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A b s t r a c t

We present, under the Continuum Hypothesis (CH), a construction of an automorphism of 
P(ω)/fin which maps a Hausdorff gap onto increasingly ordered gap of type (w1, w1) which is 
not a Hausdorff gap. 
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 It is known that cardinality of the group of automorphisms of P(ω)/fin depends on some 
additional axioms of ZFC. Under CH (the Continuum Hypothesis) the cardinality of the 
group is the largest posssible – it is equal to2c, where c denotes the continuum (cf. [2]). On 
the other hand, there are models of ZFC in which the cardinality is equal to the continuum, 
for example, in the model constructed by Shelah in [3]. In [4] it was shown by Shelah and 
Steprans that the assertion PFA + c = w2 implies that all automorphisms of P(ω)/fin are trivial 
(i.e. induced by a bijection between co-finite subsets of ω). Velickovic [7] proved that the 
same thesis follows from OCA+MA. One of the methods of elimination an automorphim of 
P(ω)/fin is adding a new real which fills a non-separable gap in such a way that the image of 
the gap under that automorphism remains unfilled. It is known that each forcing which adds 
an element separating a Hausdorff gap collapses the to the ω. One can ask if the image of 
a Hausdorff gap under a automorphism must be a Hausdorff gap .

Basic facts and definitions. Byω we denote the set of all natural numbers (and the first 
infinite ordinal) and by fin the ideal of all its finite subsets.P(ω)/fin is the factor Boolean 
algebra and for A, B ∈ P(ω) we shall use the following notation: A =* B if A÷B ∈ fin, A ⊆* B 
if A \ B ∈ fin. 

Let λ, κ be ordinals. A gap of the type (λ, κ) in a Boolean algebra (A,+,·,0,1) is a pair 
({ag: g     < λ},{bb: b < k}) of subsets of A such that ag · bb = 0. If for every g1 < g2 < λ, b1 < b2 
< k, ag1· ag2 = ag1 and b b1· b b2 = b b1 the gap is said to be incresingly ordered. Elementc ∈ A 
fills (separates) the gap if ag · c = ag  and bb  · c = 0 for every g < λ, b < k. If there is no such 
an element, the gap is called non-separable. A (strictly) decreasing sequence (ab: b < g) of 
elements of the A of the lengthg is called g-limit if there is no non-zero element a ∈ A such 
that for every b < g, a · ab = a.

Assume that L = ({Xa: a < w1},{Yb: b                            < w1) is an increasingly ordered gap in P(ω)/fin. L is 
a Hausdorff gap if {g < b: max Xg  ∩ Yb  < k} = *∅ for every b   < w1 and k ∈ w.
It is known that 
1. In the algebra P(ω)/fin every countable gap (i.e. card(λ) = card(k) = w is filled. 
2. There is no ω-limits (i.e.γ-limits with card (g) = w in the P(ω)/fin. 
3. A Hausdorff gap is non-separable (thus there exist non-separable gaps of the type (w1, w1) 

in the P(w)/fin. 
In the following construction we shall apply the Sikorski’s theorem (to define a required 

automorphism). 
Theorem 1 (Sikorski [5, 6]) Let A, B be Boolean algebras, A0 a subalgebra of A and a0 ∈ A\
A0. Assume that T: A0 → B is a homomorphism. If there exists an element b ∈ B which fills 
a gap:

 L =({T(x): x ∈ A0, x ≤ a0}, {T(x): x ∈ A0, x · a0 = 0}), 

then T can be extended to a homomorphism T*: A1 → B (where A1 is a subalgebra generated 
by A0 ∪ {a0} with T*(a0) = b.

Moreover if T is monomorphism then T* is monomorphism if and only if the following 
condition holds: 

 (*) for all x, y ∈ A0 [ (x ≤ a0 ⇔ T(x) ≤ b)     and     (y ≥ a0 ⇔ T(y) ≥ b)].

Thus, in order to extend a monomorphism, we have to ensure that an image of a (separeted) 
gap under the monomorphism satisfies the condition (*). Let us remind a (well known) 



15

method how to find the required (in the (*)) element in the range of the monomorphism. 
Although the method can be applied in the case of Boolean algebras in which there are no 
countable gaps nor countable limits, we present it in the particular case of P(ω)/fin.

Claim 1 (cf. [6]) Let T: A → B be a monomorphism of countable subalgebras of P(ω)/fin and 
let G ∈ P(ω)/fin\A. Then there is a gap in B such that any element which fills the gap satisfies 
the condition (*).

Proof: Let J = {Zn: n ∈ w} be an enumeration of all elements Z ∈ A with Z ∩  G ≠* ∅  
and Z \G ≠* ∅. Fix n ∈ w. For a Zn ∈ J and X, Y ∈ A we have:

If Y ∩ G =* ∅ then Zn ∩ Y ∩ G =* ∅. Since Z ∩ G ≠* ∅, it follows that Zn\Y ≠* ∅. T is 
a monomorphism thus we have T(Zn)\T(Y) ≠* ∅. In a similar way we show that if X ⊆* G then 
T(Zn)\T(X) ≠* ∅.

Since A is countable, there exists an enumeration {Ym ∈ A: m ∈ w} of all elements which 
are almost disjoint with G. Thus:

 {T(Zn)\(T(Y1) ∪....∪ T(Ym)): m ∈ w}

is a countable decreasing chain in P(ω)/fin. Since there are no countable limits in P(ω)/fin, we 
can choose an infinite subset S(Zn) = Sn which is almost contained in each

 T(Zn)\(T(Y1) ∪...∪ T(Ym)).

In a similar way we can choose I(Zn) = In  ⊆* T(Zn)\(T(X1) ∪...∪ T(Xm)) for Xm ∈ A,    Xm 
⊆* G Consider the gap P = (M, O) where:

 M = {T(X) ∈ A: X ⊆* G} ∪ {T(In): n ∈ w},

 O = {T(Y) ∈ A: Y ∩ G =*∅} ∪ {T(Sn):     n ∈ w}.

Since P is countable, there exists element H which fills the gap. It is easy to see that such 
an element H satisfies the condition. 

Main theorem. We prove that:
Theorem 2 If CH holds then there exists an automorphism T of P(ω)/fin and two 

increasingly ordered gaps of the type (w1, w1):

 LH = ({Xa: a < w1},{Yb: b < w1}),   L =({Aa: a < w1}, {Bb: b < w1})

such that 
1. for all b < w1 and every k ∈ w,  a set {a < b: max (Xa ∩ Yb) < k} is finite, 
2. if b = λ + w for some limit ordinal λ < w1 then there exists k ∈ w such that a set {a < b: 

max (Aa ∩ Bb) < k} is infinite, 
3. for every a, b < w1, T(Aa) = Xa, T(Bb) = Yb. 

Proof: We construct the required automorphism and gaps by using transfinite induction. 
Fix a set {Ga: a < w1} of generators of P(ω)/fin. At the step a = 0 fix two pairs of disjoint 
infinite subsets of w: A0, B0 and X0, Y0 such that both sets w\(A0 ∪ B0) and w\(X0 ∪ Y0) are 
infinite. Let:

 T0(A0) = X0,     and     T0(B0) = Y0.
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Denote by D0 and P0 the Boolean algebras generated by {A0, B0} and {X0, Y0} (respectively) 
and extend T0 to the isomorphism from D0 onto P0. Consider the first generator G0 and the 
algebra D0. In the way described in the Claim find element Hr in the P0 and put T0(G0) = Hr. 
Then apply the claim to the G0, the algebra P0 and the T0

–1. Choose any element Hd which 
fills the obtained gap in D0 and define T0

–1(G0) = Hd. Then, using Sikorski’s theorem, extend 
the isomorphism T0 to an isomorphism from D0 (the subalgebra generated by {A0,    B0,    G0,    
T–1(G0)}) onto P0 (the subalgebra generated by {X0, Y0, G0, T0(G0)}). 

Assume inductively that for every b < a we have defined increasing sequences of 
subalgebras Db , Pb of P(ω)/fin, isomorphisms Tb: Db  → Pb and gaps 

 L = ({Ag: g < a}, {Bg: g < a}) and LH = ({Xg: g < a}, {Yg: g < a})

such that 
1. For all b < a, Ab, Bb, Gb ∈ Db  and Xb, Yb, Gb ∈ Pb, 
2. L, LH are increasingly ordered gaps, 
3. For all b < a, Ab  ∩ Bb  = ∅ and Xb  ∩ Yb = ∅; both sets w\(Ab  ∪ Bb) and w\(Xb  ∪ Yb) are 

infinite, 
4. For all b < a and every k ∈ w, the set {g < b: max(Yb ∩ Xg) < k} is finite, 
5. If b < a  is equal to λ + w, for some limit ordinal λ, then there exists k ∈ w such that  

{g < b: max(Bb ∩ Ag) < k} is infinite, 
6. If b = λ + n, for some limit ordinal λ and a natural number n > 0, then 

 (Uk ≤ n Aλ + k) ∩  (Uk ≤ n Bλ + k) = ∅.

7. For g < b < a, Tb|Dg  = Tg and T(Ab) = Xb , T(Bb) = Yb . 
Assume that a is a successor ordinal, a = b + 1. Then there exist a limit ordinal λ and 

a natural number n > 0 such that a = λ + n. Choose infinite and disjoint subsets A, B of w 
such that:

 (Ab ∪ Bb) ∩ (A ∪ B) = ∅  and  w\(Ab  ∪ Bb  ∪ A ∪ B)  is infinite 

and both sets B ∩ Uk ≤ n Aλ + k and A ∩ (Uk ≤ n Bλ+ k) are empty. Put:

 Aa = Ab ∪ A,    Ba = Bb  ∪ B. 

Let Da be subalgebra generated by Db and the elements Aa , Ba. Apply The Claim to 
choose candidates for images of Aa, Ba (and then Sikorski’s theorem to extend Tb ). Denote 
this extension by T*b. Note, that each of sets T*b(Aa) and T*b(Ba) separates LH and we may 
assume that they are disjoint. Define 

 Xa = T*b (Aa),    Ya = T*b(Ba). 

Since Yb  ⊆* Ya  and for every natural number k, the set {g < b: max (Yb  ∩ Xg) < k} is 
finite, it follows that the set {g < a: max (Ya  ∩ Xg) < k} is finite as well. If Ga ∈ Da  then we 
add, in the same way, an image T*b (Ga). Let Pa be the subalgebra generated by Pb and the 
elements Xa, Ya and T*b (Ga). If Ga ∈ Pa , then a preimage T*b 

–1(Ga) of a generator Ga has to 
be added. We fix the preimage in the way described above. We conclude the successor step 
with definitions of Da and Pa. Da is a subalgebra generated by Db and Aa, Ba, Ga, T*b

–1(Ga) 
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while Pa is generated by Pb and Xa, Ya, Ga, T*b (Ga). Moreover Ta = T*b :Da → Pa. It is obvious 
that all inductive assumptions are satisfied.

Assume that a is a limit ordinal. Put:

 Da = Ub < a Db,  Pa = Ub < a Pb,   T = Ub < a Tb. 

In order to construct elements Xa  and Ya we modify slightly Hausdorff argument 
(presented in [1]). The sequence (w\(Xb ∪ Yb): b < a) is countable and decreasing; it follows 
that there exists an infinite set D ⊆ w with D ⊆* w\(Xb  ∪ Yb) for all b < a. Thus Xb  ∪ Yb  ⊆* 
Dc = w\D. Since:

 LH = ({Xg : g < a}, {Yg: g < a})

is countable, one can choose a set F which separates the gap i.e. for all b < a, Yb  ⊆* F and 
Xb  ∩ F =* ∅. Moreover, we may assume that F ⊆ Dc (replacing F with F ∩ D, if necessary). 
Applying the claim and Sikorski’s theorem we fix a $T–1(F), which fills the gap L. Note that 
for every b < a  and    k ∈ the set  {g < b: max (F ∩  Xg) < k} is finite however it does not 
follow that for each k ∈ w the set {g < a: max (F ∩ Xg) < k} is finite. In order to ensure that 
the assertion holds we have to enlarge the set F. For k ∩ w let 

 Jk = {g < a: max (F ∩ Xg) < k}.

We define (inductively) a (countable) increasing sequence F = F0 ⊆ F1 ⊆ F2 ⊆ ... such that 
for every n, k ∈ w the set {g ∈ Jn: max (Fn+1 ∩ Xg) < k} is finite and Fn ∩  Xg  = *∅.

Assume that sets F = F0 ⊆ F1 ⊆ F2 ⊆ ... ⊆ Fn and their preimages under T have been 
defined. Denote by Pa, n+1 the subalgebra generated by Pa, n and Fn–1 and by Da, n+1 the subalgebra 
generated by Da, n and T–1 (Fn–1), for n > 0. 

If Jn+1 is finite, then Fn+1= Fn. So suppose that Jn+1 is infinite. Then Jn+1 can be increasigly 
enumerated with natural numbers and sup Jn+1 = a. Indeed, this is implied by the fact, that for 
each b < a the set b ∩ Jn+1 ={g < b: max (F ∩ Xg) < k} is finite. 

The subalgebra Pa, n is countable thus we can fix an enumeration {Ki: i ∈ w} of all elemets 
K ∈ Pa, n such that K ∩ Xg  =* ∅ for g < a.

Thus let Jn+1 ={l: l ∈ w},gl < gl+1. The sequence {Xg: g < a} is increasing, which implies 
that Xgl\(Xg0 ∪ Xg1 ∪...∪ Xgl–1) ≠ *∅. Moreover, Xgl ⊆* D

c, thus 

 Dc ∩ [Xgl\(Xg0 ∪ Xg1 ∪...∪ Xgl–1)] ≠* ∅.

It follows that for every l ∈ w there exists a natural number 

 jl ∈ Dc ∩ [Xgl\(Xg0 ∪ Xg1 ∪...∪ Xgl–1)] ∩  (w\Ui≤ l K_i)

with jl > l. Put 

 Fn+1 = Fn ∪ {jl: l ∈ w}. 

It is easy to note that {jl: l ∈ w} ∩ Xgi is finite for every i ∈ w. Since the sequence {Xg: 
g < a} is increasing it follows that {jl: l ∈ w} ∩ Xg =_*∅ and Fn+1 ∩ Xg = *∅ for each g < a. 
Moreover for each k ∈ w the set {g ∈ Jn: max (Fn+1 ∩ Xg) < k}$ is finite. Extend the range of 
the isomorphism T in the following way: D = (M,O)
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 M = {T–1(X) ∈ Da,n: X ⊆* Fn} ∪ {T–1(I(Z)): Z ∈ J},

 O = {T–1(Y) ∈ Da,n: Y ∩ Fn =* ∅} ∪ {T–1(S(Z)): Z ∈ J},

where J = {Z ∈Pa, n+1: Z ∩ Fn ≠* ∅, Z\Fn ≠* ∅} and elements S(Z), I(Z) are defined for each Z 
∈ J in the way described in proof of the Claim.

Since D is countable, then there exist infinite sets Cn, Hn such that Cn separates the gap and 
Hn is almost disjoint with every element of the sets forming the gap. Note that since Fn ∩ Xb 
=*∅ and Yb ⊆* Fn then, by the Claim, Cn ∩ Ab =* ∅ and Cn ⊆* Bb, for b < a. If, for some limit 
ordinal λ, a = λ + w then, by inductive assumption, (Uk∈w Aλ+k) ∩ (Uk∈w Bλ+k) = ∅. Moreover, 
since for every L∈ Da, n with L ∩ Ag = *∅ there exists i ∈ w such that T(L) = Ki, it follows that 
Cn

 ∩ L = *∅. Thus we may assume that 

 Cn ∩ Uk∈w Al+k = ∅. 

Put T^{–1}(Fn) = Cn. 
Since 

 Un∈w Cn ∩ Uk∈w Aλ+k = ∅

then in the casea = λ + w, for some limit ordinal λ, we can choose Ba which fills the gap:

 ({Bg : g < a} ∪ {Cn: n ∈ w}, {Ag: g < a})

and Ba  ∩ Aλ+k = ∅ for each k ∈ w. Apply the the Claim theorem to determine a Ya and Sikor-
ski’s theorem to extend the T. Note, that the element separates the gap 

 P =({Fn: n ∈ w}, {Xg: g < a}).

We may assume that F ⊆ Ya  ⊆ Dc. We have to show that for each k ∈ w the set {g < a: 
max (Ya  ∩ Xg) < k} is finite. Assume to the contrary that for some k ∈ w the set is infinite. 
Since F ⊆ Ya  then {g < a: max (Ya ∩ Xg) < k} ⊆ Jk. The latter assumtion implies that the set 
I = {g ∈ Jk: max (Ya ∩ Xg) < k} is infinite as well. But since F ⊆ Ya, I ⊆ {g ∈ Jn: max Fn+1 ∩  
Xg < k} = *∅, a contradiction.

Put Xa = Dc\Ya. Now, apply the Claim to define Aa and using Sikorski’s theorem extend 
the T. 

Define Da (Pa) as the subalgebra generated by Un∈w Da, n, Aa and Ba (Un∈w Pa,n and Xa and 
Ya). The automorphism Ta is equal to the (extended) T: Da → Pa.

This finishes the the limit step of the construction.
After w1 steps each of algebras P = Ua<w1Pa and D = Ua<w1Da contains all of the generators 

Ga, thus P = D = P(w)/fin. T = Ua<w1 Ta is an isomorphism of P(ω)/fin. The gap 

 LH = ({Xg : g < w1},{Yg: g < w1})

is a Hausdorff gap, while the gap 

 L = ({Ag: g < w1} , {Bg: g < w1})

does not satisfy the condition.
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