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A b s t r a c t
The main aim of this paper is to identify relationships for direct determination in the time domain of 
periodic steady-state solutions for differential equations. A new discrete operator of differentiating has been 
defined. As a result, a set of algebraic equations has been written. Based on this, an algorithm for nonlinear 
differential equations has been proposed. Numerical tests have been carried out both for a new discrete 
operator and for steady-state analysis in a simple electromechanical converter.
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S t r e s z c z e n i e
W niniejszej pracy przedstawiono rozważania prowadzące do równań umożliwiających obliczanie rozwią-
zań ustalonych bezpośrednio w dziedzinie czasu dla układów opisywanych równaniami różniczkowymi, 
o których wiadomo, że posiadają rozwiązania okresowe o znanym okresie. Zdefiniowano dyskretny ope-
rator różniczkowania określający chwilowe wartości pochodnej funkcji w wybranym zbiorze punktów na 
podstawie wartości funkcji w tym zbiorze oraz podano równania algebraiczne określające rozwiązania 
ustalone w tych punktach. Równania te uogólniono na układy nieliniowe posiadające rozwiązania okreso-
we z myślą o układach elektromechanicznych oraz energoelektronicznych. Dyskretny operator różniczko-
wania poddano testom dla najbardziej charakterystycznych funkcji. W artykule przedstawiono ponadto wy-
niki testowych obliczeń stanu ustalonego w prostym przetworniku elektromechanicznym.
Słowa  kluczowe:  analiza w dziedzinie czasu, dyskretny operator różniczkowania
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1.  Introduction

Steady states in electrical circuits and in various types of electromagnetic objects are 
issues of great interest in electrical engineering because the technical parameters of devices 
are based on them. Steady states calculation methods are fundamental problems of electrical 
engineering and are basic tools for identifying the properties of electrical circuits, for example 
symbolic calculus which is used to analyse circuits with sinusoidal current waveform. This 
is a method which operates in the frequency domain. It allows the simple specification of 
parameters of set solutions on the basis of which one can clearly determine values of solutions 
in particular moments of time if necessary. The symbolic calculus in circuits with power 
electronic elements, even if it can be used, is not an effective method. Usually, simulation 
methods are used to determine steady states, increasing simulation time until the steady state 
is reached.

Specifying time performances on the basis of the Fourier spectra obtained with 
frequency  methods can be insufficient in the case of deformed temporary solutions 
containing erratic changes of value, nothing that due to the Gibbs phenomenon. This paper 
presents an attempt to create an algorithm which allows the direct calculation of the temporary 
values of periodic steady waveforms where a circuit is described by a system of linear 
ordinary differential equation with temporary variable modulus which has periodic steady 
solutions.

2.  Formulation of the problem

From a mathematical point of view, the particular solution is looking for to the system 
of differential equations in the form:

	 d
dt

t tx A x b= ⋅ +( ) ( ) 	 (1)

in which both matrix A(t) and input vector b(t) are periodic and can be represented in the 
Fourier series:
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It can be proved that such a solution, known in engineering as steady-state, is also periodic 
and can be represented in form of the Fourier series:

	 x x X e( ) ( ) , /t t T Tk
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k
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	 (3)

The values of coefficients of this Fourier series comply with the infinite system 
of algebraic equations in the form [1, 2]:
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in which Ak and Bk are coefficients of the complex Fourier series (2). The equation set (4), 
limited to finite dimensions, allows us to calculate the spectra of solution in a given range 
of  frequency. Therefore, it is a  solution in the frequency domain, on the basis of which 
one can determine waveforms in time domain.

Equations (4) where used to formulate the equations directly determining values 
of the steady-state solutions in a selected set of points over the period of its variations, 
i.e. determining the solution in the time domain. For this purpose, a relation between values 
of a periodic function with period T and the coefficients of a Fourier series has been used. 
The relation between a set 2N+1 of points evenly distributed over the period of a function, 
so, that tn = n · T/(2N + 1) for n = {0, ±1, ±2, …, ±N} and a set of 2N + 1 the first successive 
harmonics n  =  {0, ±1, ±2, …, ±N} of the complex Fourier series can be written in the 
form [3, 4]:

	 x C XN N= ⋅ 	 (5)

where:
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where c = ej(2p/(2N+1)).
We can demonstrate that matrix C complies with the relationship:

	 ( ) ( )C C ET
NN

∗

+⋅ = + ⋅2 1 2 1 	 (7)

Therefore relationships between the Fourier modules and values of function can be 
written down in the form
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Equations (4) and relationships (5) and (8) will be used to formulate equations 
directly determining  instantaneous values of periodic solutions.

3.  Equations defining the solution in the time-domain for linear equations

To form of algebraic equations defining the periodic solutions in the time domain we 
should limit infinite harmonic balance equations (4) to dimensions, (2N + 1) × (2N + 1) from 
which we can calculate a Fourier spectra of the solution set to the N-th harmonic, inclusive. 
This system written down compactly has the form:
	 j N N N N N⋅ ⋅ = ⋅ +Ω X A X B 	 (9)

Relationships between the momentary values of a solution and a Fourier series modulus 
for a vector solution x(t) can be, on the basis of (5) and (6), written in the form:

	 x C X X C xN N N T N

N
= ⋅ =

+
⋅

∗
; ( )1

2 1
	 (10)

Matrix C takes the form identical to matrix C given by formula (6), but each of its 
elements is constituted by a diagonal matrix of dimension of matrix A(t) of the system (1), 
comprising elements equal to the appropriate element in matrix C.

The system of equations which determines the solution set in the time domain can be 
obtained after conducting the following mathematical calculations:

	 j
N
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Designating:
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	 b C BN N= ⋅ 	 (14)
we obtain a system of linear algebraic equations:

	 ( )D a x bN N N N− ⋅ = 	 (15)

Matrixes DN and aN obtained as a result of multiplying the matrix in brackets in relationships 
(12) and (13) are squared and have dimensions (2N + 1) × (2N + 1), and bN is a vector with 
(2N + 1) elements. These dimensions correspond to the number of points in which values 
of periodic solutions are calculated. Matrix DN represents a differential operator, and matrix 
AN  and bN represents values of matrix A(t) and the inlet vector b(t) at selected instances 
of time.
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Matrix DN, which can be called a discrete differential operator for a periodic function, 
takes the form:

	 D
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whose elements are diagonal matrices dn of dimensions of the system (1) with the values dn 
on the diagonal:
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These values are calculated from relationship:
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Matrix DN is singular, which is quite obvious, because we cannot reproduce the constant 
periodic function on the basis of its derivative.

Execution of operations provided in (13) and (14) is not necessary, because they determine 
values of matrix vector A(t) and vector b(t) in selected time instances. They can be designated 
directly from these matrices, and not using their distribution in a Fourier series. Therefore 
we can write:
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where by matrices A(n) and vectors b(n) are denoted the matrix A(t) and the vector b(t), 
respectively, calculated for the time instances tn. Then, the system of equations (15) takes 
the form:
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It is the system of algebraic equations which was sought, from which one can directly 
calculate the values of periodic solution in a selected set of 2N + 1 points.

The above considerations can be generalized to the non-linear system of differential 
equations of the form:

	 d
d
x f x
t

t= ( , ) 	 (19)

in cases where it is known that there is a solution to the given equation and this solution is 
periodic x(t) = x(t + T). In order to do this, we must write down the system (19) in the form:

	 d
d
x A x x b
t

t t= +( , ) ( ) 	 (20)

For this equation, we can create an iterative algorithm for seeking a periodic solution 
based on equations (15) and (19). Such an algorithm requires an iterative solving of equations 
of the form (in a compact notation):

	 ( )D a x bN
i
N

i
N N− ⋅ =+1 	 (21)
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and contains matrixes Ai(n) calculated for the solution obtained in the i-th iteration for 
subsequent time instants. Such an algorithm requires the determination of the value of the 
starting solution.
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4.  Study of discrete differentiation operator

In order to check the correctness of the operation of the differentiation operator DN, 
the following calculation were performed:

–	 the correctness of calculating the derivative of a constant function was checked. 
As  a  result of the derivative because the values of matrix elements DN comply to 
condition: 

	 d d n Nn N n= − =+ −2 1 1 2for ( , , , ) 	 (22)

–	 correctness of calculating derivative of a function cos x was checked. The calculation 
results for N = 100 were shown in Fig. 1. Accuracy of function reconstruction ‒sin x 
is of the order of 10‒12.

–	 correctness of calculating derivative of a discontinuous function was checked. 
The derivative is not quite correctly reconstructed because there are effects similar 
to the Gibbs effect when calculating the value of discontinuous function on the basis 
of a Fourier series. This is illustrated in Fig. 2 with N = 100.

Fig.  1.  Reconstruction of derivative of the function cosx by the operator  
of differentiation DN

Fig.  2.  Reconstruction of derivative of the discontinuous function by the operator 
of differentiation DN
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5.  Example of designating the solution for an electromechanical transducer

In order to illustrate the proposed approach, the steady-state analysis of the simplest 
electromechanical converter described by the equation is presented:

	 d
dt
L L i R i u t( cos ( )) ( )0 1 2+ ⋅ ⋅ + ⋅ =ϕ 	 (23)

The steady-state conditions are supplying voltage that is mono-harmonic:

	 u t U t( ) cos ( )= ⋅ ⋅2 Ω 	 (24)

at constant angular velocity j = W · t + j0. In these conditions, it can be envisaged that the 
solution in steady state will be periodic. The equation of the converter has been written 
in the normal form, corresponding to the equation (1):

	 d
dt

R
L t

u tψ
ψ= ⋅ +

( )
( ) 	 (25)

making use of the formula y = L(t) · i.
The calculations were performed for the following parameters: L0  =  3  H; L1  =  2  H; 

j0 = p/2; U = 230 V; W = 2 · p  · 50 1/sek. Also, for three resistance values: R = 100 W; 
R = 1000 W; R = 2000 W. It was assumed that N = 100, i.e. 201 equally distributed points 
were chosen in the range of voltage variation (‒T/2, T/2). On the basis of equation (21), 
a system of equations (18) of dimensions (201×201) were set up, obtaining from its solution, 
the value of the linkage flux in the selected set of points. Values of current in these points 
were determined from the relationship i = y/L(t).

The calculation results in the form of variability diagram i(t) and y(t) were shown 
in the following figures – for R = 100 W on Fig. 3, for R = 1000 W in Fig. 4 and R = 2000 W 
for Fig. 5. In Figure 3a, the waveform of flux is practically an integral of the voltage because 
the value of drop in voltage across the resistance is relatively small. The current is distorted 
due to the variable inductance. As the resistance is being increased, the flux deforms more 
and  more, and consequently, the current deforms as well. Waveforms were determined 
directly in time. A small modification also allows the direct determination of current.

Fig.  3a.  Flux waveform y(t) (R = 100 W) Fig.  3b.  Current waveform i(t) (R = 100 W)
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6.  Conclusions

In this paper, equations for the direct determination of the instantaneous values for the 
periodic steady-state solution of linear differential equations with periodically variable 
parameters were evaluated. The obtained equations take the form of a set of linear algebraic 
equations and eliminate the need to use the Fourier series. The new discrete differential 
operator is an important element of this system.

Numerical tests of the discrete differential operator confirmed its correctness for 
calculation of derivatives for differentiable functions and its usefulness for the steady-state 
analysis of electromechanical converters.
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