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A b s t r a c t

In this paper we describe an algorithm for solving the one-dimensional Stefan problem by involving metal 
shrinkage. In this algorithm we use the finite element method supplemented by the procedures allowing to 
define the position of moving interface and the change material size associated with shrinkage. We present 
also some examples illustrating the precision of the presented method.
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1. Introduction 

Difference between density of the liquid and its solid phase causes shrinkage of metal 
during its solidification (there exist also substances, such as water, volumes of which expand 
during solidification). In this process an air-gap forms between the form and the cast, which 
has an influence on creating an interfacial thermal resistance between the mould and the cast. 
This thermal resistance determines the mould heat flux and thus affects the billet’s quality, 
such as the cracks and oscillation marks.

Solidification of pure metals is mathematically modeled by means of the Stefan problem 
[1–3]. This problem consists in determination of the temperature distribution in liquid and 
solid phases. Simultaneously, the position of the boundary between the phases should be 
found as well. The Stefan problem is a non-linear problem [3]. Nonlinearity is connected 
with the Stefan condition resulting from the heat balance on the moving interface. In simple 
cases it is possible to find an exact solution of the Stefan problem [4, 5], but generally to find 
a solution to this problem the numerical or numerically-analytical methods must be used  
[1, 2, 6–8].

A mathematical model for describing processes involving the simultaneous heat and 
mass transfer with the phase transition in foods undergoing a volume change (shrinkage or 
expansion) is presented in paper [9]. To approximate the solution of the problem the finite 
element method and the Arbitrary Lagrangian-Eulerian method were used. Natale et al. 
in paper [10] determined the temperature distribution in solid and liquid one-dimensional 
regions and the position of two free boundaries in the solidification process with either 
shrinkage or expansion. The results were obtained for three different boundary conditions. 
In all cases, the explicit solution was given by the parametric representation of a similarity 
type. The one-dimensional problem of pure metal solidification involving metal shrinkage 
was considered also in paper [11], where the perturbation method for small Stefan numbers 
was used to find the solution.

In this paper we intend to show an algorithm for solving the one-dimensional Stefan 
problem involving metal shrinkage. In this algorithm we will use the finite element method 
supplemented by the procedures allowing to define the position of the freezing front and 
the change of material size associated with material shrinkage. To determine the boundary 
position we use an algorithm in which, on the basis of the Stefan condition, the size of the 
time step is iteratively selected so that the boundary moves to the adjacent node [2]. To 
determine the change in size we propose a procedure based on the mass balance. We present 
also some examples illustrating the precision of the presented method.

2. Formulation of the problem

Let us consider a domain (ingot domain) occupied by liquid and solid phases. This 
domain is variable in time. Sizes of the liquid and solid phases will change, whereas the 
size of the ingot will change as well due to the material shrinkage involved. We consider 
solidification of pure metal modeled by using the Stefan problem [1, 2]. Thus, inside domain  
Ω = {(x, t):0 ≤ x ≤ d(t), 0 ≤ t ≤ t*} the heat conduction equation is given [11]:
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  (1)

(x, t) ∈ Di × (0, t*) where i = 1 for liquid phase, i = 2 for solid phase, intervals  
D1 = (0, ξ (t)) and D2 = (ξ (t), d(t)) represent the liquid and solid phases, respectively, ξ is 
a function describing the position of the moving boundary (the freezing front), d denotes a 
function describing the length of the area associated with metal shrinkage, ci is the specific 
heat, λi is the thermal conductivity coefficient, ρi denotes density of the corresponding phase 

and 1 1
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ρ
ρ  is the shrinkage factor. There are also the following initial conditions given: 

 u(x, 0) = u0,     ξ(0) =  ξ0,     d(0) = d0 (2)

and the boundary conditions:

  (3)

  (4)

where α is the heat transfer coefficient and u∞ denotes the ambient temperature. 
On the moving interface the condition of temperature continuity and the Stefan condition 

are defined as follows:

  (5)

  (6)

where u* is the phase change temperature and κ describes the latent heat of solidification per 
volume unit. 
In the considered problem functions u, ξ and d, describing temperature distribution, the 
freezing front position and the changes of area size, respectively, are unknown. The other 
functions (u0, q), coefficients and constants (ci, ρi, λi, α, κ, u*, u∞, ξ0, d0) are given.

3. Method of solution

In this section we describe the procedure for solving the problem formulated above. 
Supposing that the total weight of the material is equal to m0 and is constant in time of the 
modeled process, we are able to write the mass balance equation m0 = ml + ms, where ml and 
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ms represent the mass of the material in the liquid and the solid state, respectively. The one-
dimensional problem can be used, among others, to describe the phenomena occurring inside 
the slab with thickness d(t), height h and width l, where d(t) << h and d(t) << l. In this case 
the previous equation can be written as: 

 m0 = ξ(t)ρ1hl + (d(t) – ξ(t)ρ2hl (10)

By transforming the above relation we can determine function d:

  (11)

The initial mass m0 is equal to m0 = ξ0ρ1hl + (d0 – ξ0)ρ2hl (equation (10) for t = 0), therefore:

  (13)

If we additionally assume that in the initial moment the whole bar is in the liquid phase, i.e. 
d0 = ξ0, the above equation is simplified to the form:

  (14)

To find the approximate solution of presented problem we use the finite 
element method [2, 12]. For moment tk we divide interval [0, d(tk)] into n elements  
0 = xk0 < xk1 < ... < xkn–1 < xkn = d(tk).

To determine the position of the interface we use an algorithm in which, on the basis 
of the Stefan condition, the size of the time step is iteratively selected so that the boundary 
moves to the adjacent node [2]. In this method we want the freezing front to move between 
the successive nodes starting from node x0

n in moment t0 = 0, i.e. in the k-th step the boundary 
should be in node xkn–k. It requires a variable size of the time step. Let us suppose that after  
k – 1 time steps (in moment tk–1 the boundary is in node xn k

k
− +
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1 . The method assumes that after 

the k-th step (in moment tk) of length Δt the boundary will be in node xkn–k. From the condition 
of temperature continuity it follows that in moment tk the temperature in node xkn–k is equal 
to the solidification temperature u*. In this way we obtain the heat conduction problem in 
intervals [0, xkn–k] and [xkn–k, d(tk)] with the known boundary conditions which should be 
solved. We know also the temperature distribution in the previous time step. Thereby, by 
using the finite element method (or some other method) we can determine the temperature 
distribution in moment tk and then the heat flux on the moving interface. Certainly, the 
determined values depend on the time step size Δt which we determine iteratively by using 
the Stefan condition. At the beginning of each step of calculations we assume the time step 
size, for instance, as equal to the final time step size from the previous stage of calculations. 
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Then we determine the corresponding temperature distribution in moment tk, based on which 
we determine the heat fluxes on the moving interface, i.e. in node xkn–k, from the side of the 
liquid and solid phase. By using the Stefan condition we improve the time step size Δt and 
recalculate the temperature distribution in moment tk. The process of improving the time step 
size is repeated until the desired accuracy ε would be reached.

We describe now the procedure of determining time step size Δt in more detail. Let us 
remember that elements located between the adjacent nodes have the same mass m = m0/n. 
The length of the element for the liquid and solid phase is, respectively, equal to:

  (17)

Thereby, in moment tk the coordinates of nodes are the following:

  (19)

Let us denote ui,k = u(xi
k, tk) and uk = [u0,k, ..., un,k]

T. 
From the Stefan condition for t = 0 we have:

  (20)

After some transformations and by using the boundary condition we get:

  (21)

It will be the initial time step size. After determining the temperature distribution in moment 
tk we make a correction of the time step size, i.e. for k < n we have:

  (22)

and for k = n we have:

  (23)
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In the above equations we applied the boundary conditions (5) and (6) and difference 
quotients for the left- and right-side derivative of the temperature on the moving interface.

In order to determine the temperature in moment tk we use the finite element method by 
obtaining the matrix equation [2, 12]: 

  (24)

where C is the heat capacity matrix and K is the heat conductivity matrix taking into account 
the component resulting from the convective component in equation (1). Matrices C, K and 
vector f are constructed on the grounds of the Galerkin method [2, 12]. Due to the movement 
of the boundary between the adjacent nodes, these matrices have to be recalculated for every 
k. If parameters $c, ρ, λ, q, u∞, α are not constant over time, the matrices and vector f have to 
be recalculated also for every Δt. We can discretize the above equation by using the implicit 
scheme:

  (26)

By solving the above system of linear equations we get the temperature distribution in 
moment tk which allows us to determine the new time step size Δt.

4. Computational example

We start with a theoretical example for which an exact solution is known. In the considered 
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An exact solution of the above problem is given by functions:

The calculations were performed for the grid dividing area Ω into 50, 100, 200 and 500 
elements. The time step size was determined iteratively with accuracy 0.001 s. Most often 
three or four iterations were enough to get this accuracy. Table 1 presents the run time of the 
algorithm, the maximal and averaged absolute error of the time step size determination and 
the obtained final time.

Figure 1 displays temperature curves for the grid dividing the area into 200 elements. 
The dashed lines represent the approximate curves for xp = 0 (dotted), xp = 0.5 (dashed) and  
xp = d(t) (dot-dashed), whereas the solid lines represent the exact curves for these points.
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T a b l e  1

Run time and the errors of approximate solution 
(Δ – absolute errors, t* – final time) 

n Run time [s] Δmax Δavg T *

50 0.345 0.0542 0.0182 0.905

100 1.764 0.0419 0.0140 0.951

200 11.170 0.0357 0.0112 0.957

500 139.406 0.0318 0.0107 0.961

Figure 2 shows the moving interface position ξ(t) (left figure) and length d(t) of the area 
(right figure). The dashed lines represent the approximate values and the solid lines represent 
the exact values. It can be seen that the error of time step size selection decreases with 
an increase of the grid density. Thus, by increasing the grid density we may get the more 
accurate results, although the increase in the accuracy is small with respect to the increase of 
the algorithm’s run time.

Fig. 1. Temperature curves in points xp = 0 (dotted), xp = 0.5 (dashed) and xp = d(t) (dot-dashed) for 
n = 200 (solid lines – exact values, dashed lines – approximate values)

Fig. 2. Position $\xi (t)$ of the moving interface (left figure) and length $d(t)$ of the area (right figure) 
for $n = 200$ (solid line – exact values, dashed line – approximate values)
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5. Conclusions

In this paper we have described the algorithm for solving the Stefan problem involving 
material shrinkage. In this algorithm we used the finite element method supplemented by the 
procedures allowing to define the moving interface position and the change of the material 
size associated with material shrinkage. To determine the boundary position we used the 
algorithm in which, on the basis of the Stefan condition, the time step size was iteratively 
determined so that the boundary moved to the adjacent node. To determine the change of size 
we proposed the procedure based on the mass balance.

The presented method allows to obtain more accurate results by increasing the grid 
density, although the increase in the accuracy is small with respect to the increase of the 
algorithm run time. We may also increase the accuracy by using in the finite element method 
the square elements instead of the linear ones or by using some other methods to solve the 
classical Stefan problem. In the nearest future we plan to examine both of these possibilities.
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