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Abstract

In this paper, we investigate the existence and uniqueness of the classical solution to an abstract
nonlocal Cauchy problem. For this purpose, we apply a notion of mild solution and the Banach
contraction theorem.
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1. Introduction

We study the existence and uniqueness of the classical solution to a functional-differential
abstract nonlocal Cauchy problem.
The functional-differential nonlocal problem considered in this paper, is of the form

u'(t)= ft,u@),u(a)),....u(a, (), tel, (1.1)
P
u(t0)+chu(tk):x0, (1.2)
k=1

where 1:=[1y,ty+T], ty<t;<..<t, <ty+T, T>0; f:IxE™ >E and a;:1—>1
(=1, ..., r) are given functions satisfying suitable assumptions; E is a Banach space with
norm |||, x, € E,c,#0,(k=1,...,p)andp,re N.

If ¢, # 0, (k =1, ..., p), then the results of the paper can be applied in kinematics
to determine the evolution ¢ — u(f) of the location of a physical object for which we
do not know the positions u(z), u(t), ..., u(t), but we know that the nonlocal condition
(1.2) holds.

The paper bases on books [3—4] and on papers [1-2].

2. Theorems about the existence and uniqueness of a classical solution

By X we denote the Banach space C(/, E), where [ = [¢, ¢, + T] with the standard norm
-1l So

||w||X = sup ||w(t)||, we X.
tel

2
Assume that ch #—1. A function u € X, satisfying the integral equation
k=1

p
u(t)=c| x, —ch J-f(r,u(t),u(al (1)),...,u(a,(v)dt |+
“lon @.1)
+ I S u(0),u(a (O),...oua, () dr, 1€l

0

-1
df p
where ¢ = [1 + ZCk} , 1s said to be a mild solution of the nonlocal problem (1.1) — (1.2).
k=1
A function u : [ — E is said to be a classical solution of the nonlocal problem
(1.H)—(1.2) if
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(i)  uis continuous on / and continuously differentiable on 7,

(i) ') =/(t, u(t), u(a,(©)), ..., w(a () for t e 1,
)4
(i) u(ty)+ chu(tk) = X,.

k=1

p
Theorem 2.1. Suppose that f: I X E™! — E, a1 — IG=1,..,r)and ch #—1.
tel
If u is a classical solution of the nonlocal problem (1.1)—(1.2), then u is a mild solution of this
problem.
Proof. Let u be a classical solution of the nonlocal problem (1.1)—(1.2). Then u satisfies
equation (1.1) and consequently,

u(t) =u(ty)+ jf(r,u(r),u(al (1),...,u(a,(v)dr, tel 2.2)
From (2.2),
u(t,) =u(ty)+ If(r,u(r),u(al (1),...,u(a,(v))dt, (k=1,...,p). 2.3)
By (1.2) and (2.3),
)2 U
u(ty) + ch u(ty) + If(r,u(r),u(al (1)s...,u(a, (1)) dt | = x,. 2.4)
k=l ,0
)2
Since ch #—1, then (2.4) implies
tel
ph
u(ty)=c|xy— ) ¢ J.f('c,u(r),u(a1 (1)),...,u(a.(v))dr |. 2.5
k=1

)

From (2.2) and (2.5), we obtain that « is a mild solution of the nonlocal problem
(1.1)—(1.2). The proof of Theorem 2.1 is complete.

r
Theorem 2.2. Suppose that fe C(I x E™"), a:I->1G=1,..7r and ch #—1.
k=1
If u is a mild solution of the nonlocal problem (1.1)—(1.2), then u is a classical solution
of this problem.
Proof. Let u be a mild solution of the nonlocal problem (1.1)—(1.2). Then u satisfies
equation (1.1) and, from the continuity of f, u € C'(I, E). Now we will show that u satisfies
the nonlocal condition (1.2). For this purpose, observe that by (2.1),
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p.
u(tg) =¢| 3o = D¢ [£Eu@.u@ (@),...oula, (D) dx 26)
k=l
and
Pk
u(t) = | % = Y ¢ [/(uD.u(@(@).....ua ()d7 |+
k=l

, 2.7)
+ j (), ua (V),....u(a, () de (i=1,...,p).

0
From (2.6) and (2.7), and from some computations,

p p Ik
u(ty) + Zciu(ti) =\x— ) ¢ If(r,u(r),u(al (1)),...,u(a, () dt |+
i=1 k=1 g
p b
+ Zci J.f(r,u(r),u(al (1)),...,u(a, (1)) dt = x,.
i=1 N
Therefore, the proof of Theorem 2.2 is complete.

As a consequence of Theorems 2.1 and 2.2, we obtain:

p
Theorem 2.3. Suppose that fe C(I x E™', E), a:1—1 G=1,...,r)and ch #—1.
k=1
Then u is the unique classical solution to the nonlocal problem (1.1)—(1.2) if, and only if,
u is the unique mild solution to this problem.

Now, we will prove the main theorem of the paper.
Theorem 2.4. Assume that:

(1) a€ CI,D)(j=1,...,r),f: Ix E7' — E is continuous with respect to the first variable
on [ and there is L > 0 such that

r+l

||f(s,zl,...,zHl)—f(S,El,...,ZHI)"SLZ"zi—Ei" for sel, z;,Z, e E (i=1,...,r+1),
i=1

(2.8)

(i) Do #-l

P
k=1

(i) (r +1)LT[1 +

P
5
k=1

]d.
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Then the nonlocal Cauchy problem (1.1)—(1.2) has a unique classical solution . Moreover,
the successive approximations u (n=0, 1, 2, ...), defined by the formulas

u, () =x, for tel (2.9)

and

p k&
(=[5 = Y [ £t (D1, (@ (D)ot a, (D) |+
t o (2.10)
+ '[f(r,un(t),un(al (1),...,u,(a.(v)dt for tel (n=0,12,.),

converge uniformly on / to the unique classical solution u.
Proof. Introduce an operator 4 by the formula

p
C If(r, w(t), w(a (1)),..., w(a, (1)) dt |+

S @2.11)

+ J.f(‘c, w(1), w(q, (1)),...,w(a,(1)))dt, welX, tel

0

(AW)(t) = xo —
1

It is easy to see that
A4:X->X (2.12)

Now, we will show that 4 is a contraction on X. For this purpose observe that

(Aw)(1) = (Aw)(?) =

P
=—C Z Cy I[f (T, w(1), (@ (1)),..., w(a, (1)) = (T, (1), W(a (1)),..., W(a, (1)) ]dT +
=1

+ I[f(t, w(t), w(a(7)),...,w(a, (1)) — f(t,w(r), ", (1)),...,w(a,())]dr, wawe X, tel.

(2.13)
From (2.13) and (2.8)
¢

Ck

[caw)(@) = (4 @)| <+ l)LT[l +

J"w—ﬂ/")(, w,we X, tel. (2.14)

]. (2.15)

P
k=1

Let

p
5
k=1

q=(r +1)LT[1+
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Then, by (2.14), (2.15) and assumption (iii),
||Aw—Aﬂ/||X Sq"w—fv"x for wawelX (2.16)

with 0 <g <1.

Consequently, by (2.12) and (2.16), operator A satisfies all the assumptions of the Banach
contraction theorem. Therefore, in space X there is only one fixed point u# of 4 and this point
is the mild solution to the nonlocal problem (1.1)—(1.2). Consequently, from Theorem 2.3,
u is the unique classical solution to the nonlocal problem (1.1)—(1.2).

Now, we will prove the second part of the thesis of Theorem 2.4. To this end, observe
that by (2.10) and (2.9),

p
||ul —u, ||X = suF ||u1 @) —u, (t)|| <|[-¢) ¢ Jf(r, o (1), uy(ay(1)),...,uy(a, (1)) dt||+
o 2.17)
t J2
+sup J.f(t, o (1), uy (a1 (1)),...,uy(a, (1)) dt| < MT[I +1¢ > ¢l |
tel to k=1

where

M = sup {"f(‘t, w(t), w(a, (1)),...,w(a, ('c)))" we X,1€ I}.

n—1
J-{(r+1)LT[1+ ﬂ (2.18)

Next, assume that

e c) ¢ ¢

1

n Ck

_ul’l—1"X <MT(1+

P
k=

p
k=1
for some natural n > 2.

Then, by (2.10), (2.9), (2.8) and (2.18),

"”n+1 —u, "X =Ssup ||un+1 (t) —u, (t)" =
tel

pk
=-¢) ¢ I[f(T,un(T),un(al (O sty (a, () = [ (1, (D, (@ (D), 1, (a, (V)] d ||+
k=1

1

+sup J[f (% u, (D), (@ (D). 1, (. (D) = [ (414, (0, 14,1 (0 (D)., 1, (0, (D)) d Y| <

[

P
c) ¢ ¢

k=1

Cr chk

P
< (r+1)LT[1+
k=1

J"un —un+1||X SMT[1+

P
k=1

(2.19)
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Therefore, from (2.17), (2.18), (2.19), and from induction argument,
n-1

% (2.20)
1

lety =10, 1 ], < MT|1+[E > e |-| F+DLT| 1+|¢

P P
k=1 k=
forallm=1,2, ...

Inequalities (2.20) and assumption (iii) imply, by the Weierstrass theorem, the uniform

convergence of the series

o0
U +Z(un+l _un)
n=l1

on the integral / and consequently, the uniform convergence of the sequence u_on /.
Let
u,(t)=limu,(t) for tel
n—0

Since u, tends uniformly to u, on/then, by (2.9),(2.10)and (2.8), u, isaclassical solution
to the nonlocal problem (1.1)—(1.2) on /. But, from the first part of the thesis of Theorem 2.4,
we know that there exists only one classical solution u to the nonlocal problem (1.1)—(1.2)
on/. So, u, =u onl.

The proof of Theorem 2.4 is complete.
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