely convergent subsequence of rn(ω). Thus, for almost all ω ∈ A
the following equalities hold:

X(ω) = lim
n→∞

Xn(ω) = lim
k→∞

rnk
(ω) = lim

k→∞
λnk

IAnk
(ω).
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Since X 6= 0 a.s. on A, hence for almost all ω ∈ A there exists N(ω) such that
for k ≥ N(ω) we have that IAnk

(ω) = 1. Summing up and taking into consid-

eration the convergence of λn, the following equalities X(ω) = limk→∞ λnk
=

limn→∞ λn = λ hold true for almost all ω ∈ A. It means that X ∈ L+.

Now we formulate a lemma which is similar to the well-known result due
to Kreps and Yan (see e.g. [3,4]).

Lemma 6. Let K ⊇ −L+ be a closed convex cone in L1 such that K∩L+ =

{0}. Then there is a probability P̃ ∼ P with dP̃ /dP ∈ L∞ such that Ẽξ ≤ 0
for all ξ ∈ K.

Proof. By the Hahn–Banach Separation Theorem for any x ∈ L+, x 6= 0,
there is zx ∈ L∞ such that Ezxξ < Ezxx for all ξ ∈ K. Since K is a cone,
there follows that Ezxξ ≤ 0 for all ξ ∈ K. Moreover, Ezxx > 0 for ξ = 0.
To show that zx ≥ 0, define A : {zx < 0} and suppose that P (A) > 0.
Considering the sequence ξn := −λnIA ∈ K, where λn →∞, we get Ezxξn →
∞, which contradicts the inequality Ezxξn ≤ 0. Normalizing, we assume that
zx ≤ 1. The Halmos–Savage Theorem asserts that the family of measures {zxP}
contains a countable equivalent subfamily {zxiP, i ∈ N}. It means (see [1] for
more details) that for every E ∈ F we have the following equivalence

(∀zxP : zxP (E) = 0) ⇔ (∀zxiP : zxiP (E) = 0).

Put ρ :=
∑

2−izxi and x̃ := I{ρ=0}. Then Ezxi x̃ = 0 for all i and, hence,
Ezxx̃ = 0 for all x ∈ L+. Thus, x̃ = 0 (otherwise we would have Ezx̃x̃ > 0)

and the measure P̃ := cρP with c = 1/Eρ meets the requirements. Indeed, for

any ξ ∈ K there is Ẽξ = E(cρξ) = c
∑

2−iEzxiξ ≤ 0.

Remark 6. The proof of the Halmos–Savage Theorem can be found e.g.
in [1]. One can see that Lemma 6 easily follows from Kreps–Yan Theorem.
Indeed, we can show that if the assumptions of the above lemma are satisfied,
then the assumptions of Kreps–Yan Theorem are valid too. The inclusion
K ⊇ −L0

+ follows from the fact that K is a closed convex cone and that
every non-negative random variable is the limit of a sequence of non-negative
simple functions. Now we prove that K ∩L0

+ = {0}. Suppose that there exists
x ∈ K ∩L0

+ such that x 6= 0. Hence there exists ε > 0 such that P (x ≥ ε) > 0.
Define A := {x ≥ ε}. Since x−εIA ≥ 0 and K ⊇ −L0

+ we have −(x−εIA) ∈ K.
Because K is a convex cone, then −(x − εIA) + xεIA ∈ K, which contradicts
K ∩ L+{0}.
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Proof of the Theorem 1.
(a) ⇒ (b) Consider the case T = 1 first. To simplify the notation define

Kn := Hn
1 and ∆S : ∆S1. We will respectively use the notation Ki for the

i-th coordinate of the random vector K. Suppose that Kn∆S − rn → ζ in
probability, where Kn ∈ L0(Rd,F0), rn ∈ L+ (we can assume that rn = λnIAn

for some An ∈ F and λn > 0) and ζ is a random variable. By the Riesz
Theorem the sequence Kn∆S− rn contains a subsequence convergent to ζ a.s.
Thus, perhaps confining ourselves to this subsequence, we can assume that
Kn∆S − rn → ζ a.s. The closedness of A1 means that ζ = K∆S − r for some
K ∈ L0(Rd,F0) and r ∈ L+. Therefore, it is enough to show that ζ has the
above form. Assume first that lim inf λn <∞ (we consider opposite case at the
end of the proof). Hence, from the sequence λn, we can choose a convergent
subsequence (let λnk

be such a subsequence, i.e. λnk
→ λ ≥ 0). In particular,

Knk
∆S − rnk

→ ζ pointwise a.s. on Ω. For simplification we will use again
the same notation Kn∆S − rn → ζ for this subsequence. We will consider
separately certain sets belonging to the σ-algebra.

Consider the measurable set Ω1 := {ω : lim inf ‖Kn(ω)‖d < ∞}. By
Lemma 1, we can find a sequence Lk ∈ L0(Rd,F0) which converges a.s. on
Ω1 and Lk(ω) is a convergent subsequence of the sequence Kn(ω) for almost
all ω ∈ Ω1. More precisely, by Lemma 1 there exists an increasing sequence
of integer-valued random variables τk such that Lk(ω) = Kτk(ω)(ω) and the
sequence has the above properties. We define the sequence pk corresponding
to the sequence Lk and having the form pk(ω) = rτk(ω)(ω). In particular, pk is
convergent a.s. on Ω1 (it follows from the convergence of Lk and Kn∆S− rn).
Furthermore, since Lk(ω)∆S(ω) − pk(ω) = Kτk(ω)(ω)∆S(ω) − rτk(ω)(ω) and
Kn∆S−rn → ζ, Lk∆S−pk → ζ a.s. on Ω1. Because the limit of a convergent
sequence of measurable functions is a measurable function, hence L := limLk
is F0-measurable random vector taking values in Rd. It is enough to show
that the random variable on Ω1 of the form p := lim pk belongs to L+. Notice
that the assumptions of Lemma 5 hold. Namely, λn → λ, p is a non-negative
random variable on Ω1 (as the limit of non-negative random variables conver-
gent a.s. on Ω1) and for almost all ω ∈ Ω1, pk(ω) is a convergent subsequence
of rn(ω). By Lemma 5, we receive that p ∈ L+. Moreover, if we define the
(measurable) set A := {ω ∈ Ω1 : p(ω) 6= 0}, then p = λIA a.s. on Ω1.

Thus, if Ω1 is of full measure, we end our proof for T = 1. If not, we
continue the proof on the (measurable) set Ω2 := {ω : lim inf ‖Kn(ω)‖d =∞}
working further with the sequence Kn∆S − rn → ζ a.s. on Ω (let us recall
we have previously selected it as a subsequence of the original sequence such
that λn → λ). Notice that if Ω1 is of measure zero, then our operations
on Ω1 should be omitted and we should only consider the case of Ω2. Put
Gn := Kn

‖Kn‖d and hn := rn
‖Kn‖d and observe that Gn∆S − hn → 0 a.s. on Ω2.
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Moreover, by the choice of the sequence rn (such that λn → λ) and the equality
lim inf ‖Kn‖d =∞ a.s. on Ω2, there is hn → 0 a. s. on Ω2. Now we will apply
the similar reasoning as on the set Ω1. By Lemma 1 there exists a sequence
Jk ∈ L0(Rd,F0) such that Jk(ω) is a convergent subsequence of the sequence
Gn(ω) for almost all ω ∈ Ω2. More precisely, by Lemma 1 there exists an
increasing sequence of integer-valued random variables τk such that Jk(ω) =
Gτk(ω)(ω) and the above properties are satisfied. In particular, Jk∆S → 0 a.s.
on Ω2. Because the limit of a convergent sequence of measurable functions is
a measurable function, hence J := lim Jk (the limit a.s. on Ω2) is F0-measurable
random vector taking values in Rd.

Therefore, J∆S = 0 a.s. on Ω2. Since J(ω) 6= 0 a.s. on Ω2 (because Jk(ω)
is a convergent subsequence of the sequence Gn(ω) for almost all ω ∈ Ω2,
then ‖Gn(ω)‖d = 1 for almost all ω ∈ Ω2), then there exists a partition of
Ω2 into at most d disjoint subsets Ωi

2 ∈ F0 such that J i(ω) 6= 0 a.s. on Ωi
2.

(Such a partition can be receive putting Ω1
2 := {ω ∈ Ω2 : J1(ω) 6= 0} and

then continuing the partition on the set Ω2 \ Ω1
2 only, putting Ω2

2 := {ω ∈
Ω2 \ Ω1

2 : J2(ω) 6= 0} and so on.) Define Kn := Kn − βnJ , where βn := Ki
n

Ji

on the set Ωi
2. Then on each of the sets Ωi

2 there is Kn∆S = Kn∆S. It is
so, because Kn∆S = Kn∆S − βnJ∆S and βn is a certain random variable
on Ωi

2. Summing up, since J∆S = 0 a.s. on Ω2, then Kn∆S = Kn∆S on
Ω2. We repeat the entire procedure on each Ωi

2 with the sequence Kn knowing

that K
i
n = 0 a.s. on Ωi

2. Remember that on each subset of Ωi
2 such that

lim inf ‖Kn‖d <∞ a.s. we work with the sequence Kn∆S− rn selected earlier
so that λn → λ. n these subsets of Ωi

2 on which lim inf ‖Kn‖d = ∞ a.s. we
apply the same arguments based on the elimination of non-zero components.
(Notice that if on a certain subset of Ωi

2 we eliminate all coordinates, i.e. we

receive the sequence Kn such that K
i
n = 0 a.s. on this set for all i = 1, . . . , d

(such a situation might not appear), then on this set, in particular, rn → ζ
pointwise a.s. and by Lemma 2 the limit belongs to L+. Since λn → λ, then
it is of the form λIB, where B ∈ F).

After a finite number of steps we construct the desired sequences.We can
denote them by K̃n (it is the sequence of F0-measurable random vectors taking
values in Rd and convergent pointwise a.s. on Ω) and r̃n (it is the sequence of
non-negative random variables converges pointwise a.s. on Ω). Furthermore,

these sequences were constructed so that K̃n∆S− r̃n → ζ a.s. on Ω. Therefore,
our limit is of the form ζ = K̃∆S − r̃ a.s. on Ω, where K̃ := lim K̃n and r̃ :=
lim r̃n (limits are pointwise a.s. on Ω). Moreover, K̃ ∈ L0(Rd,F0) as the limit
of a convergent pointwise a.s. sequence of random vectors taking values in Rd.
The second limit is of the form r̃ = λIA∪(∪iAi)∪(∪jBj), where Ai, Bj ∈ F . The
first union of the sets Ai is finite and appears during continuing the procedure
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on the sets Ωi
2 and its subsets such that at a certain stage lim inf ‖Kn‖d <∞

on these sets. The second union of the sets Bj is finite and appears during
continuing the procedure on the sets Ωi

2 and its subsets such that at every

stage lim inf ‖Kn‖d =∞ and finally K
i
n = 0 a.s. on these sets for i = 1, . . . , d.

Notice that random vectors Kn are the new sequences constructed using the
procedure performed in detail on Ω2. All in all (using Lemma 5), by the choice
of the sequence rn such that λn → λ and taking into account that the countable
union of sets from σ-algebra belongs to σ-algebra, we conclude that r̃ ∈ L+.

Now we show that the claim is true for any T > 1. To this end suppose that∑T
t=1H

n
t ∆St − rn → ζ pointwise a.s. on Ω where (Hn

t )Tt=1 ∈ P and rn ∈ L+.
Assume first that lim inf λn <∞ (we consider the opposite case at the end of
the proof). Therefore, we can select a subsequence rnk

from the sequence rn
such that

∑T
t=1H

nk
t ∆St− rnk

→ ζ a.s. on Ω and λnk
→ λ ≥ 0. For simplicity,

we will again use the same notations
∑T

t=1H
n
t ∆St − rn → ζ and λn → λ for

these subsequences. First we will work with Hn
1 using the similar reasoning as

in the case T = 1 and sometimes the same notation.
Consider the (measurable) set Ω1 := {ω : lim inf ‖Hn

1 (ω)‖d < ∞}. By
Lemma 1 there exists an increasing sequence of integer-valued random variables

τk such that Hτk
1 ∈ L0(Rd,F0) and H

τk(ω)
1 (ω) is a convergent subsequence of

the sequence Hn
1 (ω) for almost all ω ∈ Ω1. Moreover, (Hτk

t )Tt=1 ∈ P. By the

construction
∑T

t=1H
τk
t ∆St − rτk → ζ and by the convergence (a.s. on Ω1) of

the first term of the sum we have
∑T

t=2H
τk
t ∆St − rτk → ζ1 a.s. on Ω1, where

ζ1 is a random variable.
Consider now the situation on the set Ω2 := {ω : lim inf ‖Hn

1 (ω)‖d = ∞}.
Put Gnt :=

Hn
t

‖Hn
1 ‖d

, hn := rn
‖Hn

1 ‖d
and notice that

∑T
t=1G

n
t ∆St − hn → 0 a.s. on

Ω2. Furthermore, by the choice of the sequence rn (i.e. such that λn → λ)
and taking into consideration that lim inf ‖Hn

1 ‖d = ∞ a.s. on Ω2 we coclude
that hn → 0 a.s. on Ω2. By Lemma 1 there exists an increasing sequence of

integer-valued random variables σk such that Gσk1 ∈ L0(Rd,F0) and G
σk(ω)
1 (ω)

is a convergent subsequence of the sequence Gn1 (ω) for almost all ω ∈ Ω2.

Moreover, (Gσkt )Tt=1 ∈ P. By the construction
∑T

t=1G
σk
t ∆St → 0 and by the

convergence (Gσk1 → G1 a.s. on Ω2, where G1 ∈ L0(Rd,F0)) of the first term

of the sum we conclude that
∑T

t=2G
σk
t ∆St → ζ2 a.s. on Ω2. By the closedness

of RT there is ζ2 =
∑T

t=2Gt∆St, where Gt ∈ L0(Rd,Ft−1). Summing up,∑T
t=1Gt∆St = 0 a. s. on Ω2, where (Gt)

T
t=1 ∈ P.

Since G1(ω) 6= 0 a.s. on Ω2 (it is because Gσk1 (ω) is a convergent subse-
quence of the sequence Gn1 (ω) for almost all ω ∈ Ω2 and for almost all ω ∈ Ω2

there is ‖Gn1 (ω)‖d = 1), then there exists a partition of Ω2 into at most d
disjoint subsets Ωi

2 ∈ F0 such that Gi1(ω) 6= 0 a.s. on Ωi
2. (We may obtain
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such a partition putting Ω1
2 := {ω ∈ Ω2 : G1

1(ω) 6= 0} and then continuing the
partition on the set Ω2 \ Ω1

2 only, putting Ω2
2 := {ω ∈ Ω2 \ Ω1

2 : G2
1(ω) 6= 0}

and so on.) Define H
n
t := Hn

t − βnGt, where βn :=
Hni

1

Gi
1

on the set Ωi
2 (Hni

1

denotes the i-th coordinate of Hn
1 ). Then on each Ωi

2 the following equal-

ity holds
∑T

t=1H
n
t ∆St =

∑T
t=1H

n
t ∆St. It is so, because

∑T
t=1H

n
t ∆St =∑T

t=1H
n
t ∆St − βn

∑T
t=1Gt∆St and βn is a random variable on Ωi

2. Summing

up, since
∑T

t=1Gt∆St = 0 a.s. on Ω2, Hn∆S = Hn∆S a.s. on Ω2. We repeat

the entire procedure on each Ωi
2 with sequences H

n
t and original rn (i.e. such

as λn → λ ≥ 0), knowing that H
ni
1 = 0 a.s. on Ωi

2. It means that on each

subset of Ωi
2 such that lim inf ‖Hn

1‖d < ∞ a.s. we apply Lemma 1. On these

subsets of Ωi
2 on which lim inf ‖Hn

1‖d = ∞ a.s. we apply the same arguments
based on the elimination of non-zero components.

After a finite number of steps we construct the sequence (H̃n
t )Tt=1 ∈ P. We

also get a sequence r̃n of non-negative random variables such that
T∑
t=1

H̃n
t ∆St−

r̃n → ζ a.s. on Ω. Moreover, H̃n
1 converges a.s. on Ω and the limit is an F0-

measurable random vector taking values in Rd. By the convergence of the first
term of the sum

∑T
t=2 H̃

n
t ∆St − r̃n → ζ

′
a.s. on Ω, where ζ

′
is a certain ran-

dom variable. Working further with this sequence, we continue our reasoning
with sequences H̃k

2 , . . . , H̃
k
T applying analogous arguments. Summing up, we

receive the sequences H
k
1, . . . ,H

k
T of random vectors taking values in Rd which

converge a.s. on Ω and every H
k
t is Ft−1-measurable (in particular, H

k
1 = H̃k

1 ).
Furthermore, we get the sequence rn of non-negative random variables such

that by the construction
∑T

t=1H
k
t∆St − rk → ζ pointwise a.s. on Ω. It fol-

lows from the convergence of previous sequences that the sequence rn converges
pointwise a.s. on Ω and for almost all ω ∈ Ω there is rn(ω) is a convergent sub-
sequence of the sequence rn(ω) where λn → λ. By Lemma 5, r := lim rk ∈ L+.

Summing up, ζ =
∑T

t=1Ht∆St − r ∈ AT , where Ht := limH
k
t . This ends the

proof of the closedness for the case T ≥ 1 and lim inf λn <∞.
We now consider the opposite case. Assume that

∑T
t=1H

n
t ∆St − rn → ζ

pointwise a.s. on Ω and λn →∞. Then from condition (a) and Lemma 4 there
follows ζ ∈ RT ⊆ AT .

(b) ⇒ (c) Notice that AT ⊆ RT − L0
+ and L+ ⊆ L0

+.
(c) ⇒ (d) Trivial.
(d)⇒ (e) Notice that for any random variable η there is an equivalent prob-

ability P
′

with bounded density such that η ∈ L1(P
′
) (e.g., P

′
= Ce−|η|P ).

Property (d) is invariant under an equivalent change of probability. This
consideration allows as to assume that all St are integrable. The convex set
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A1
T := AT ∩ L1 is closed in L1. Moreover, A1

T ⊇ −L+. Since A1
T ∩ L+ = {0},

Lemma 6 ensures the existence of P̃ ∼ P with a bounded density and such
that Ẽξ ≤ 0 for all ξ ∈ A1

T , in particular, for ξ = ±Ht∆St where Ht is bounded

and Ft−1-measurable. Thus, Ẽ(∆St|Ft−1) = 0.
(e) ⇒ (a) It follows from the Dalang–Morton–Willinger Theorem.

Remark 7. Notice that we use Lemma 4 in the proof of the implication
(a) ⇒ (b) only in the case of λn → ∞. Hence, if

∑T
t=1H

n
t ∆St − rn → ζ a.s.

on Ω where (Hn
t )Tt=1 ∈ P, rn = λnIAn ∈ L+ and lim inf λn < ∞ then ζ ∈ AT

irrespective of the absence of arbitrage.

Remark 8. We here enclose the proof of the implication (e) ⇒ (a) from
the classical Dalang–Morton–Willinger Theorem (see e.g. [3,4]). By Remark 2
we can without lost of generality assume that all strategies H are bounded.
Let ξ ∈ (RT − L0

+) ∩ L0
+, i.e. 0 ≤ ξ ≤ H · ST . Since HtẼ(∆St|Ft−1) =

Ẽ(Ht∆St|Ft−1) = 0, we obtain by conditioning that ẼH · ST = 0. Thus,
ξ = 0.

3. Characterisation of the convexity of AT and examples.

Remark 9. Assume that AT ∩ L+ = {0} and F0 = {∅,Ω}. If the market
is complete, i.e. for every contingent claim X ∈ L0(FT ) there exists replicable
strategy (i.e. x ∈ R and H = (Ht)

T
t=1 ∈ P such that X = x + HST ) then AT

is convex.

Proof. Let x−µ1IA1 , y−µ2IA2 ∈ AT where x, y ∈ RT and µ1IA1 , µ2IA2 ∈
L+. It is enough to show that λ1(x − µ1IA1) + λ2(x − µ2IA2) ∈ AT for every
λ1, λ2 ≥ 0. Since the market is complete, then µ1IA1 = a+x̃ and µ2IA2 = b+ỹ,
where a, b ∈ R and x̃, ỹ ∈ RT . Notice that a, b ≥ 0 due to the condition
AT ∩ L+ = {0}. Hence, using the fact that RT is a convex cone, we have

λ1(x− µ1IA1) + λ2(y − µ2IA2) = λ1x+ λ2y − λ1(a+ x̃)− λ2(b+ ỹ)

= λ1(x− x̃) + λ2(y − ỹ)− (λ1a+ λ2b)IΩ ∈ (RT − L+) = AT .

We now formulate a proposition stating that certain conditions prevent AT
from being convex.

Proposition 1. Suppose that AT ⊆ RT − L0
+ and AT 6= RT − L0

+. Then
AT is not convex.

Proof. By the assumptions there exists x ∈ RT − L0
+ such that x /∈ AT .

Let x = HST − l, where HST ∈ RT and r ∈ L0
+. Since l is a non-negative

random variable we can write l = lim ln where ln =
∑kn

i=1 λ
n
i IAn

i
are certain

simple functions and kn ≥ 2 for n large enough. Hence x = lim(HST − ln),
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where (HST − ln) ∈ RT −L0
+. Since x /∈ AT then there is no sequence yn ∈ AT

such that x = lim yn. Therefore, there exists n0 ∈ N such that for all n ≥ n0

we have HST − ln /∈ AT . In particular, HST − ln0 = HST −
∑kn0

i=1 λ
n0
i IAn0

i
/∈

AT . Notice that xi := HST − kn0λ
n0
i IAn0

i
∈ AT but the convex combination∑kn0

i=1
1
kn0

xi = (HST − ln0) /∈ AT . Hence AT is not convex.

Remark 10. If we assume that AT 6= RT −L0
+ and (RT −L0

+)∩L0
+ = {0}

then by Theorem 1 the assumptions of Proposition 1 are satisfied. Notice that
in the proof of the closedness of AT we did not use the assumption of the
convexity of AT . Similarly, when we assume that AT 6= RT − L0

+ and ATAT
then the assumptions of Proposition 1 are also valid. Hence the corollary below
follows easily.

Corollary 1. If AT is convex then AT = RT −L0
+ or (RT −L0

+)∩L0
+ 6=

{0}. In particular, when AT is convex and AT 6= RT − L0
+ then we have an

arbitrage in the model, i.e. (RT − L0
+) ∩ L0

+ 6= {0}.

Example 1. Now we show that the assumption of AT being convex can
not be omitted. Consider the probability space ([0, 1],B, λ) where B is the
Borel σ-algebra on [0, 1] and λ is the Lebesgue measure. Fix T = 1, d = 1 and
assume that the probability space is equipped with the filtration F0 = {∅,Ω},
F1 = B. Define ∆S1(ω)ω where ω ∈ [0, 1]. Then (RT − L+) ∩ L+ = {0},
because h∆S1 − αIA 6= βIB for α, β > 0, h ∈ R and A,B ∈ F (of course,
except for case 0). Moreover, the set RT − L+ is closed in probability in
this particular case. It can be checked easily. For example, one can take
a sequence hn∆S1 − λnIAn ∈ RT − L+ such that hn∆S1 − λnIAn → ζ a.s.
on Ω, where ζ is a random variable and show that ζ ∈ RT − L+. Because
hn ∈ R and ∆S1(ω) = ω, then by the convergence to ζ the sequence hn is
bounded and we can take a convergent subsequence hnk

→ h ∈ R. Then
hnk

∆S1 − λnk
IAnk

→ ζ and also λnk
IAnk

→ λIA ∈ L+. Hence ζ ∈ RT − L+.

Therefore, RT − L+∩L+ = {0}. While there is no arbitrage in the model, the
set RT − L+ is not convex.

Example 2. Assume that T = 1, d = 1. Let (Ω,F , P ) be a probability
space equipped with a filtration (F0,F1), where F0 = {∅,Ω}, F1 = {∅, A,Ω \
A,Ω} and A ∈ F is such that 0 < P (A) < 1. Define ∆S1 = αIA−βIΩ\A where

α, β > 0. Then RT = {h(αIA−βIΩ\A) : h ∈ R} and (RT −L0
+)∩L0

+ = {0}. In
particular, AT is convex and AT ∩ L+ = {0}. Therefore, there is no arbitrage
in the model, but AT = RT − L0

+, even though L+ 6= L0
+.

4. Concluding remarks. We can also adapt these new no-arbitrage cri-
teria to the case of a model where the investor’s decisions are based on a partial
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information. Such a model was proposed in [5]. It corresponds to the situa-
tion when a filtration can be smaller than a filtration generated by the price
process.
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