
179

TECHNICAL TRANSACTIONS /2018
ELECTRICAL ENGINEERING

DOI: 10.4467/2353737XCT.18.028.8001
SUBMISSION OF THE FINAL VERSION: 22/1/2018

Krzysztof Schiff (kschiff@pk.edu.pl)
Department of Automatic Control and Technology Information, Faculty of Electrical
and Computer Engineering, Cracow University of Technology

An ant colony optimisation algorithm
for the triple matching problem

Algorytm mrówkowy
dla potrójnego zagadnienia dopasowania

Abstract
In this article, ant colony optimisation algorithms for the triple matching problem are described. This is the
first elaborated ant algorithm for this problem. The problem is modeled by means of a 3-dimensional array.
The ant algorithm was compared with the Apx3Dmatchnig-F algorithm and tested for different values of ant
algorithm parameters. The results of these tests were presented and discussed.
Keywords: triple maximum matching problem, ant colony optimization algorithm, non weighted version

Streszczenie
W artykule został przedstawiony po raz pierwszy algorytm mrówkowy dla problemu potrójnego zagad-
nienia dopasowania. Problem potrójnego dopasowania zaprezentowano przy pomocy tablicy trój-wy-
miarowej. Algorytm mrówkowy został porównany z algorytmem Apx3Dmatching-F i przetestowany przy
różnych wartościach parametrów algorytmu mrówkowego, a wyniki tych testów zostały zaprezentowane
i omówione.
Słowa kluczowe: potrójne maksymalne dopasowanie, algorytm mrówkowy, wersja bez wag

180

1.  Introduction

Triple matching is a generalisation of bipartite matching. Finding the largest triple
matching is a well-known NP-hard problem. It is one of Karp’s 21 NP-complete problems [1]
and until now, there was no polynomial time algorithm for this problem. The DNA algorithm
for the triple matching problem was presented in paper [7], but this algorithm is only for
molecular not for electronic computer. The approximation algorithm for the triple matching
problem have been presented recently in paper [8]. The triple matching is also called the
three-dimensional marriage problem [2]. An instance of the three-dimensional marriage
problem consists of n boys, n girls and n pets. A matching M consists of k triples (b, g, p)
such that each boy, each girl and each pet belong to exactly one triple, but since this problem
is very hard to solve, a variant of this problem is studied, which is called the Cyclic Three-
Dimensional Matching [3, 4], but this is not the subject of this paper. Until today, there was
no ant algorithm for the maximum triple matching problem and since the maximum triple
matching belongs to combinatorial problems for which ant algorithms are very suited [5],
I decided to elaborate an ant algorithm for this maximal triple matching problem.

2.  The triple matching problem

In triple matching, we are given X, Y, Z, T, where:
1)	 X, Y and Z are 3 disjoint sets, each of size n.
2)	 T = {(x, y, z): x ∈ X, y ∈ Y, z ∈ Z} ∈ X ⋅ Y ⋅ Z and we have to find M such that:

▶▶ M ⊆ T
▶▶ |M| = k
▶▶ for any 2 distinct elements of M, (x, y, z) and (x′, y′, z′), x ≠ x′, y ≠ y′ and z ≠ z′

The maximum triple matching problem relies on finding max |M|.
The triple matching problem and a solution for this problem are presented in Fig. 1. An

edge represents a preference. A three-dimensional clique (a triangle) represents a match
between boy, girl and pet. A maximum matching at Fig. 1 is presented by three triangles: (B1,
G1, P3), (B2, G2, P1) and (B3, G3, P2).

Fig. 1. The triple problem modeled as a 3-dimensional graph and its solution

181

This instance of the triple matching problem, which is presented in figure 1 as a three-
dimensional graph, can be presented by a three-dimensional array M. Any element of this
array M equal 1 means that there is a match between boy, girl and pet. If any element of this
array M is equal 0, this means that there is no match. All elements of the three-dimensional
array M for the instance of the maximum triple matching problem presented in figure 1 are
listed below:

M[b1, g1, p1] = 0, 	 M[b1, g1, p2] = 0, 	 M[b1, g1, p3] = 1,
M[b1, g2, p1] = 0, 	 M[b1, g2, p2] = 0, 	 M[b1, g2, p3] = 0,
M[b1, g3, p1] = 0, 	 M[b1, g3, p2] = 0, 	 M[b1, g3, p3] = 0,
M[b2, g1, p1] = 0, 	 M[b2, g1, p2] = 0, 	 M[b2, g1, p3] = 0,
M[b2, g2, p1] = 1, 	 M[b2, g2, p2] = 0, 	 M[b2, g2, p3] = 0,
M[b2, g3, p1] = 0, 	 M[b2, g3, p2] = 0, 	 M[b2, g3, p3] = 0,
M[b3, g1, p1] = 0, 	 M[b3, g1, p2] = 0, 	 M[b3, g1, p3] = 0,
M[b3, g2, p1] = 0, 	 M[b3, g2, p2] = 0, 	 M[b3, g2, p3] = 0,
M[b3, g3, p1] = 0, 	 M[b3, g3, p2] = 1, 	 M[b3, g3, p3] = 0.

The solution for the maximum matching problem consists of three elements of this three-
dimensional array M: M[b1, g1, p3] = 1, M[b2, g2, p1] = 1 and M[b3, g3, p2] = 1. Any two of these
elements do not concern the same boy, same girl or same pet and thus the constraint 2 c is
satisfied.

3.  Structure of the ant algorithm

In ant algorithms, each ant is looking for a solution to a problem. If there are m ants,
their solutions are compared and the best among them is chosen. This is repeated in each
cycle of the ant algorithm, but in each cycle, also the best solution is remembered and an ant
mechanism of communication is implemented.

At the beginning of an ant algorithm on all triples, which can be possibly chosen, the
maximum quantity of pheromone tmax is assigned (line 1). Next, based on a 2-dimensional
matrix of preferences between boys and girls bg[][], girls and pets gp[][] and boys and
pets bp[][], a 3-dimensional array M[][][] is created. Elements of array M[][][] are equal
to 1, when there is a match between boy, girl and pet, and is equal 0 in the other case. Ant
algorithms consists of two main loops: one for cycle (line 4) and one for ants (line 6). Vectors
allowedb[], allowedg[] and allowedp[] are used in the following way: when any ant finds
a triple (b, g, p) then this boy, this girl and this pet can be included into another triple, which is
part of the solution for the maximum triple matching problem (line 28), so they are excluded
from the allowed boys, girls and pets, which can constitute the next triple. This exclusion
is made by assigned a value 0 (line 29–31) to these vectors allowedb[], allowedg[] and
allowedp[] for a particular boy, girl and pet. Thus, we can assure that any boys, any girls and
any pets can be selected twice into two different triples, and thus, we assure that the received

182

solution is correct. If elements of these vectors allowedb[], allowedg[] and allowedp[] are
equal to 1, this means that these particular boys, girls and pets can be selected into another
triple (line 7–9).

The while(go) loop is executed when there is another triple (b, g, p), which can be added
into the solution (line 13). Inside this loop, each ant calculates a sum of all the pheromones
deposited on triples, which can be included into solution (line 16–19), a probability of
particular triple selection (line 21–22) and selects one of these triples (line 25–31) based on
the rule circle method and adds this triple into the solution (line 28). We can assure that each
ant finds a solution, which constitutes of k – triples, so the while(go) loop can be executed
equal or less than n times.

Each ant checks if a better solution was found, and if so, this solution is remembered
(line 32–35). In order to do this, each ant calculates a number of triples ld, which were
included into the solution. From all solutions received in one cycle, the one, which has the
greatest number of triples, is selected ldb. This solution ldb is compared to the best solution
ldg, which was found so far by ants (line 36) and the better is remembered. These sizes of
the solution are used to calculate the additional quantity of pheromone dt which will be
deposited on triples.

Next, an ant communication system was implemented (line 37–40): an evaporation
mechanism r was used on all existing triples. which can constitute the solution, and an
additional quantity of pheromone dt is added on all triple,s which constitute the best solution
that was found so far (line 40).

The pseudo code of the elaborated ant algorithm for the maximum triple matching
problem is presented below as algorithm 1.

Algorithm 1. Ant algorithm for the maximum triple matching problem

183

4.  Experiments

Since there are no other ant algorithms even there is no polynomial time exact algorithm
for the maximum triple matching problem experiments, which were conducted, concern only
the comparison of the elaborated ant algorithm Ant3Dmatching with the approximation
Apx3Dmatching-F algorithM [8]. During the first experiment, the size of the problem was
changing from n = 10 to n = 50. The average results from 10 measurements were presented in
figure 2 and in table 1. We can see that when the size of the problem is rising, the Ant3Dmatching
algorithm allows us to receive a bigger maximum triple matching than the Apx3Dmatching-F
algorithm. During the next experiment, the number of cycles was changing from lc = 50 to
lc = 250. The average results from 10 measurements were presented in figure 3 and in table 2.
In addition, the Ant3Dmatching algorithm now allows us to obtain a higher maximum triple
matching than the Apx3Dmatching-F algorithm.

Fig. 2. An average size of maximum matching when lc = 100, lm = 30, r = 0.998 and q = 0.07

184

Table 1.	An average size of maximum matching when lc = 100, lm = 30, r = 0.998 and q = 0.07

N 10 20 30 40 50

Ant3Dmatching 0.5 3.3 6.7 12.1 29.9

Apx3Dmatch-F 0.5 3.3 6.5 11.4 17.7

Fig. 3. An average size of maximum matching when n = 50, lm = 30, r = 0.998 and q = 0.07

Table 2.	An average size of maximum matching when n = 50, lm = 30, r = 0.998 and q = 0.07

lc 50 100 150 200 250

Ant3Dmatching 18.3 19.9 18.8 19.2 21.1

Apx3Dmatch-F 17.3 17.7 17.3 17.4 19.5

The third experiment concerns the size of maximum matching when the number of
ants was changing from lm = 10 to lm = 50. The average results from 10 measurements were
presented in figure 4 and in table 3. There are no big differences in comparison with the
case when the number of cycles was changing and the same occurred when an evaporation
rate was changing from r = 0.990 to r = 0.998: the Ant3Dmatching algorithm has shown its
advantage over the Apx3Dmatchnig_F algorithm. The average results from 10 measurements
were presented in figure 5 and in table 4 for the case when the evaporation rate was changing.

Table 3.	An average size of maximum matching when n = 50, lc = 100, r = 0.998 and q = 0.07

lm 10 20 30 40 50

Ant3Dmatching 19.8 20.8 19.9 20.3 20.2

Apx3Dmatch-F 17.6 19.4 17.7 18.4 18.4

Fig. 4. An average size of maximum matching when n = 50, lc = 100, r = 0.998 and q = 0.07

185

Table 4.	An average size of maximum matching when lc = 100, lm = 30, n = 50 and q = 0.07

R 0.990 0.992 0.994 0.996 0.998

Ant3Dmatching 19.2 19.0 21.3 19.2 19.9

Apx3Dmatch-F 17.8 17.7 19.6 17.0 17.7

Fig. 5. An average size of maximum matching when lc = 100, lm = 30, n = 50 and q = 0.07

The last experiment concerns the size of maximum matching when the density of graph
q was changing. The results have been shown in Table 5 and in Fig. 6. We can see that the
size of maximum matching is changing when the size of the problem is constant and equal to
n = 50, and this size of maximum matching received by the Ant3Dmatching algorithm is
higher than that received by the Apx3dmatching-F algorithm for different graph density
q = { 0.04, 0.07, 0.10, 0.13 and 0.13}. We see that the graph density q is very low. The graph
density q is the probability with which the preference between boy and girl or boy and pet or
girl and pet exist.

Table 5.	An average size of maximum matching when lc = 100, lm = 30, n = 50 and r = 0.998

q 0.04 0.07 0.10 0.13 0.16

Ant3Dmatching 6.6 19.9 32.6 39.1 42.8

Apx3Dmatch-F 6.3 17.7 27.9 33.2 38.6

Fig. 6. An average size of maximum matching when lc = 100, lm = 30, n = 50 and r = 0.998

186

5.  Conclusions

In this article, for the first time, an elaborated ant algorithm for the maximum triple matching
problem is presented. Until now, there was no ant algorithm and no polynomial time exact
algorithm for this problem. The elaborated ant algorithm, which is called the Ant3Dmatching
algorithm, shows its over-performance over the approximation Apx3Dmatchnig-F algorithm.
Thanks to the elaborated ant algorithm, the maximal triple matching problem can be solved
very quickly and the size of the received triple matching is bigger than in the case when the
Apx3Dmatching-F algorithm is used.

References

[1]	 Karp R.M., Reducibility among combinatorial problems, [in:] R. Miller, J. Thatcher,
Complexity of Computer Computations, Plenum, 1972, 85–103.

[2]	 Knuth, D., Stable marriage and its relation to other combinatorial problems, An introduction
to the mathematical analysis of algorithms, Amer. Math. Soc., Providence, RI, 1997.

[3]	 Biro P., McDermid, E., Three-sided stable matching with cyclic preferences, Algorithmica
58(1), 2010, 5–18.

[4]	 Eriksson, K., Sjostrand, J., Strimling, P., Three-dimensional stable matching with cyclic
preferences, Math. Soc. Sci. 52(1), 2006, 77–87.

[5]	 Dorigo M., Stützle T., Ant colony optimization, Cambridge MIT Press. Proceedings of
EvoWorkshops 2002, Berlin, Heidelberg, Springer-Verlag, 2002, 61–71.

[6]	 Chen J., Iterative Expansion and Color Coding, an Improved Algorithm for 3D-Matching,
ACM Transactions on Algorithms, 2012, 6.1–6.22.

[7]	 Cao J., Chang W-L, Guo M., Using sticker to solve the 3-dimensional matching problem in
molecular supercomputers, Int. J. High Performance Computing and Networking, Vol. 1,
2004, Nos. 1/2/3.

[8]	 Epifiano F.S., Ogasawara E., Soares J., Amorim M., Souza U., O Problema de Alocacao
deTutores em Aplicacoes de Provas, XLVI Simposio Brasileiro de Pesquisa Operacional,
Salvador, 16–19.09.2014 Brasil, 2014, 3007–3018.

