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the risk of FIRE occurrING in BUILDING 
compartment – what are the consequences  

if it is assumed TO BE time-independent

ryzyko zaistnienia pożaru w strefie pożarowej 
– jakie są konsekwencje, jeśli przyjąć, że jego 

wartość nie zależy od czasu

A b s t r a c t

The acceptance in advanced fire safety analysis of the formal model according to which the 
probability of fire occurrence is assumed as time-independent leads to the conclusion that random 
fire episodes in considered building compartment can be described by the formalism of a Poisson 
process. In the presented paper some consequences of such adoption are presented and widely 
discussed as well as the foundations are determined of the equivalence between this probability and 
a conditional failure rate, which is interpreted as a process intensity parameter. 
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S t r e s z c z e n i e

Akceptacja w zaawansowanej analizie bezpieczeństwa pożarowego modelu formalnego, 
zgodnie z którym prawdopodobieństwo zaistnienia pożaru jest przyjmowane jako niezależne 
od czasu, prowadzi do wniosku, że losowe epizody pożaru w rozpatrywanej strefie pożarowej 
mogą być opisywane przy użyciu formalizmu procesu Poissona. W prezentowanym artykule 
przedstawiono i przedyskutowano niektóre konsekwencje wynikające z takiego przyjęcia, a także 
podano podstawy uznania równoważności pomiędzy rozpatrywanym prawdopodobieństwem 
a warunkową częstością zawodów, która jest interpretowana jako parametr intensywności procesu. 

Słowa kluczowe: zaistnienie pożaru, prawdopodobieństwo, proces Poissona, ryzyko, stopień 
zagrożenia, intensywność procesu.
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Symbols

ffi(t) 	 –  compartment random durability probability density function (pdf),
Ffi(t)	 –  compartment random durability cumulative distribution function (cdf),
h(t) = h	 –  hazard function (conditional failure rate) that fire will occur in a compartment 

at time t + dt (specified per one year of building service and one square meter 
of the fire compartment area)

mfi = MTTF	 –  mean time to fire in a compartment,
pf	 –  probability of structural failure due to fire, provided that fire ignition has 

occurred, 
pff	 –  probability of fire induced structural failure, related to the fire which can take 

place; but has not yet occurred, 
pf,ult	 –  ultimate acceptable value of the structural failure probability,
pt	 –  probability of fire occurring in a compartment,
R(t)	 –  reliability function specified for a compartment in the context of potential fire 

occurrence, 
t	 –  time the assessment of the hazard rate is made for,
t0	 –  time related to the beginning of the building service,
tfi	 –  time related to the first fire ignition in a compartment,
Tfi	 –  random durability of a compartment (time to the first fire),
l(t) = l	 –  the Poisson process intensity of fire occurring in a compartment. 

1. Introduction

To protect the considered load-bearing structure against potential fire exposure in a more 
rational and better justified way the risk of fire occurrence should be adequately estimated in 
advance, in relation to the compartment inside of which such structure is located. The reliable 
knowledge of its value allows to differentiate the suitable safety requirements by assuming 
the acceptable risk level adjusted to real threat conditions. In consequence, in many cases less 
restrictive fire protection measures can be legally applied, being significantly cheaper and 
easier to use than those designed according to the traditional approach. 

In fact, the failure probability pf is usually adopted as a conclusive and objective valuation 
measure when the classical safety analysis is performed, for the case of unexpected event 
potentiality, such as threat to people or a building structure. Its application explicitly 
determines the understanding of limit state requirements. Such limit state is not reached 
exactly at the point-in-time when the considered event really takes place, but earlier, when the 
probability of its occurrence becomes too high and may no longer be tolerated. Conclusively, 
the safety condition is in general formulated as follows:

	 f f ,ultp p≤
 	 (1)

where the maximum acceptable values of failure probability, i.e. pf,ult, are assigned arbitrarily, 
to be adequate for the assumed reliability class [1].
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However, if the fire safety is to be examined in detail, one should precisely define what 
kind of such failure probability is considered, as at least two interpretations are possible, 
differing not only from quantitative but also from qualitative point of view. These are as 
follows [2, 3]:
•	 probability of fire caused failure, if it is known that fire ignition occurred and; moreover, 

this fire reached the flashover point (and thus may be described as a fully developed fire) 
– in further analysis such probability is generally denoted by pf,

•	 probability of fire caused failure, due to fire which did not occur so far (so the designer 
has no information on its ignition and flashover) – let us assign a symbol pff to designate it.
According to Lie [4] pf  and pff are related by:

	 pff = ptpf	 (2)

where pt denotes the probability of fire occurrence (not only of fire ignition but also reaching 
the flashover point). As one can see, probability pf is interpreted here as a conditional proba-
bility with a condition that fire has already occurred and the exhaust gas temperature in the 
whole compartment is uniform (the fire is fully developed). Not only a qualitative but also 
a quantitative distinction between probabilities pf and pff seems to be very significant. Even 
if conditional probability pf is high, probability pff is usually quite low, because in reality the 
value of probability pt is also low. 

Let us underline, that the value of the probability pff, related to the potential fire which 
did not occur so far, seems to be essential both for building occupants who will be able to 
occupy the considered compartment if fire ignition and flashover takes place and also for 
firemen taking part in a future firefighting action. To responsibly assess such value according 
to formula (2), the appropriate value of a probability of fire occurrence pt has to be accepted 
beforehand by the safety expert for considered compartment, depending on the way such 
compartment is used as well as on the fire loads accumulated in its volume and on the possible 
ventilation conditions. The probability pt is usually assumed to be constant during the whole 
lifetime of the building. The main advantage of such design approach lies in its simplicity; 
however, it leads to both quantitative and qualitative consequences important for the safety 
level really ensured for inhabitants. The detailed analysis of those repercussions, resulting 
directly from the adopted analytical model, is the main objective of the presented paper.

2. The risk, the hazard function or the failure probability – which is the most accurate 
interpretation of pt

One may find many quantitative evaluations of the probability pt in professional literature. 
Some of those are listed in Table 1. Let us notice that in [5] the author proposed to rename 
this quantity and interpret it as the hazard function h. The basic reason was that if a function 
has a dimension, then it cannot be treated as a typical probability, in spite of the fact that it is 
defined in this way by many authors. 

It is noteworthy that all proposed values of the considered hazard function are assumed to 
be constant-in-time. This also means that they do not depend on the point-in-time when they 
are assessed. Thus, in consequence, the value of a probability pt is quantitatively the same 
both at the beginning of the building life and after many years of its service.
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In such a formal model the quantity pt should not be interpreted as the classical risk 
value because in a common understanding the risk is the probability of something happening 
multiplied by the resulting cost or benefit of its occurrence. 

In the approach proposed by the author the quantity pt = h is interpreted as a conditional 
probability that potential fire will occur between the t and t + dt points-in-time if it is known 
(including the condition) that it did not occur in time-period [t0,t) – t0 denotes commissioning 
of the building. To make such definition more illustrative let us study in detail the following 
explanation:
•	 Let the event A mean that considered fire occurred between t and t + dt; whereas, the event 

B, that this fire did not occur in [t0,t).

•	 Next, let us calculate the value of a conditional probability P A B
P A B
P B

( ) = ∩( )
( )

. In this 

formula P A B P A∩( ) = ( )  because if the fire occurs between t and t + dt it could not 

occur prior to time t.
•	 Let the point-in-time t0 denote the commissioning of the building, while the point-in-

time tfi the moment of the first fire ignition in considered compartment. Then a difference 
Tfi = tfi – t0 is the measure of a compartment random durability in context of building fire 
safety analysis. It is assumed that the considered compartment is reliable at a random 
point-in-time t if no fire occurred prior to this point-in-time.

•	 Concluding, the reliability function R(t) may be formulated as follows:

	 R t P T t P T t F tfi fi fi( ) = ≥( ) = − <( ) = − ( )1 1 	  (3)

where Ffi(t) is a compartment durability cdf (cumulative distribution) function. The corre-

sponding pdf (probability density) function ffi(t) is then equal to f t dF t dtfi fi( ) = ( ) .
Consequently, the probability that fire occurs in time period [t,t + dt) is equal to 
P A f t dtfi( ) = ( ) , while it is also true that P B F tfi( ) = − ( )1 .

•	 Finally, the value of the examined hazard function can be estimated by the formula:

T a b l e  1 

Recommended values of fire ignition hazard function h ( ) 12 610m year
− − ⋅ ×  

Building type Kersken – 
Bradley [6]

BSI DD240 
[7]

DIN 18230 
[8]

JCSS [9] Schleich, Cajot 
et al. [10]

Apartments 0.1÷0.5 2.0 0.2 0.5÷0.4 30.0
Schools 0.1÷1.0 – 0.5 0.5÷0.4 –
Hotels 0.1÷1.0 – 1.0 – –
Shops 0.5÷5.0 – 1.0 1.0 –
Offices 0.1÷1.0 1.0 0.5 1.0 10.0
Industrial buildings 1.0÷5.0 2.0 2.0 2.0÷10.0 10.0
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	 h t P A B
P A
P B

f t dt
F t

P t T t dt T
fi

fi
dt

fi fi( ) = ( ) = ( )
( )

=
( )

− ( )
=

≤ < +

→1 0
lim

≥≥( )t
dt

	  (4)

As one can see, transition of considered compartment to the failed state (failure is 
understood here as the occurrence of fire) is characterized by the conditional failure rate. 
This can be interpreted as a measure of the rate at which failures occur, taking into account 
the size of the population with the potential to fail, i.e. those compartments of the examined 
type, which did function without fire until time t.

3. The hazard rate h(t) constant-in-time – basic consequence

As it is shown in Table 1, the hazard rate h(t), constituting conditional probability measure 
of fire occurrence, is usually assumed to be time independent. This means that its value 
remains constant during the whole building lifetime. In this chapter the basic consequence 
of such assumption is demonstrated, dealing with the predicted reliability of considered fire 
compartment. In order to study the resultant trend characterizing the adequate reliability 
function R(t) – see Eq. (3) – the formula (4) has to be integrated. In fact:

	 ( ) ( )
( ) ( )

0 0

1
1

t t
fi

fi
fi

f t
h t dt dt ln F t

F t
 = = − − −∫ ∫ 	 (5)

yielding:

	 ( ) ( )
0

1
t

F t exp h t dt
 

= − − 
 
∫ 	 (6)

Assumption that h(t) = const (t) leads to the simple equation:

	 ( ) 1 htF t e−= − 	 (7)

and also, regarding the reliability:

	 ( ) htR t e−= 	 (8)

It is a common knowledge that such relation is associated with the formalism of Poisson 
process, according to which hazard rate h(t) = h is equivalent to process intensity λ(t) = λ 
[4]. This is not a surprise because the fire episodes, treated by designers as accidental events, 
should occur very rarely. Moreover, despite the fact that fire duration is always marked as 
a sectioning line along the time axis, it is very short in relation to the human lifetime or to 
the whole building service time. Probability pt is then understood as the probability that 
fire ignition occurred at least once prior to the considered point-in-time t (most frequently 
the time period [t0,t) is the whole building lifetime, but if only one year of service life is 
to be considered the point-in-time t0 denotes beginning of such year). Consequently, the 
probability that fire will occur x times prior to time t is given as follows:
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	 p x
t e
xx

x t

( ) = ( ) −λ λ

!
,   x = 1, 2, …, ∞	  (9)

where parameter λ is called process intensity. Application of this formula leads to the follo-
wing formulae for probabilities px and pt:
•	 probability that fire will not occur at all prior to time t:

	 p x ex
t=( ) = −0 λ 	  (10)

One can easily see that such equation is equivalent to formula (8). In fact, the examined 
compartment remains to be reliable only if no fires occur prior to time t.

•	 probability that fire will occur exactly once prior to time t:

	 p x tex
t=( ) = −1 λ λ 	  (11)

•	 probability that fire will occur at least once prior to time t (i.e. once or more than once):

	 p x p x e px x
t

t≥( ) = − =( ) = − =−1 1 0 1 λ 	  (12)

4. Conditional failure rate as a process intensity parameter

The conditional failure rate h, generally adopted as the measure of the fire occurrence 
risk, is most frequently specified per one year of building lifetime and per one square meter 
of the considered fire compartment area. 

The method to evaluate the intensity parameter λ, for buildings having only one type of 
fire compartments, was given by Lie [4]:

	 λ = hA	  (13)

where h[m–2] denotes the fire occurrence risk (calculated per 1m2 of fire compartment); whe-
reas, A[m2] is the area of the considered fire compartment. If several fire compartment types, 
with various sizes assigned to each of them, are located in the examined building, then the 
generalized formula proposed by Burros [11] may be applied in safety analysis:

	 λ = =hA h A
N
F 	  (14)

according to which AF is the total area of all compartments in the whole building; whereas N 
is the number of such compartments.

Furthermore, because in relation to one year of the building service (and even to the 
whole service life) x << 1 holds, the following simplification of Eq. (12) is acceptable and 
commonly used:

	 p x e e hAt px
t hAt

t≥( ) = − = − ≈ =− −1 1 1λ 	  (15)
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If the formalism characterizing the Poisson process is accepted as describing the probability 
of consecutive fire episodes, it may be used to evaluate the sought failure probability pff (see 
Eq. (2)), thus making possible to the rearrangement of Eq. (3) to the following form, identical 
with Eq. (8):

	 R t p x P T t P T t F t ex fi fi fi
t( ) = =( ) = ≥( ) = − <( ) = − ( ) = −0 1 1 λ 	 (16)

Consequently:

	 F t efi
t( ) = − −1 λ  	  (17)

and also:

	 f t
dF t
dt

efi
fi t( ) = ( )

= −λ λ
	  (18)

This means that the random time to the first fire occurrence exhibits exponential 
probability distribution. As a result of such substitutions the hazard rate h(t) = h may be 
calculated as follows:

	 h t dt
f t dt
F t

e dt
e

dtfi

fi

t

t( ) =
( )

− ( )
=
( )

=
−

−1

λ
λ

λ

λ
	  (19)

This proves that it is really an equivalent of the process intensity parameter.

5. The mean time to fire occurrence

In previous chapter of this paper it was shown that the random time to the first fire 
occurrence is characterized by exponential probability density function (see Eq. 18). Hence 
the value of the mean time to fire occurrence mfi (the so called mean time to failure – MTTF 
– in this example interpreted as the mean time to fire ignition) may be calculated as follows:

	 ( ) ( )
0 0

t
fi fim E t tf t dt t e dt

∞ ∞
−l= = = l∫ ∫ 	  (20)

Substituting tu l=  yields:

	 m ue du e ufi
u u= ( ) = ( ) − −( ) 

∞
=−

∞
−∫1 1 1

0
1

0

λ λ λ 	  (21)

This result seems to be important. It means that, if the constant value of the hazard rate h  
is adopted for fire safety analysis, the mean time to fire is simply its reciprocal. In the same 
way one may calculate the variance of the time to fire s2

fi, and also its coefficient of variation 
(cov) vfi. As a result, one obtains:

	 σ λfi
2 21=  and vfi = 1	  (22)
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6. Time to k-th fire episode

Application of a Poisson process model allows to examine not only the random time 
to the first fire episode in the considered building compartment but also the time to the 
k-th fire incident occurring at the same location. Let i = 1,2,…,k, and t1,t2,…,tk denote the 
points-in-time connected with succeeding fire episodes, then the sought time is equal to the 
sum t t t t t t t tk k k−( ) = −( ) + −( ) + + −( )−0 1 0 2 1 1... . Time periods (ti – ti–1) between successive 
fires are statistically independent and exhibit also the exponential probability distribution, 
characterized by a common intensity parameter λ. As a consequence of such assumptions, 
the probability density function (pdf) ffi,k(t) has the following form:

	 f t
t e
kfi k

k t

, ( ) =
( )

−( )

− −λ λ λ1

1  ! 	  (23)

As one can see, the time t = tk to the k-th fire incident exhibits the gamma probability 
distribution characterized by the parameters k and λ. Because the first of those parameters, k, 
is the natural number, this gamma distribution is a special one, commonly called the Erlang 
probability distribution. Moreover, it is possible to show that [12]:

	 m E t k k v kfi k fi k fi k, , ,= ( ) = = =λ σ λand and2 2 1 	 (24)

7. Concluding remarks

In engineering practice the value of the hazard rate h , constituting a risk measure of 
fire occurring in examined building compartment and for considered point-in-time if it is 
known that no fire occurred previously, is statistically estimated to reliably evaluate the real 
threat conditions in case of a fire. It is usually assumed to be constant during the whole 
building service period. This means that such a risk does not depend on the time when the 
fire safety assessment is made. This hazard function, discussed in presented paper, has clear 
and univocal interpretation, especially if the formal model of a Poisson process is taken into 
account in the analysis. Such model is fully adequate for the fire cases. This conclusion results 
from the fact that the real fires can be treated as rare random events, very short in relation 
to the whole building service time. Application of such simplified mathematical formalism 
allows to estimate in an easy way the probability of fire ignition (and flashover) pt. The 
hazard function h may be interpreted as a parameter of the process intensity λ, in accordance 
with the suggestion given by Lie (see Eq. 13). The inverse of such parameter is quantitatively 
equal to the mean time to fire mfi. It is obvious that such mean time seems to be very large 
in relation to the typical building service period, especially if the hazard rate h is small. In 
fact, fire does not occur at all in a great majority of buildings so the time to fire estimated 
for the whole population of the examined objects tends to infinity. The random time to the 
first fire is the measure of a compartment durability in context of a fire safety analysis. In 
the presented article it is shown that such durability is described by means of exponential 
probability distribution. The same kind of probability density function characterizes random 
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time-periods between succeeding fires in the examined building compartment. Thus, as 
a result of such conclusions, the random time to the k-th fire episode conforms to the Erlang 
probability distribution.

This paper was prepared with the financial support of the project granted by Polish 
Ministry of Science and Higher Education (N N506 243938).
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