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1.  Introduction

Distribution-valued functions are a natural and convenient tool in constructing linear 
mathematical models for many physics phenomena and solving differential equations. 
The spaces of distributions and tempered distributions can be treated as duals to the nuclear 
spaces: the space of test functions D(W) and rapidly decreasing functions S(Rn) 
respectively, which are equipped with inductive limit topology [3, 6]. Usually, continuity 
and  differentiability of a distribution-valued function is understood in a weak sense, that 
is a function T : M å x  T(x) ∈ D′ (W, B) is of class C1 if the map M å x  T(x)j ∈ B is 
of class C1 for any test function j [1, 2, 7, 8].

In this paper, we consider distribution-valued functions which are continuous and 
differentiable in a strong sense due to inductive limit topology. We prove that if a distribution- 
-valued function is differentiable in the sense of Definition 4.2, then it  is  differentiable 
in the weak sense (Corollary 4.4), the same refers to tempered distribution-valued functions 
(Remark 3.2, 3.5, Lemma 5.1). A similar approach was presented in [9] where summable 
in a strong sense distribution-valued functions were considered, and with the use of absolutely 
continuous distribution-valued functions, solutions to several Cauchy problems (Dirac equation, 
Navier-Lamé equation, biparabolic equation) were constructed. On the other hand, in  [2] 
the parameter product of a distribution and a smooth (in a weak sense) distribution-valued 
function is introduced. This kind of product can be use in quantum electrodynamics, but also 
in modelling the vibration of a plate with piezoelectric actuators of an arbitrary shape [10].

2.  Preliminaries

Let S be a locally convex space and let sn S denote the family of all continuouos 
seminorms on S. Assume there is a decreasing sequence of convex balanced subsets of S 
that forms a local base in S and let qm be the Minkowski functional of the m-th set of some 
fixed base of that kind. Then (qm)m∈ is a seperating family of continuous seminorms on S and 
introduces the same topology on S as sn S does.

Let B be a Banach space over a scalar field K (K = R or K = C) and L(S, B) be the space 
of all K-linear continuous mappings S → B. For every p ∈ sn S, let L((S, p), B) be the space 
of all linear p-continuous mappings S → B. Let T ∈ L((S, p), B) and denote

	 T Tp
p

= sup ( ) .
( )ϕ

ϕ
£1

	 (1)

It is well known that L((S, p), B) with the norm (1) is a Banach space. Moreover
(i)	 if p, q ∈ sn S and p ≤ q then ⋅ ⋅p q³  and the canonical injection L((S, p), B)   

 L((S, q), B) is continuous,

(ii)	 L S L S L S
S

( , ) ( , ), ) ( , ), ).B p B q B
p

m
m

= =
∈ =sn
 

1

¥

We consider the space L(S, B) endowed with the inductive limit topology with respect 
to the family of canonical injections
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	 L((S, q), B)  L(S, B)	 (2)

for all q ∈ sn S, that is the finest locally convex topology on L(S, B) such that all the 
mappings  (2) are continuous. This topology is also determined by the smaller family 
of inclusions,

L((S, qm), B)  L(S, B)

for m ∈ N.
Example 2.1. Test functions and distributions. Let D(W) denote the linear space of infinitely 
differentiable functions with compact supports which map W ∈ top Rn into K and let  
K ⊂ W be compact. Then DK(W) denotes the subspace of D(W) which consists of functions 
with supports in K. Each DK(W) is a Fréchet space with the family of seminorms ( ) ,qm m=0

¥

q D xm
x m

( ) sup sup ( )ϕ ϕ
α

α=
∈Ω £

for all j ∈ DK(W), where a = (a1, …, an) is a multi-index, | a  | = a1 + … + an, and 

D
x xn n

α
α

α α
=

∂

∂ ∂1
1


.  The family of maps DK(W)  D(W), for all compact  K ⊂ W, introduces 

the inductive limit topology in D(W). The same topology can be obtained using the family 

D DKv ( ) ( ),Ω Ω→  for an arbitrary sequence (Kv) such that K K Kv v vv
= ⊂ +=
Ω, int .11

¥

  
Moreover, for every compact K ⊂ W the topology that DK(W) inherits from D(W) coincides 
with the topology of the Fréchet space.

Let D′ (W, B) denote the space of distributions that is the space of all linear continuous 
mappings of D(W) into B. If Tv is a sequence of distributions in D(W), the statement

Tv → T        in        D′ (W, B)

refers to the weak*-topology which means that Tv(j) → T(j) for every j ∈ D(W). Observe 
that for any fixed compact K ⊂ W the family of injections

L((DK(W), qm), B)  L(DK(W), B)

for m = 0, 1, 2, … introduces the inductive limit topology in L(DK(W), B) (comp. (2)).     £
Example 2.2. Schwartz functions and tempered distributions. Let S(Rn) be the space of all 
j ∈ C 

∞ (Rn) for which P ⋅ Daj is a bounded function, for every polynomial P and for every 
multi-index a. It is known that D(Rn) is dense in S(Rn) and S(Rn) is a Fréchet space with 
the family of seminorm

q x D xm
x m

m
n

( ) sup sup ( ) ( )ϕ ϕ
α

α= +
∈R £

1 2

for m = 0, 1, 2, … . Let us remember that a distribution T ∈ D′ (Rn, B) is tempered when 
it is continuous in topology of S(Rn). This is equivalent to the fact that there is the unique 
extension T  of T to S(Rn). It is customary to identify T with its extension T .  Contrary to that, 
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we will avoid this identification and denote by the space of tempered distribution ′Dtemp    

and by the space of their extensions into S(Rn) L(S(Rn), B) . Consider the family of mappings

L((S(Rn), qm), B)  L(S(Rn), B)
for all m = 0, 1, 2, … . According to (2) it introduces inductive limit topology into the space 
L(S(Rn), B).                                                                                                                           £

Since the linear map

j** : L(S, B) å T  T (j) ∈ B

is continuous for every j ∈ S, it is clear that the inductive limit topology in L(S, B) is stronger 
than the weak*-topology. The following example had been communicated to  the  author 
by K. Holly. It shows that the inductive limit topology in L(S, B) is actually strictly stronger.
Example 2.3. Let K = [0, 1], S = DK(R), B = R. Suppose that on the contrary, the inductive 
limit topology, denoted by top (DK(R))′, coincides with the weak*-topology in  (DK(R))′, 
Let (jv)v=0,1,2,… ⊂ DK(R) be linearly dense in the Hilbert space L2([0, 1]). Consider the linear 
operator

η
ϕ

ϕ
ϕ

ϕ: ( ( ))
( )

( ),
( )

( ), .DK T
q

T
q

T lR ′ ∋








∈

1 1

0 0
0

1 1
1 

¥

Since for any m, n ∈ {0, 1, …}

1
q

T M T
n n

n qm( )
( ) ,

ϕ
ϕ £ ⋅

so the map h : (DK(R))′ → l 
∞ is correctly defined and continuous. Thus

T TK l K∈ ′ <{ }∈ ′( ( )) : ( ) ( ( )) .D DR Rη ¥ 1 top

We assumed that top (DK(R))′ and the weak*-topology in (DK(R))′ coincide, thus there are 
y1, …, yN ∈ DK(R) and e > 0 such that

σ ψ ε ε η= − ⊂ ∈ ′ <∗∗

=
i K l

i

N

T T( , ) { ( ( )) : ( ) }.D R ¥

1

1


Let f ∈ L2([0, 1]) be such that f fL N2 0 1> ⊥and ψ ψ, , .  Define the functional

T x f x dxf K: ( ) ( ) ( ) .D R R∋ ∈∫ϕ ϕ

0

1

Since

ψ ψ ψi f f i iT T x f x dx∗∗ = = =∫( ) ( ) ( ) ( ) ,0
0

1

it follows that Tf ∈ s, and consequently RTf ∈ s for any R ∈ N. Thus
	 η( ) .Tf = 0 	 (3)
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On the other hand there is v ∈ {0, 1, …} such that jv, is not orthogonal to f, for otherwise  
(jv)v would not be linearly dense in L2([0, 1]). Thus Tf (jv) ≠ 0 and so h(Tf ) ≠ 0 which 
contradicts (3).                                                                                                                        £

3.  L(S, B) – valued functions

Let M be an open interval in R. We shall consider mappings of M into L(S, B).
Definition 3.1. A mapping T : M → L(S, B) is continuous if there exists a seminorm q ∈ sn S 
such that T(x) ∈ L((S, q), B) for all x ∈ M and the mapping T : M → L(S, q), B) is continuous.

It is obvious that a mapping T : M → L(S, B) is continuous iff there exists m ∈ N such 
that T(x) ∈ L((S, qm), B) for all x ∈ M and the mapping T : M → L((S, qm), B) is continuous.
Remark 3.2. If  T : M → L(S, B) is continuous, then the map M å x  T(x)y ∈ B is continuous 
for every y ∈ S.

Indeed, there is a seminorm q ∈ sn S such that T(x) ∈ L((S, q), B) for all x ∈ M and 
the map T : M → L((S, q), B) is continuous. Let y ∈ S. Then the operator

ψ L S L S(( , ), ) : (( , ), )q B q B B∗∗ →

is linear and continuous. Thus ψ∗∗ →T M B:  is continuous and

( )( ) ( ( )) ( )ψ ψ ψ∗∗ ∗∗= =T x T x T x

for x ∈ M.
Definition 3.3. A mapping T : M → L(S, B) is differentiable if there exists a seminorm 
q ∈ sn S such that T(x) ∈ L((S, q), B) for all x ∈ M and the mapping T : M → L((S, q), B) 
is differentiable.

Let q ∈ sn S be a seminorm from Definition 3.3, then d
dx
T

q







  denotes the derivative 

of  T  :  M → L((S, q), B). Suppose that there is another seminorm p  ∈  sn  S such that 
T(x) ∈ L((S, p), B) for all x ∈ M and the mapping T : M → L((S, p), B) is differentiable. 
Let r = max {p, q}. Then r ∈ sn S and iqr : L((S, q), B)  L((S, r), B), ipr : L((S, p), B)   

 L((S, r), B) are linear and continuous. Consequently iqr o T : M → L((S, r), B),  
ipr o T : M → L((S, r), B) are differentiable and iqr o T = ipr o T. Thus

d
dx

T d
dx
T d

dx
T d

dx
Tqr qr

q
pr pr

p
( ) , ( ) ,ι ι ι ι   = 






 = 








and finally

d
dx
T d

dx
T

q p







 = 






 .

Therefore the derivative of T : M → L(S, B) does not depend on the choice of a seminorm 
in Definition 3.3.



46

Definition 3.4. If a map T : M → L(S, B) is differentiable, then its derivative is defined by

d
dx
T d

dx
T

q
= 





 .

Similarly to Remark 3.2 we have
Remark 3.5. If T : M → L(S, B) is differentiable then the map M å x  T(x)y ∈ B 
is differentiable for every y ∈ S and

d
dx
T x d

dx
T( ( ) )( ) ( )⋅ = 






 ⋅ψ ψ

for all x ∈ M.
Theorem 3.6. Let T : M → L(S, B) be differentiable. Additionally consider a Banach space 
B1 and a locally convex space S1. Assume that a mapping L : L(S, B) → L(S1, B1) is linear 
and satisfies the condition
	 ∀ ∈ ∃ ∈ ⊂p q L p B q B andsn snS S L S L S1 1 1( (( , ), )) (( , ), ) 	 (4)

L p B q B is continuousp BL S L S L S(( , ), ) : (( , ), ) (( , ), ) .→ 1 1

Then the map L : L(S, B) → L(S1, B1) is continuous, L o T : M → L(S1, B1) is differentiable 
and

d
dx
L T L d

dx
T( ) . =

Proof. To prove the continuity of L : L(S, B) → L(S1, B1), with respect to the inductive 
limit topology on L(S, B), it is sufficient to show that for every p  ∈  sn  S the map 
L p B Bp BL S L S L S(( , ), ) : (( , ), ) ( , )→ 1 1  is continuous. Let p  ∈  sn  S. According to (4) 

there is  a  seminorm q  ∈  sn  S1 such that L p B q Bp BL S L S L S(( , ), ) : (( , ), ) ( , ), )→ 1 1  is 

continuous. Since L(S1, B1) is equipped with the inductive topology, the canonical injection  
L(S1,  q),  B1)  L(S1, B1) is also continuous. Thus L p B Bp BL S L S L S(( , ), ) : (( , ), ) ( , )→ 1 1  
is continuous.

Assume now that T : M → L(S, B) is differentiable. Let p  ∈  sn  S be such that  
T(x) ∈ L((S, p), B) for every x ∈ M and T : M → L((S, p), B) is differentiable. On account 
of (4) there is q  ∈  sn S1 such that L p B q Bp BL S L S L S(( , ), ) : (( , ), ) ( , ), )→ 1 1  is linear and 

continuous. Hence L T M q Bp BL S L S(( , ), ) : (( , ), ) → 1 1  is differentiable and

d
dx
L T d

dx
L T L d

dx
Tq p B p B( ) ( ) .(( , ), ) (( , ), )  = =L S L S

£
Note that if F : S1 → S is linear and continuous then its transpose

	 F* : L(S, B) å T → T o F ∈ L(S1, B)	 (5)
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satisfies (4). Indeed, for any p ∈ sn S there is q = p o F ∈ sn S1 such that F*(L((S, p), B)) ⊂  

⊂ L((S1, q), B) and the restriction F p B q Bp BL S L S L S(( , ), ) : (( , ), ) ( , ), )∗ → 1  is a continuous 

map between Banach spaces.
On the other hand, if L : B → B1 is linear and continuous then the map

	 *L : L(S, B) å T  L o T ∈ L(S, B1)	 (6)

satisfies (4). Indeed for every p ∈  sn S the map ∗ →L p B p Bp BL S L S L S(( , ), ) : (( , ), ) ( , ), )1  
is continuous. In particular, for L(T ) = λT, λ ∈ K we have

Corollary 3.7. If  T : M → L(S, B) is differentiable then λT is also differentiable and

d
dx

T d
dx
T( ) .λ λ=

It is also clear that

Proposition 3.8. If T1, T2 : M → L(S, B) are differentiable then T1 + T2 is also differentiable 
and

d
dx
T T d

dx
T d

dx
T( ) .1 2 1 2+ = +

4.  Distribution-valued functions

Let us consider a function T : M å x  T(x) ∈ D′ (W, B).

Definition 4.1. A map T : M → D′ (W, B) is continuous if for any compact K ⊂ W the map
T M x T x BK KK
: ( ) ( ( ), )( )∋ ∈ D L DΩ Ω

is continuous.

We shall write T x for T xK K
( ) ( ) D (Ω).

Definition 4.2. A mapping T : M → D′ (W, B) is differentiable if for any compact K ⊂ W 
the map

T M x T x BK K K: ( ) ( ( ), )∋ ∈ L D Ω

is differentiable, and

	 d
dx
T x d

dx
T xK







 = 






( ) ( )ϕ ϕ 	 (7)

for supp j ⊂ K, x ∈ M.
The following lemma ensures that the definition is meaningful and that the derivative 

of a map T : M → D′ (W, B) is a distribution-valued function.
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Lemma 4.3. For any compact K1, K2 ⊂ W if  ϕ∈ ∩D DK K1 2
( ) ( )Ω Ω  then

d
dx
T x d

dx
T xK K1 2







 = 






( ) ( ) .ϕ ϕ

Moreover d
dx
T x B






 ∈ ′( ) ( , )D Ω  for every x ∈ M.

Proof. Let x ∈ M, K1, K2 ⊂ W be compact and ϕ∈ ∩D DK K1 2
( ) ( ).Ω Ω  Since maps 

ϕ ϕi K K Ki i i
B T x T x B∗∗ ∋ ∈: ( ( ), ) ( ) ( )L D Ω   are linear and continuous for i  =  1,  2 and 

( )( ) ( ) , ( )( ) ( ) ,ϕ ϕ ϕ ϕ1 21 1 2 2

∗∗ ∗∗= = T x T x T x T xK K K K  and both these maps M  →  B are 
differentiable. From Remark 3.5

d
dx

T x d
dx
T x d

dx
T x d

dx
TK K K K( )( ) ( ) , ( )( )ϕ ϕ ϕ1 21 1 2 2

∗∗ ∗∗= 





 =  






 ( ) ,x ϕ

hence

d
dx
T x d

dx
T xK K1 2







 = 






( ) ( ) .ϕ ϕ

This proves that the relation given by (7) is a function on the domain D(Ω)  =

= ⊂{ ( ) : , }.DK K KΩ Ω ¯compact  The linearity and continuity of d
dx
T x B






 →( ) : ( )D Ω

 
is obvious.                                                                                                                             £

From the above proof it follows that

Corollary 4.4. If  T : M → D′ (W, B) is differentiable then for every j ∈ D(W) the map 
M å x  T(x)j ∈ K is differentiable and, for every x ∈ M

d
dx
T x d

dx
T x( ( ) )( ) ( ) .⋅ = 






ϕ ϕ

Remark 4.5. If  T1, T2 : M → D′ (W, B) are differentiable and λ1, λ2 ∈ K, then λ1T1 + λT2 
is also differentiable and

d
dx

T T d
dx
T d

dx
T( ) .λ λ λ λ1 1 2 2 1 1 2 2+ = +

Consider now additionally Ω1 1
1∈ ∈topR Nn n, ,  and a Banach space B1.

Theorem 4.6. Let T : M → D′  (W, B) be differentiable. Suppose that a linear mapping  
L : D′ (W, B) → D′ (W1, B1) satisfies the condition:
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for any compact K ⊂ W1 there is a compact Z ⊂ W and a linear map LZK : L(DZ(W), B) → 
L(DK(W1), B1) that satisfies condition (4) and the diagram

	
L D L D

D D

( ( ), ) ( ( ), )

( , ) ( , )

Z
L

K

Z K
L

B B

B B

ZK
Ω Ω

Ω Ω

→

↑ ↑

′ → ′

∗ ∗

1 1

1 1

i i 	 (8)

commutes.
Then the map L o T : M → D′ (W1, B1) is differentiable and for any x ∈ M

d
dx
L T x L d

dx
T x( )( ) ( ) . = 








Proof. Let K be a compact in W1. Due to (8) there exists a compact Z ⊂ W and a map LZK. 
Since T : M → D′ (W, B) is differentiable, the map TZ : M → L(DZ(W), B) is differentiable. 
We now apply Theorem 3.6 for S = DZ(W), S1 = DK(W1), and deduce that LZK o TZ : M → 
→ L(DK(W1), B1) is differentiable and for every x ∈ M

d
dx
L T x L d

dx
T xZK Z ZK Z( )( ) ( ) . = 








As the diagram is commutative we get L LZK Z K i i∗ ∗= ,  and so

L T L T L T L TZK Z ZK Z K K     = = =∗ ∗i i ( ) .

In consequence L o T : M → D′ (W1, B1) is differentiable. Moreover, for every x ∈ M
d
dx
L T x d

dx
L T x L d

dx
T x

L d
dx

T

K ZK Z ZK Z

ZK Z

( ) ( ) ( )( ) ( )

(

 



= = 







= ∗i ))( ) ( ) ( )

( ) ( )

x L d
dx
T x

L d
dx
T x L d

ZK Z

K







 =









= 





 =

∗

∗





i

i
ddx
T x

K
( ) .


















	 £
Observe that with any linear and continuous operator L : B → B1 we may associate 

the linear operator
*L : D′ (W, B) å T  L o T ∈ D′ (W, B1)

(compare (6)). It is clear that for every compact K ⊂ W the diagram

L D L D

D D

( ( ), ) ( ( ), )

( , ) ( , )

( )
K

L
K

K K
L

B B

B B

K
Ω Ω

Ω Ω

→

↑ ↑

′ → ′

∗

∗ ∗

1

1

i i

commutes, where ( ) : ( ( ), ) ( ( ), ).∗ ∋ ∈L B T L T BK K KL D L DΩ Ω  1  So we have
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Corollary 4.7. If an operator L : B → B1 is linear and continuous then 
*L : D′ (W, B) å T  

 L o T ∈ D′ (W, B1) satisfies condition (8).
On the other hand, with a linear continuous operator F : D(W1) → D(W) we may associate 

its linear transpose

F 
* : D′ (W, B) å T  T o F ∈ D′ (W1, B)

(compare (5)). The following lemma had been communicated to the author by K. Holly. 
It indicates a wide class of operators that satisfy (8).

Lemma 4.8. Let F : D(W1) → D(W) be linear and continuous. For every compact K ⊂ W1 
there is a compact Z ⊂ W such that F(DK(W1)) ⊂ DZ(W), the restriction F FK K

= D ( )Ω1  
is a continuous map of the Frechét spaces DK(W1), DZ(W), and the diagram

L D L D

D D

( ( ), ) ( ( ), )

( , ) ( , )

( )
Z

F
K

Z K

F

B B

B B

K
Ω Ω

Ω Ω

→

↑ ↑

′ → ′

∗

∗

∗ ∗

1

1

i i

commutes.
Proof. Let F : D(W1) → D(W) be linear and continuous and K ⊂ W1 be compact.  

We put Z F
K

= ≠∈ϕ ϕD ( ){ ( ) }Ω1
0  (the closure in Rn). Suppose that, contrary to our 

claim, either Z is not a subset of W or Z is not compact. Then there is a sequence 
( ) { ( ) }( )z Fv v K∈ ∈⊂ ≠ ϕ ϕD Ω1

0  which contains no subsequence convergent in W. Let  
v ∈ N. There is jv ∈ DK(W1) such that zv ∈ {F(jv) ≠ 0}. Then jv ≠ 0 and qm(jv) > 0 for any 
norm qm in DK(W1), m ∈ N. Therefore

ψ
ϕ
ϕv
v

v vv q
= ⋅
1

( )

is correctly defined for v ∈ N and yv → 0 in (DK(W1), qm) for any m ∈ N. Thus yv → 0 
in  the  Frechét space DK(W1) and consequently F(yv) → 0 in D(W). In particular it 
means that there is a compact set D ⊂ W such that v vF D∈ ≠ ⊂{ ( ) } .ψ 0  However  

{F(yv) ≠ 0} = {F(jv) ≠ 0} for any v  ∈  N. Hence ( ) ( )z D zv v v v∈ ∈⊂ and  contains 
a  subsequence which is convergent in W. This leads to a contradiction. Therefore Z is  
compact and Z ⊂ W. Clearly F(DK(W1)) ⊂ DZ(W), and FK : DK(W1) → DZ(W) is continuous.

£

Corollary 4.9. If  F : D(W1) → D(W) is linear and continuous, then F 
* : D′ (W, B) å T   

 T o F ∈ D′ (W1, B) satisfies condition (8).
Let us recall that if L ∈ D′ (W, B), a is a multi-index, then DaL ∈ D′ (W, B) and for any 

j ∈ D(W)

( ) ( ) ( ).D Dα α αϕ ϕΛ Λ= −1
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Proposition 4.10. Let T : M → D′  (W, B) be differentiable and a ∈ Nn. Then the map  
DaT : M å x  DaT(x) ∈ D′ (W, B) is differentiable and for every x ∈ M

d
dx
D T x D d

dx
T xα α( ) ( ) .= 








Proof. The operator F : D(W) å j  (-1)|a|Daj ∈ D(W) is linear, continuous and its 
transpose is of the form

F 
* : D′ (W, B) å T  DaT ∈ D′ (W, B).

Due to Corollary 4.9. F 
* satisfies condition (8) and, according to Theorem 4.6, F 

* o T : M → 
→ D′ (W, B) is differentiable and for every x ∈ M

d
dx
D T x d

dx
F T x F d

dx
T x D d

dx
T x( )( ) ( )( ) ( ) ( ) .α α= = 






 =









∗ ∗


Recall also that if L ∈ D′ (W, B) and h : W → K is a smooth function, g : W1 → W 
is a smooth diffeomorphism, then hL, L o g are distributions on D(W), D(W1), respectively, 
and

( ) ( ) ( ),η ϕ ηϕ ϕΛ Λ Ω= ∈for D

( ) det ( ) for ( ).Λ Λ Ω g g gϕ ϕ ϕ= ∈− −1 1
1D

Thus, similarly to Proposition 4.10, we obtain

Proposition 4.11. Let T  :  M → D′  (W, B) be differentiable. Consider a smooth function  
h : W → K and a smooth diffeomorphism g : W1 → W on an open set W1. Then the mappings: 
hT : M å x → h · T(x) ∈ D′ (W, B), T o g : M å x  T(x) o g ∈ D′ (W1, B) are differentiable 
and for every x ∈ M

d
dx

T x d
dx
T x( )( ) ( ),η η⋅ = ⋅

d
dx
T g x d

dx
T x g( )( ) ( ) . =

It is known that every locally summable function u defines a distribution, called regular 
distribution, denoted by [u],

[ ] ( ) ( ) ( ).u u x x dxϕ ϕ ϕ= ∈∫ for D Ω
Ω

For h ∈ D(Rn) and L ∈ D′ (Rn, B), the convolution h ∗ L is well defined by the formula

( )( ) ( ) ,h x h xx
n∗ = ∈Λ Λ t for R

where tx y x yϕ ϕ( ) ( ).= −  Moreover,  h D h D h h Dn∗ ∈ ∗ = ∗ = ∗Λ Λ Λ ΛC¥ ( ) and ( ) ( ) .R α α α
 

For arbitrary fixed h ∈ D(Rn) take

F hn n: ( ) ( ),D DR R∋ ∗ ∈ϕ ϕ


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where 


h y h y y n( ) ( ) .= − ∈for R  Its transpose is of the form

F B h Bn n∗ ′ ∋ ∗ ∈ ′: ( , ) [ ] ( , ),D DR RΛ Λ

and satisfies (8), thus according to Theorem 4.6 we obtain
Proposition 4.12. Let T : M → D′ (Rn, B) be differentiable and h ∈ D(Rn). Then the mapping 
[h ∗ T] : M å x  [h ⋅ T(x)] ∈ D′ (W, B) is differentiable and for every x ∈ M

d
dx
h T x h d

dx
T x[ ]( ) ( ) .∗ = ∗





5.  Tempered distribution-valued functions

Now turn to functions with values in the space of tempered distributions.

Lemma 5.1. Consider a map T M such that T M x T x Bn: : ( ) ( ( ), )→ ′ ∋ ∈D L Stemp  R  

is  differentiable. Then T  :  M → D′  (Rn, B) is differentiable and d
dx
T x d

dx
T x( ) ( ).⊂

 

In particular, the distribution d
dx
T x( )  is tempered for any x ∈ M.

Proof. Let K ⊂ Rn be a compact. Then the injection F  : DK(Rn)  S(Rn) is linear 
and  continuous, thus the map F B T T F Bn

K
n∗ ∋ ∈: ( ( ), ) ( ( ), )L S L DR R   satisfies 

condition (4) and from Theorem 3.6 the map F T M BK
n∗ → : ( ( ), )L D R  is differentiable 

and for any x ∈ M

d
dx
F T x F d

dx
T x( )( ) ( ) .∗ ∗= 








Therefore the mapping T F T M BK K
n= →∗

 : ( ( ), )L D R  is differentiable for any compact 
K ⊂ Rn and from Definition 4.2, T : M → D′ (Rn, B) is differentiable. Moreover for any x ∈ M

d
dx
T x d

dx
T xK K

n






 =( ) ( ) .( )D R


Now we are in the position to consider tempered distribution-valued functions.

Definition 5.2. A mapping T M: → ′Dtemp  is continuous iff the mapping 

T M x T x Bn: ( ) ( ( ), )∋ ∈ L S R  is continuous.

Definition 5.3. A map T M: → ′Dtemp  is differentiable iff the mapping 

T M x T x Bn: ( ) ( ( ), )∋ ∈ L S R  is differentiable. Moreover, for any x ∈ M
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d
dx
T x d

dx
T x( ) ( ).=

Similarly to the Proposition 4.10, but using now Theorem 3.6 we have

Proposition 5.4. Let T M: → ′Dtemp  be differentiable and a ∈ Nn. Then 

D T M x D T xα α: ( )∋ ∈ ′
 Dtemp  is differentiable and for any x ∈ M

D d
dx
T x d

dx
D T xα α( ) ( ( )).






 ⊂

Recall that if Λ∈ ′ →Dtemp , :η R Kn  is a smooth function which is polynominally  

bounded together with all its derivatives, then ηΛ∈ ′Dtemp  and for any j ∈ S(Rn)

η ϕ ηϕΛ Λ( ) ( ).=

Consider F(j) = hj for j ∈ S(Rn). Then F 
* satisfies condition (4), and from Theorem 3.6 

we obtain

Proposition 5.5. Let T M: → ′Dtemp  be differentiable and h : Rn → K be a smooth  
function which is polynominally bounded together with all is derivatives. Then 
η ηT M x T x: ( )∋ ⋅ ∈ ′

 Dtemp  is differentiable and for any x ∈ M

η η⋅





 ⊂ ⋅

d
dx
T x d

dx
T x( ) ( ( )).

Similarly, taking F h h y h y n( ) , where ( ) ( ) ( ),ϕ ϕ ϕ= ∗ = − ∈
 

for S R  we have

Proposition 5.6. Let T M: → ′Dtemp  be differentiable and h  ∈  S(Rn). Then 

[ ] : [ ( )]h T M x h T x D∗ ∋ ⋅ ∈ ′
 temp  is differentiable and for any x ∈ M

h d
dx
T x d

dx
h T x∗
















 ⊂ ∗( ) ([ ( )]).

Let F : S(Rn) → S(Rn) denote Fourier transform, Fϕ ξ ϕ ξ( ) ( )= =
Ù

 

= ∈
− ⋅∫( ) ( ) .2 2π ϕξ
n

i y ne y dy y
n

for R
R

 Recall that if Λ Λ∈ ′ ∈ ′D F Dtemp tempthen  and

FΛ Λ( ) ( )ϕ ϕ=
Ù

for j ∈ S(Rn).

Proposition 5.7. Let T M x T x: ( )∋ ∈ ′
 Dtemp  be differentiable. Then 

F F DT M x T x: ( ( ))∋ ∈ ′
 temp  is differentiable and for any x ∈ M
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F F
d
dx
T x d

dx
T x( ) ( ( ( ))).






 ⊂

Proof. Consider the operator F n n: ( ) ( ).S SR R∋ ∈ϕ ϕ

Ù  It is linear and continuous, 

so F B B Fn n∗ ∗→ = ∈ ′: ( ( ), ) ( ( ), ), where ( ) .L S L S F DR R Λ Λ Λfor temp  According to 

Theorem 3.6 the map F T M Bn∗ →: ( ( ), )L S R  is differentiable, but

( )( ) ( )( ) ( ( ))F T x T x T x∗ = =ϕ ϕ ϕ
Ù

F

for j ∈ S(Rn), x ∈ M. Consequently, M x T x∋ ∈ ′
 F D( ( )) temp  is differentiable and

F F
d
dx
T x d

dx
T x( ) ( ( ( ))).






 =

£
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