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DEGENERATE SINGULARITIES AND THEIR MILNOR

NUMBERS

by Szymon Brzostowski

Abstract. We give an example of a curious behaviour of the Milnor num-
ber with respect to evolving degeneracy of an isolated singularity in C2.

1. Introduction. Let f : (Cn, 0)→ (C, 0) be an isolated singularity , i.e.
let f be a holomorphic function germ with an isolated critical point at 0. The
Milnor number of f is defined as

µ(f) := dimC

( On
(∂f/∂x1, . . . , ∂f/∂xn)On

)
.

The number turns out to be a topological invariant of a singularity (see [7]).
We also put µ(f) = 0 for a smooth f .

To the singularity f a combinatorial object is also associated: – its Newton
diagram N (f). Under some non-degeneracy conditions on f (see Section 2)
the Milnor number µ(f) can be computed from its Newton diagram. It is the
celebrated Kouchnirenko Theorem (see [5] or [8] for the case n = 2).

Theorem 1. There exists a number ν(f), called the Newton number of f ,
depending on the Newton diagram of f only and such that

1. ν(f) 6 µ(f),
2. if f is non-degenerate, ν(f) = µ(f).

Although Theorem 1 is valid in any dimension, the inverse implication in
(2), as observed by P loski [8, 9] and [1], is true for n = 2 only.

Theorem 2. If n = 2 and ν(f) = µ(f), then f is non-degenerate.

The fact that Theorem 2 is not true in general, was already noticed by
Kouchnirenko [5, Remarque 1.21], see also Example 1.

Publikacja objęta jest prawem autorskim. Wszelkie prawa zastrzeżone. Kopiowanie i rozpowszechnianie zabronione.  
Publikacja przeznaczona jedynie dla klientów indywidualnych. Zakaz rozpowszechniania i udostępniania serwisach bibliotecznych



38

In light of Theorem 2, the two-variable case seems to be very special.
Indeed, it turns out that in this case there exists a complete characterisation
of non-degeneracy of a singularity f in a coordinate system, in terms of intrinsic
topological invariants of f (see [1]).

Let us explicitly list some other properties of Milnor numbers.

i. µ(·) is upper semi-continuous w.r.t. holomorphic unfoldings (see [2, The-
orem 2.6]).

ii. µ(·) is an increasing function on the set of non-degenerate singularities
partially ordered by the relation

f 4 g ⇔ N (f) ⊃ N (g),

where f, g ∈ On; a simple proof of this fact can be found in [3].
iii. Let n = 2 and f be non-degenerate. A simple consequence of Theorem

1 and Theorem 2. is that if f ‘gets degenerated’ on any face S of N (f),
then its Milnor number increases. Precisely, if g = f+r is another isolated
singularity such that N (f) = N (g) and g is degenerate on S ∈ N0(f) (see
Section 2 for definitions) then µ(g) > µ(f).

In the paper we examine the possibility of extending property (iii) onto the
case of degenerate singularities (Section 3). Our first result is that it cannot
be done in a verbatim way. Namely, we give an example (Example 2) of a sin-
gularity f such that, f having been degenerated on one segment of its Newton
boundary, its Milnor number decreases. The second result gives such a method
of degenerating f under which the Milnor number increases (Proposition 2).

2. Definitions and auxiliary properties. In this section we briefly re-
call the necessary basics. Let f : (Cn, 0) → (C, 0) be a holomorphic function
germ with an expansion of the form

f =
∑
α∈Nn

0

fαx
α,

where the usual multi-index notation is applied. We define the support of f
as Supp f := {α ∈ Nn

0 : fα 6= 0} and the Newton diagram of f as N (f) :=
conv(Supp f+Nn

0). The set of the compact faces of N (f) of positive dimension
is called the Newton boundary of f and is denoted by N0(f). f is said to be
convenient if N0(f) meets each of the coordinate axes. For a convenient f

we denote by N−(f) the compact polytope defined as Rn+\N (f). Then the
Newton number ν(f) of f is defined by

ν(f) := n!Vn − (n− 1)!Vn−1 + . . .+ (−1)n−1V1 + (−1)n,

where Vn is the n-dimensional volume of N−(f) and for 1 6 k 6 n − 1, Vk is
the sum of the k-dimensional volumes of the intersections of N−(f) with the
coordinate planes of dimension k. If f is an isolated singularity and f is not
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convenient, it can be made convenient by adding to it high enough powers of
the missing variables and then the formula above makes sense for the changed
f . It can be shown that such operations on f lead to the same Newton numbers
and so – to the definition of ν(f) in the general case of isolated singularities
(cf. [5, 6, 11]).

The non-degeneracy condition, which is the key to the Kouchnirenko The-
orem, can be formulated as follows.

Definition 1. For S ∈ N0(f) let

inS(f) :=
∑

α∈S∩Supp f
fαx

α.

We say that f is non-degenerate on S if the system

∇ inS(f) = 0

has no solutions in (C∗)n, where ∇ denotes the gradient of a function. If f is
non-degenerate on every S, we say that f is (Kouchnirenko) non-degenerate.
In the opposite case, we say f is degenerate.

Let us recall the fol lowing simple properties.

Proposition 1. Let S ∈ N0(f). Then:

i. fS is quasi-homogeneous,
ii. if fS has two terms only, then f is non-degenerate on S,

iii. if fS has a multiple factor that is not a monomial, then f is degenerate on
S,

iv. for n = 2 the converse of (iii) also holds.

Proof. Items (i)–(iii) are straightforward. The item (iv) follows from
Euler’s formula for quasi-homogeneous polynomials.

We cite the Kouchnirenko example, which shows that, when n > 3, the
above-defined nondegeneracy condition is actually too strong for the conclusion
of (2) in Theorem 1 to be true.

Example 1. Let f = (x1 +x2)
2 +x1x3 +x23. Note that f is convenient and

quasi-homogeneous. By Proposition 1 we conclude that f is degenerate on the
face S = (1, 0, 0)(0, 1, 0), because fS = (x1 + x2)

2. A simple calculation shows
that ∇f = (2(x1+x2)+x3, 2(x1+x2), x1+2x3) generates the ideal (x1, x2, x3)
in O3 and so there is µ(f) = 1, by the definition of the Milnor number. On
the other hand, it is easy to see that ν(f) = 3! · 43 − 2! · 6 + 1! · 6 − 1 = 1, so
ν(f) = µ(f), although f is degenerate.
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In the case of n = 2, we recall a notion of non-degeneracy for pairs of
holomorphic germs. We say that a pair (f, g) : (C2, 0) → (C2, 0) is non-
degenerate (see [8]) if for every S ∈ N0(f), T ∈ N0(g) one of the following
conditions holds

a) S ∦ T ,
b) S‖T and the system fS = gT = 0 has no solutions in (C∗)2.

Then the following is true (see [8, Theorem 1.2]).

Theorem 3. For any non-degenerate pair (f, g) : (C2, 0) → (C2, 0) of
convenient germs the intersection multiplicity (f, g)0 of f and g depends on
the pair (N0(f),N0(g)) only.

Finally, the following formula holds (it is an immediate consequence of
[4, Proposition 4] and [7, Theorem 10.5]; see also [2, Lemma 3.32] and [2,
Proposition 3.35], respectively).

Theorem 4. If f, g : (C2, 0) → (C, 0) and fg is an isolated singularity
then

µ(fg) = µ(f) + 2(f, g)0 + µ(g)− 1.

3. Degenerate singularities and their Milnor numbers. First we
give an example showing that item (iii) of Introduction cannot be generalised
in the form analogical to the degenerate case, even for n = 2.

Example 2. Consider three germs f1, f2, f3 ∈ O2:

f1 := y − x− x3,
f2 := y − x+ x3,

f3 := x2 + y4.

We define

f := f1f2f3

= (y6 + x2y2 − 2x3y + x4)− 2xy5 + (x2 − x6)y4 − x8.

The Newton diagram of f is of the following form.
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1 2 3 4 5 6 7 8

1

2

3

4

5

6

S1

S2

0

From the definition of f it follows that fS1 = y6 + x2y2 = y2(y4 + x2)
and fS2 = x2y2 − 2x3y + x4 = x2(y − x)2, and so by Proposition 1, f is non-
degenerate on S1 and degenerate on S2. It is easily seen that ν(f) = 11. In
order to compute µ(f) we change the coordinates: x 7→ x, y 7→ x+ y. Then f
takes the form

f̂ := f(x, x+ y) = (y6 + x2y2 − x8) + (4xy5 + 6x2y4 + 4x3y3 + x4y2)

+ (−x6y4 − 4x7y3 − 6x8y2 − 4x9y − x10)

and the Newton diagram of f̂ is

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10

S1

T
0

Now it is f̂S1 = y6 + x2y2 and f̂T = x2y2 − x8, so again by Proposition 1

we conclude that f̂ is non-degenerate. Since the Milnor number is an analytic
invariant of a singularity then by Kouchnirenko Theorem, µ(f) = µ(f̂) =

ν(f̂) = 15.
The next step is to ‘degenerate’ f on S1. Namely, we consider g := f+2xy4.

It is obvious that from the point of view of the Newton boundary, the only
difference between f and g is on the segment S1: gS1 = fS1 +2xy4 = y2(y2+x)2

and gS2 = fS2 . We conclude that g is degenerate on the both of its segments –
on S1 and S2. Since N0(g) = N0(f) then ν(g) = ν(f) = 11. To compute µ(g)
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we change the coordinates once again: x 7→ x− y2, y 7→ x+ y. We obtain

ĝ := g(x− y2, x+ y) = (4y7 + x2y2 + 2x5)− 8xy5 − 5x2y4 − 4x3y3 + 10x2y3

− x4y2 + 12x3y2 + 8x4y + other terms of degree > 7.

The (truncated above 8) Newton diagram of ĝ is of the form

1

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10

U1

U2

0

and we can see that ĝU1 = 4y7 + x2y2 and ĝU2 = x2y2 + 2x5. It means that ĝ
is nondegenerate and we can apply Theorem 1 to compute its Milnor number.
We obtain µ(ĝ) = ν(ĝ) = 13. By the invariancy of the Milnor number, we
conclude that

µ(g) = µ(ĝ) = 13 < 15 = µ(f).

Summing up, we have found f and g such that:

1. Supp g = Supp f ∪ {single point},
2. N0(f) = N0(g) = {S1,S2},
3. f is non-degenerate on S1 and degenerate on S2,
4. g is degenerate on S1 and S2,
5. µ(f) > µ(g).

The above shows that the Milnor number is not ‘monotonic with respect to
degeneracy,’ in general.

A positive result concerning the problem can also be given. Let f be an
isolated and convenient singularity with #N0(f) > 2, and let S0 ∈ N0(f). Let
g be the factor of f associated to this segment. It means that there exists
a decomposition of f of the form f = gh such that:

i. N0(g) = {S1} and S1‖S0,
ii.

∧
T ∈N0(h)

T ∦ S0

(see e.g. [12, Lemma 2.44]). The following holds.
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Proposition 2. Assume that f is non-degenerate on S0 and that there
exists an isolated singularity g̃ such that N0(g̃) = {S1} and g̃ is degenerate.

Define f̃ := g̃h. Then:

1. N0(f) = N0(f̃),

2. f̃ is degenerate on S0,
3. µ(f) < µ(f̃).

Proof. By assumption N0(g) = N0(g̃). Since f is convenient, g and g̃
are convenient, too. This implies that N (g) = N (g̃). Now the first assertion
follows from the known properties of Newton diagrams (see [10, Section 3.6]
or [1])

N (f) = N (gh) = N (g) +N (h) = N (g̃) +N (h) = N (g̃h) = N (f̃).

We claim that conditions (i) and (ii) of the assumption imply that the following
is true:

(1) f is non-degenerate on S0 ⇔ g is non-degenerate on S1
and similarly

(2) f̃ is degenerate on S0 ⇔ g̃ is degenerate on S1.
Indeed, if v⊥S0 is a vector with positive integer coefficients and we consider
the v-gradation on O2, then denoting by inv the initial form operator with
respect to this gradation, we see that

fS0 = inv f = inv g · inv h = gS1 · (a monomial).

Using Proposition 1 (iii)–(iv) we arrive at (1). The argument for f̃ runs in the
same way so also (2) holds, and in particular the second assertion is proved.

Now note that by assumption (ii) the pair (g, h) is non-degenerate, and
since N0(g̃) = {S1} the same is true for the pair (g̃, h). By Theorem 3, it means
that (g̃, h)0 = (g, h)0. On the other hand, since g̃ is degenerate (by assumption)
and g is not (by (1)), Theorem 2 asserts that µ(g̃) > µ(g). Summing up

µ(f̃) = µ(g̃h) = µ(g̃) + 2(g̃, h)0 + µ(h)− 1

> µ(g) + 2(g, h)0 + µ(h)− 1 = µ(gh) = µ(f).

We illustrate the proposition with the following example.

Example 3. Consider f of Example 2. We can take g = f3 = x2 + y4

and h = f1f2. Then N0(g) = {S0} = {(0, 4), (2, 0)} and S0‖(0, 6), (2, 2) =
S1 ∈ N0(g). We consider a degenerated g, e.g. g̃ := (x+ y2)2 + x3 and define

f̃ := g̃h = f + (2xy2 + x3)f1f2. It is easy to see that µ(f̃) = 17 > 15 = µ(f)
(one can use Theorem 4 to perform the calculation).
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Remark 1. It is possible to give a parametric version of Example 2.
Namely, one can consider f1 := y− x− sx3, f2 := y− x+ sx3, f3 := y4 + s2x2

and sf := f1f2f3 + x7, where |s| � 1. Additionally, let stf := sf + 2txy4,
for |s|, |t| � 1. Then stf is a holomorphic unfolding of f0 := (y − x)2y4 + x7.
It is easy to see that N0(

stf) = N0(
sf) = {S1,S2}, where S1,S2 are the seg-

ments as in Example 2. One can check that stfS1 = y2(y4 + 2txy2 + s2x2)
and stfS2 = s2x2(y − x)2. It means that stf is non-degenerate on S1 for
s 6= t and degenerate on S2. Here µ(stf) = 12 for s 6= t different from 0.
In accordance with property (i) of Introduction, µ(stf |t=0) = µ(sf) = 14 > 12
and µ(stf |t=s) = 13 > 12. However, stf

∣∣
t=s = sf + 2sxy4 is degenerate on

S1, while sf is not, and yet µ(stf |t=s) < µ(sf) . The skipped calculations are
similar to those of Example 2.
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