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Abstract

Two point boundary value problems for fourth order, nonlinear, singular and non-singular ordinary differential equations occur in various areas of science and technology.
A compact, three point finite difference scheme for solving such problems on nonuniform geometric meshes is presented. The scheme achieves a fifth or sixth order
of accuracy on geometric and uniform meshes, respectively. The proposed scheme describes the generalization of Numerov-type method of Chawla (IMA J Appl Math
24:35-42, 1979) developed for second order differential equations. The convergence of the scheme is proven using the mean value theorem, irreducibility, and monotone
property of the block tridiagonal matrix arising for the scheme. Numerical tests confirm the accuracy, and demonstrate the reliability and efficiency of the scheme.
Geometric meshes prove superior to uniform meshes, in the presence of boundary and interior layers.
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1. Introduction

In this paper we consider a numerical solution of the fourth order ordinary differential
equation (ODE):

U +g(r,U@r), UV (), UP),UP () =0,~co<a<r<b<oo (1.1)

subject to the boundary conditions U(a) = m;,U(b) = m,,U @ (a)= my, U @ (b) = m,, where
m,, m,, m,, m, are finite real constants. We assume that g € C®(a, b), with the possibility that
2(.) can be singular inside and on the boundaries of the domain [a, b].

Boundary value problems of this kind play an important role in various areas of science
and technology. The mathematical formulation of noise removal and edge preservation (Yu-
-Li and Kaveh [1]), Kirchhoff plates (Zhong [2]), theory of plates and shell (Timoshenko
and Krieger [3]), waves on a suspension bridge (Chen and McKenna [4]), geological folding
of crock layers (Budd [5]) and hydrodynamics equation (Wasow [6]) are some examples
of such problems.

The solvability, existence and uniqueness of the solutions of fourth order boundary
value problems have been discussed by O’Regan [7], Agarwal [8] and Atabizadeh [9]. For
solving Eq. (1.1) a number of approaches have been proposed, such as differential transform
(Momani et. al. [10] ), Adomian decomposition (Wazwaz [11]), homotopy perturbation (Din
et. al. [12]), variational iteration (Noor et. al. [13]), exponential spline (Zahra [14]) and finite
difference approximations (Usmani [15], Schroder [16] and Shanthi [17]).

Possible approaches to solving Eq. (1.1) can be roughly divided into two categories.
The first category includes methods which solve Eq. (1.1) as is, either analytically as
in [10-13] or numerically as in [14—17]. The second category includes methods in which
Eq. (1.1) is first converted to a system of second order ODEs:

—UP (1) +V(r)=0, (1.2)
V) +gr,UE),UY ),V ),V V() =0,~co<a<r<b<oc (1.3)

Subsequently, one solves system (1.2) and (1.3) by a technique appropriate to second
order ODEs (see, for example Twizell and Boutayeb [18]).

In the present paper we describe a new method that belongs to the second category.
The method uses a fifth order accurate, compact three point finite difference scheme that
approximates system (1.2) and (1.3) on a specific nonuniform mesh called a geometric
mesh (Jain et. al. [19], Kadalbajoo [20] and Mohanty [21]); in some application areas,
like electrochemistry the name “exponentially expanding grid” is also used (Britz [22]).

The geometric mesh is defined by the formulae: a=r <...<r_,, =b, b =1, —n_,,

k=1Dn+1, ., =th,, where © > 0 is a constant mesh ratio parameter and n + 2 is the

total number of nodes. Such a mesh is particularly suitable when ODEs such as Eq. (1.1) or
(1.2) and (1.3) are singularly perturbed, so that their solutions possess boundary or interior
layers (Roos [23], Farrell et. al. [24]). The compact, three point character of the scheme
makes it particularly convenient. This is because in the process of the numerical solution
of the resulting nonlinear algebraic equation systems (for example, by the Newton method)
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one obtains linear algebraic systems with block tridiagonal matrices. Such systems are easy
to solve, using standard algorithms, for example the generalized Thomas algorithm (Thomas
[25], Bieniasz [26]). In contrast, higher order discretizations associated with non-compact
stencils lead to the increase of the bandwidth of the resultant coefficient matrix, which
implies a larger number of arithmetic operations.

There exists an ample literature devoted to the development of compact schemes for
solving two point boundary value problems for single second order ODEs. In particular, we
mention here the various improvements of the classical Numerov scheme (Numerov [27],
Agarwal [28]) and the arithmetic average schemes, obtained by (Chawla [29, 30], Wang [31],
Bieniasz [32], Mohanty [33], Zhang [34] and Jha [35, 36]). The new scheme proposed in the
present work, can be regarded as an extension, and adaptation to the nonuniform mesh, of the
sixth order compact scheme of Chawla [30]. Minor modifications of the scheme are required
for the singular problems.

The paper is organized as follows: In section 2, we develop the higher order finite
difference scheme on the geometric mesh. The convergence analysis is contained in section 3.
In section 4, some computational experiments are described that show the reliability
of the algorithm. In the last section, the findings are summarized.

2. Formulation of the O(h,f ) finite difference scheme on the geometric mesh

Let U,, V, be the exact solution values and u,, v, be the approximate values of U(r)
and V(r) at the mesh node r, respectively. With the help of finite Taylor’s expansions,
we first obtain the following relation that approximates the second order derivative at r,
using geometric meshes:

hreUP = -U,,; +(1+ 1)U, —tU,_,
— I QUG + U + UG, +eU ) + O, CRY)
where:
o = —(1+1)(37* +71+3)/ 60,

¢ =—Q20 +1 —t+1)/[60(1+27)], ¢; = -2(1+71)(27* +2t—1)/[152 +1)],

1 3
¢, =—1( =12 +1+2)/[602+1)], ¢z =21(1+1)(t> —=21—2)/[15(1+27)]

2 4

As Eq. (1.3) involves first solution derivatives, we need certain approximations to these
derivatives. Consider the following geometric mesh approximations to U":

U =Wy = (1= 7)W= U ) D1+ ), (22)
O} =[0+20U 1 = A+ 0 U + 70,1/ e+ ), @3)
U2, = [Vt + (14 07Uy =22+ DU )/ D1+ 0], @4
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In a similar manner, we can obtain approximations I7k(l) and 17,{(;)1 to V. We denote

Grro = 8(10-Upago Uty Vi Vih),0 = 0,£1. (2.5)
With the help of Egs. (2.2)—(2.5), we obtain
Gy =g + (A UD + DY 6+ (e - )(A4UY + DY) /124
P B U +2CUERYE + E (V)1 72
(2.6)

+ (P =T+ )4 UD + DY) 1120+ O(R),
Grat = &t ~ i1+ OAUL + DV + (4P UP + DV 6
~ B+ DQRt-DI4UY + DV +1(AVUY + DOV Y]/ 24
— B+ D3 - 21+ (4 UL + DY) +102 (APUD + DPY /120
+ P (D) [B, UL + 2, UV + E, V1 72+ O(), (2.7)
Gy = gy M A+ D[ 4UL + DV — i (APUP + DIV 6
B (7 =1=-[4UNP + DV —h (A UD + DOV /24
— (D[P =21+ 3)( AU + D) +10(4PUL + DPY)] /120

+h (DB (U +2C, ULV + E, (V) 1172+ O(), (2.8)

where:
4, =(@g/0UM), , B, =@*g/oU"), , C, =@ g/aUuVor D),

D, =(8g/ov V), and E, =(@*g/ov ™), .

By using Gk and thl , one can look for the approximations to the solution values and

derivatives;
g 2 S M 7 S 4T
[Uk+1/23Uk71/29UI§+)13U1£—)1’U1£31/2’U1£—)l/2] =
ay ayp a3 ||Upy ay a5 a4 || Vi (2.9
S VA Y - B A N A
a5 gy gy || Upa Aoy Ags  dgs || Vi
- - S0 M 0 ) 4T
Ve Vi Vi Vi Vi 0 Vi1 =
by by b3 || Via by bs b || Gy (2.10)
N Ay S G
by bsy bes || Vi bes  bes  bes || Gr

where a;,,b,,l,m=1(1)6 are free parameters to be determined in such a way that we can

achieve the following high order approximations



U= Ups1p = O(hlf ) Viwia— Vit = O(hlf ),

ub-ubo=om), vO-vh =om), e=+1,+1/2.
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@.11)
(2.12)

With the help of algebraic calculations using MAPLE (see Ref. [37]), explicit expressions
for the free parameters were obtained and they are shown in Table 1, where we have denoted

o=1>+31+1 and p=1° +1+1. Consequently,
U =00 +nt? 1+ 0 @+ 0)U 1 (3606)+O(h),

U®, =W +ht1+1)° 1+ 40U / (3600)+ O,

U, =UD |~k (4+1)(77 +97% = 51— U / (57600) + Ok},
Ul =UD, ) + ki (1+40)41 +51 =91, ~ U /(57600) + O(h),
VO =0 — B 1+ 12 [27% +21-1) 104U + 10DV
+5(4,UY + DY 125+ (57 + 5t -4 D]/ (360p) + O(y),
VO =v O + 1t 1+ 02 [(x* = 21-2){104"UD + 10DV
+5(4,UP + DY) 2} — (47 =5t -5 D1/ (360p) + O(R),
v, =v® s mt et 437 207 =201 804U + DY)
+20(4, U0 + D)y - (23¢* +637° +31¢?
—64t-32)V01/(5760p) + O(h),
v®, =vO  — ki + 27 - 202 =3t -1){80(4PUP + DOV )
+20(4,UP + D7)y - (32¢* +647° — 3147
~63t-231/(5760p) + O(h).
Further, we define

5 S =1
Gpsy =g(’”k:r1>Uk¢17U/£¢)1aVkika(i)l ),

ékﬂ/z =&(s125 0ki1/2 ) &191)1/2 ’ l;kil/z > f/k(i)m )-
With the help of the above approximations (2.13)—(2.20), we obtain
Gt = Gt — B (14 02[(27% + 21 -1)(720D" (4PUS + DOV
+180D, (4,U™Y + DV )+ 72((<* + 51+ 4)pA UL / o
+(57° + 514D, VN1 (259200) + O(1}),

(2.13)

(2.14)

(2.15)
(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Gyt = gy +h 1+ 02[(x% = 21-2)(720D, (APUS + DOy
+180D, (4,U™M + DV +72((47* + 51+ DpA4, U /o
—(41* =5t=5)D, VN1 / (25920p) + O(K}), (2.24)

Groin = &rorn +HET[20( +37° +272 =21 -1)D, (44UP +4DOV )
+ AU + D) = (1 +4)(77° +97° =51 -4 UL I o
—(23t* +637° +311% —641-32)D, V) 1/ (5760p) + O(R), (2.25)
Gyin = &ryn — BI(x* +27° =272 —31-1)20D, (440U +4pOy®
+ 4UD + D)~ 41+ )47 +50 ~91-T)pA4, U /o
—(32t* +647° —31t* —631-23)D, 1/ (5760p) + O(}). (2.26)
We define additional approximations to the first derivatives:
l}}gl) =UP + btV + Vi + Vi )+ BBGy (2.27)
VO =V 4 b (21G + 2G4 +23 G+ 24 Gy 425G n + 276G ). (2.28)

where #,’s and z’s are unknown coefficients to be determined so as to achieve the following
final approximations:

Up =+ U +1U;
+I oV + Vi + Vit + 63 Vit €4 Viyn) = Oh)), (2.29)

Vg —A+0)WV, +1V
+ 1 (oG + ¢ Gyt €3 Gy +3 Gyt ey G yn) =0, (2.30)

where k= 1(1)n and ék is an extra approximation to G,, to be determined.

The explicit expressions for the unknown coefficients are given in Table 2, where we have
denoted & =31> +7t+3. From Egs. (2.7), (2.8) and (2.23)—(2.26), we obtain

UP =UP +hy (ty + 4, +6,)US + BI(1+12)7 +12t, + 241, -1JULY /24
+R2[(6t, + D)1= 6610 6+ 1+ 208)7
~ 201, —120¢; — > +JU /120 + O(1), (2.31)
Vk(l) = Vk(l) +h(zy+zy+z3+24+ 25+ 26)U,E4) + h,f['r(1+6z1 + 625 +3z5)
—3(22y +2z, +2) UL 1 6+ B 1+ 1)zt + 2, (4 U =D V) 16
+ I[P (14325 41225 +122)) + 324 +122, +122, —1JUY /24
~ 1+ (02t -1z + (1= 22 (AU + DY) /124
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1+ 1)z 7~ 2) (AU + DOV 16+ B [2(7P 1 + 1)

+40(T (2, +23) — 25 —2) / 240+ 5(z57° — 2 )V + O(). (2.32)
Finally, by using Egs. (2.27) and (2.28), we define
Gy = g0, Uy, UL 1, V0. (233)

Hence, we have obtained the final geometric mesh finite difference scheme (2.29) and
(2.30), which is compact and applicable to the numerical solution of the boundary value
problem (1.1) or (1.2) and (1.3). A more detailed analysis reveals that the local truncation

error of the scheme is (t— l)O(h,Z )+ O(h,?) and hence in the case of a uniform mesh (t = 1),

the proposed method is sixth order accurate.
The scheme needs an amendment in the vicinity of a singularity, which arises when,

for example, our domain of integration is [0, 1] and we need to evaluate the terms like r,:l
at k = 1. This leads to the division by zero and hence in order to avoid such situations,

we need to incorporate the Taylor’s approximations 7} = 21—0(1)4 hi’”;; D L oy, into

Egs. (2.29) and (2.30). The resulting scheme is applicable to singular ODEs such as ODEs
involving the Laplacian operator in cylindrical and spherical coordinates. For practical
implementations, one replaces the exact values U, and V, present in Egs. (2.29) and (2.30) by

approximate values u, and v,, and one omits the residual terms O(h,Z ). The resulting system
of algebraic equations for #, and v, must be extended with boundary conditions.

3. Convergence analysis

In this section, we discuss the convergence property of the proposed finite difference
scheme (2.29) and (2.30) for the numerical solution of the two point boundary value problem
(I.1). Atr=r, k=1(1)n, Eq. (1.1) can be written as

U@ =v, . v® =gn,U,, UV, V") = Gk = 1(Dn. (3.1)
Then, the geometric mesh finite difference method (2.29)—(2.30) is given by

{d)k(Uk—l’Uk’UkH’Vk—l’Vk’Vk+l)+Lk(hk):0’

(3.2)
Ok Ui, Ui Uy Vit Vi Vi) + My () = 0,k = 1(Dn,

where
b =Up + 1+ U, =10,
— eV + Vi + Vi 6 I;k+l/2+c4 I;k—l/z),
O =V +A+DV, =,

.- - - R R
=l (oG + ¢ G+ ¢ Gy + 63 Gryyn+ ¢4 Gy o),
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L(h)=0(h}) and M, (h)=0(h]).

The scheme (3.2) in the matrix/vector notation is written as

oU,V)+L=0 (33)
oU,V)+M =0,
where
U, 4 L M,
U=| : |, V=|:|, L=|:| M=| :
U}’l Vn L}’l Ml’l

We wish to find the approximations # and v for U and V, respectively, which are
determined by solving 2n x 2n systems

{‘M”’v) =0 (3.4)
o(u,v)=0.
From (3.3) and (3.4), we obtain
d)(ll,V)—d)(U,V):L (3 5)
o(u,v)-o(U,V)=M. '

Lete, =u, — U, M, =v, —V, k= 1(1)n be the discretization errors and ¢ = u — U,
1 = v — V be the vectors of these errors. Let us denote

Zho0 = 80U k00150 Veso-Ving) = Grrgr 0= 0,21,
Gix1 = & (Tew1 U pay aﬁi(cli)1’vkﬂ"71(cl¢)1) = ékil’
sz = g(”kﬂ/zyakilm’:‘194_21/29{’&1/2 9{)191)-1/2) = éktl/z
8k = g(rk’”k’ﬁl(cl)’vk"jlgl)) = ék,

Epig = 8rso —Grags 0=0,%1,

Eygsg = €xs0— Grag» 0=11/2,

Ek =g~ Gk >
5529 = 1’71((126 _01939’ ﬁgle = ‘71926 - Vk(l)e’ 0=0,%1,
g1@1/2 = ﬁki1/2 - l}kil/z’ ﬁki1/2 = ‘A)kil/z - I;kil/2!
gg{lie = ;‘lgli)e_ﬁlgli)w An}clie = ‘A’l(cli)e_ I71&)9’ 0=11/2,
él(cl) — ’71?) _(jlgl)’ ﬁg) — \7]51) _17]{(1)’

& =& — (1= ~ T8 1/ [r(+ D), E e fem),
E =10+ 20080, —(1+ 178, + T8, 1/ T+ D],



e, =[Ep +(1+1)7E 12+ D8, 1/ [ r(1+ D).

By applying the mean value theorem, one obtains:
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= ~( ~(1
Epyo =0 oBilo +BrroCiso + Visolyro + StsoMNisos 0=0,%1, (3.6)
where
og og og og
a; = O N Bl:_ . 'YIZT . ;= . l=k,ki1,kil/2
Ou" ly=y oul,—, vV ey vy
Let us define:
~ ~() =) ~() 1T
[&ks1/25 84 1/2»51(21:85{)1sggcluz’g;c)uz =
ap G A4g3 | € Ay G5 i || Nk-1 3.7
. . 2 .
& |+hi Nt |»
dg1 g2 A6z || Ek+1 ea  dgs  dee || Nk+1
~ -~ ~(1 )~ 1
[T 1725 Tz My A1 Atz Ny d
by by bz || by bs b || B (3.8)
: g : e |+ h,? : : 3 E, |,
bsr  bsy by || Nes bsy  bss  bes | Era
where are coefficients given in Table 1 and 2, and
o ~ ~
Epyy =0y Sgcil +Brs1€rsr + Venr niil + 8 M1 » (3.9)
- ~(1 ~(1
Epi1/2 = Qa2 85«31/2 +Bre12€ks1/2 + Y12 ngﬁ)-l/2+ Oy s1/2Mks1/25 (3.10)
(1) = 8(1) + b (bgMy + Mgy + 1)+ IBE (3.11)
—(1 1
ni) ()+hk(zlEk+1 +22Ek 1+t723 Ek+1+24 Ek 1+ Zs Ek+1/2+z6 Ek 12) (3.12)
E, = 080 + By + 7,08 +8,m;. (3.13)
In view of the Eq. (3.5), we obtain
Ry = 0p (gt s gy s Vi1 Vies Vies) = 0k (Ui, U U1 Vi Vi Vi)
2 ~ —~
=g T+ 1), =18, — A (CoMy + Mgy + Mgy + 3 Mpsy2+ €4 Ny 2)5
Sp = 0 gyt gy Vie_15 Vi Vier) = O U, U U 0 Vi Vi Vi)
- ~ - - -
=My A+ =ty I (B + 6 B+ B+ Byt ey Eyypn).
Equivalently, in the matrix notation
¢(u,v)— (U, V) €
{ =Pl | (3.14)
(P(M,V)—(p(U, V) n
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where

P:

tridiag |:C(Rk’8k1) C(Rkarlkl):i |:C(Rk78k) C(Rk’nk):| |:C(Rk78k+1) C(Rkank+1):|
C(Spoer) CSm) | [ CSpag)  C(Spame) || C(Sko8r01) C(SpuMia)

is a block tridiagonal matrix and C(R,, ) = Coefficient of 1, in R, etc.
From (3.5) and (3.14), one obtains

PE=T, T=[L M), &=[¢ nl. (3.15)

In the limiting case of small /,, matrix P takes the form

. . -1 0 I+t 0 -1 0
lim P = tridiag , , .
Iy —0 0 - 0 1+7 0 -1

Thus, the lower, upper and main diagonal blocks are non-zero, since T > 0. Hence
the graph G(P) of the matrix P is strongly connected and consequently, the matrix P is
irreducible (Varga [38]).

Let

0L = miny {0, Oyrp, Opryn §o Br=ming By, BrsyBrarsn}s
Y= ming {Y g, Y gars Veseya by O = MmN {8,841, 8541/2 )

Further, let Zl be the sum of the /” row elements of the matrix P, then

For [ =1: Y, >+ O ), T, >+ Ohy).

Iy 4 h 3
For 1=3(2)2n-2: %, 27r(l+r)+0(h, ) 2t = 7t(l+r)(B+8)+0(h, ).
For [ =2n-1: Y, > 1+0(h), Y, > 1+0(h).

This implies that for sufficiently small value of 4, i.e. in the limiting case of 4, — 0,
>, >1>0,1=12, ¥,>0,1=31)2n-2; ¥, >1>0,/=2n-1,2n.
Hence, P is monotone (Henrici [39], Young [40]). Consequently P! exists and is non-

-negative. Let Pfll be the (i,/)" element of P!, and define

“Pil“m = max; <y, X7 Piﬂs 7] = max, <o, XL () + My ()| = OCR).
From the obvious identity, P! = (PJ) = J, where J=[1,1,...,1]7, we obtain
TP Y, =1 i=1(1)2n. (3.16)

Thus, the following bounds can be estimated by using Taylor series expansions
For/=1:

_ _ 1
P <3t ==+0}),
T
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For [=3(2)2n-2:

P,-}l < min, Z;l < ;2+ Oh), v>0,
’ 1+ 1)k

2

Pl <min Y <————
ah P T 1 (B4 8)R]

1

+O(h), v>0.

Forl/=2n-1:
R} <X =1+007),
Py <Xk S1+0(h).
As aresult, from Egs. (3.15) and (3.16), we obtain the following error estimates:

el <|[P™']. Il < O0wh), provided that B +5 = o. (3.17)
o0

This proves the fifth order convergence of the proposed method. Another result is that
the coefficients ¢, k = 0(1)4 in Eq. (2.1) are negative if (\/5 —1)/2 <t and hence we obtain

a lower bound on T, whereas the upper bound on 7 is less than 1.5, otherwise the grid will
be too non-uniform to be practical. Thus, we summarise the above result in the following
theorem:

Theorem 3.1. The geometric mesh finite difference method (2.29) and (2.30) for the
numerical solution of differential equation (1.1) or (1.2) and (1.3) with sufficiently small

h, and (\/5 -1)/2<t<1.5, t=1, gives a fifth order of convergent solution provided that

a—g+a—g¢0.
ou ov

4. Computational experiment

To verify the theoretical predictions, we have solved several linear and nonlinear
problems. We defined the geometric mesh as follows

(b-a)(l-1)/(1-1""), t<1
I”O = a,hl =
(b-a)t-1)/ (""" -1), 1>1
Hence, &,

w1 = Th, k= 1(1)n. If a boundary value problem exhibits a boundary
layer at the left boundary, choosing t > 1 is appropriate. If the layer occurs at the right
boundary, we choose © < 1. If the layer occurs in the interior region, then the mesh can
be arranged by choosing t > 1 in the first half of the interval and © < 1 in the second half.
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The numerical accuracy of the results is expressed using maximum absolute errors (s(‘(’fg)
u

and computational orders of convergence (© ) for m" order derivatives of u(r).

(2)
€ m

(2)
€ m

(c0) _ ngrids
o = MaXy<p<p

u

: uf o

> ®m = lOgZ

2ngrids

Numerical computations were performed using long double arithmetic extended precision
variables having 80 bits and 18 digits precision. The code was written in C and run under
Linux operating system. For solving linear or nonlinear algebric equations resulting from
the discretisation, the Newton method and the Thomas algorithm were used, with the error
tolerance being < 10°%5.

Example 4.1 (Conte [41]) The fourth order two point boundary value problem

UD () -A+MUP () +AU(r) = %;ﬂ +L0<r<1,

U@©)=1, Ul) = %+ sinh(1), U (0) =1, U (1) = 1+sinh(1),

2
possesses analytical solution U (r)=1+%+sinh(r). We know that 1 and £\ are the

eigenvalues of this equation and hence the problem is stiff for large values of A. We have
solved the problem for small as well as for large values of A. The solution is found accurate
for A < 10® both in the case of uniform and geometric meshes. Table 3 presents errors of
the approximate solutions and computational orders of convergence obtained for A = 108,
in the case of uniform meshes (t = 1) and geometric meshes (t # 1). It is evident that the
geometric mesh technique is superior to the uniform mesh.

Example 4.2 (Mohanty [33]) The fourth order singular linear problem in polar coordinates

2 rdY 20 AMA=2) A(rL-2
V4U(r)5£dr—2+7—J U(r)=(l+7+ ( - ) _M 5 )

dr r r

)er, 0<r<l,

U@ =U20)=1, U =UP 1) =e,

possesses analytical solution U(r) = ¢”. The choice of A =0,1 and 2, corresponds to Cartesian,
cylindrical and spherical coordinates respectively.The errors for the various values of n
and A are reported in Table 4.

Example 4.3 (Elcrat [42]) The nonlinear boundary value problem arising from a model
of the axisymmetric flow of an incompressible fluid contained between infinite disks is:

U ()= UU? () =M =D)(A+4r+r7)e? —(11+8r+77)e", 0<r <1,
U@y=1, U1)=0, U?0)=-1, U» (1) =—6e.

The analytical solution is U(r) = (1 — r?)e". The errors obtained are given in Table 5, for
various values of #n, and for A = 10°.
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Example 4.4 (Takaoka [43]) The boundary value problem arising from the steady state
form of the Korteweg-de Vries equation of fifth order is:

UDr) =2U0P () + %U(r)z ~U(r)
+ %sin(l 07r)[2 + 2007 (A + 1007 ) — A sin(107)],

U =Ul)=U?0)=U?1)=0, 0<r<1.

The analytical solution is U(r) = Asin(10mr). The maximum absolute errors obtained
for A = 4 are given in Table 6 for various values of 7.

5. Conclusion and remarks

A compact, three point finite difference scheme using geometric mesh has been designed
to obtain accurate numerical solutions of fourth order two point regular and singular
boundary value problems for nonlinear ordinary differential equations. The theoretical order
of accuracy is 5 (or 6 in the limit of uniform meshes).The scheme is shown theoretically to

be convergent when the grid ratio t is (\/g -/2<t<15.

Computational tests confirm that the scheme converges and is applicable both to singular
and non singular differential equations. Numerical solutions obtained using geometric
meshes prove more accurate than those corresponding to uniform meshes, when local layers
are present. The scheme can be effectively combined with the Newton-method and Thomas
algorithm for solving block-tridiagonal linear algebraic systems arising in the calculations.

The authors would like to thank Indian National Science Academy and Polish Academy of Sciences
for the support of this research work which was funded by the grant: Intl/PAS/2014/2608 received by
the first author.
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Expressions for the coefficients a

b

Table 1

I, m = 1(1)6 in Egs. (2.9) and (2.10)

m®

ay = -1 (51+12) /[160(1+1)]

by =3t /[16p(1+1)]

apy = (1+2)(5t* +10t +4) / (160)

by = (1+2)(37> +21+4)/ (16p)

a3 = (1+2)(31% + 141+ 4) /[165(1 + 1)]

byy = (t+2)(5t% + 61 +4) /[16p(1 + 1)]

ayy = (1+2)(41+3)7° /[960(1+ 1)]

by =7 (t+2)? /[96p(1+1)]

a5=0

bs = -2 (1+2)(t> +21+3)/ (96p)

arg ==t (1+2)(t* + 61+ 6) /[965(1+ )]

bg = —t*(t+2)(21* +41+3) /[96p(t +1)]

ay; = 21+ 1)(41° + 141+ 3) /[160(t +1)]

by = (21 +1)(41% + 61+ 5) /[16p(T+1)]

ay, = (21 +1)(41% +101+5) / (1607)

byy = (2T +1)(41% +21+3)/ (16p7)

ayy =—(121+5) /[165(1+ 1)1]

byy =3 /[16p(t +1)1]

ayq =—(2T+1)(67° +61+1) /[960(1 + T)]

byy = —(2T+1)(31% + 41+ 2)/[96p(T+1)]

025:0

bys = 2T+ )31 +21+1)/ (96p1)

ayg = (31 +4)(2t+1)/[966(1 + 1)]

byg = (2T +1)% /[96p(t +1)1]

a3; = (1+2)7° / [o(1+1)]

by =12 (1+2)/ [p(+1)]

a3y =—(t+1)* / (lyo1)

byy = (x=1)(x+1)*/ (hypr)

ay3 = (20 +61° +4t+1)/[Io(1+1)1]

by =2+ 1) /[ Iyp(t+1)1]

a3y = ~(t+ 1) / (6hy0)

byy =2 (1-1%)/ (6l;p)

ass =0

bys =12+ 1)(1+1)% / (6l4p)

ayg =t(t+3)(t+1)/ (6h;,0)

by = 1(1+ 1)1+ 21) / (6lyp)

ay = (0 +47° +61+2) / [o(1+1)]

by = -t (t+2)/ yp(+1)]

ag = (t+ 1)/ (ho1)

byy = (x=D(x+1)*/ (lyp1)

ayy =—2t+1)/[o(l+1)7]

byy =2t+1)/[Ip(t+1D)1]

ag =—(t+D)B3t+1)/ (6h)

byy = —~(1+ 2t +1)/ (6hp)

ags5 =0

bys =—(Q2t+1)(t+1)% / (6h;p7)

ay = (t+1)/ (6l,0)

byg = (1=7)/ (6/yp)
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as; =%/ [2ho(1+1)] bsy =12 (t+2)/ [2hp(1+1)]

asy = —(31> + 61 +2) / (2hyo1) bsy =—(t° + 41 + 21+ 2) / (2hyp1)

asy = (t° + 41+ 2)(2t+1) / [2l5(1+ 1)1] bsy = (37 +61% +41+2) / [2hp(t +1)1]

asy = (1 —t=11* /[24h0(1+1)] bsy =12 (P2 —1—1)(t+2)/ [24hp(1+1)]

ass =0 bss = —1(T> +41% + 61+1) / (24h;p)

asg = (T2 + 51, +5)18 /2405, (1+1;)] bsg = —1(27° + 5t% +31—1)/ [24h,p(1 + 7)]

ag) =—(27 + 4t +1)(1+2) /2 o(1+1)] by = —(27° + 417 +61+3) / [2hyp(1+ 1))

agy = (2t +61+3) / (2h,0) bgy = (27> + 212 + 41 +1) / (2hpr)

agy =—1/[2ho(1+1)] bes =—(1+21) /2 p(1+ 1)1

agy = (57% + 5t +1)/[24h0(1+1)] by =—(t° =31% =51 —2) / [24h,p(1 +1)]

ags =0 bgs = (7> + 61> + 4t +1)/ (2h;p)

agg = (12 +1—1)/[24h6(1+ 1)) bes = (T +T—1)(1+27) / [24hp(1 + D]
Table 2

Expressions for the coefficients z, i = 0(1)3, z, j=1(1)6 in Egs. (2.27) and (2.28)

to = —(1+ 1)(277° +133t* +155t° — 107> — 621~ 18) / [6080(2 + 7)]

1y =—(37° + 607> +3021* +555¢° + 4221% +1401+18) / [605(2 + T)(1 + 7)3]

1y =1(271° +1907° + 508t + 7357% + 62812 + 2707+ 42) / [6056(2 + T)(1 + 7)]

ty = =1(121% + 65¢° +103t* + 907> + 1031 + 651 +12) / [12056(2 + 1)]

7 = (61° +157° —1* = 2873 — 1% + 151+ 6) /[65p(1 +1)°]

25 = —1(61° +157° —1* = 2870 =12 +151+ 6) / [65p(1 + 1) ]

23 =—(271 +70t° + 207> — 52¢* + 837% + 1007 + 251 - 3) / [305p(1 + 27)(1 + 1)°]

2, =—1(31" —251° —1007° —831* + 527 —207% — 70t 27) /[308p(2 + T)(1 + 1)*]

zg = —(481° +1577° +1331% — 217 +837% + 1071+ 33) /[158p(2 + 1)(1 + 1)]

2 = 1(33t° +1077° +83t* — 211> +13372 + 1571+ 48) /[156p(1 + 21)(1 + 1)]
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Table 3
Solution errors obtained for example 1*

n y 85,00) 823) 0, o, T 85,00) 81(;%)

8 | 1e08 2.40e-11 2.40e-11 -—- --- 0.9980 | 4.52e-12 4.52e-12
16 | 1e08 5.32e-13 5.32e-13 5.5 5.5 0.9991 | 6.00e-14 5.98e-14
32 | 1e08 1.58e-14 1.58e-14 5.1 5.1 0.9997 | 9.70e-16 9.71e-16

Table 4
Solution errors obtained for example 2*

n Iy gl S(u(??)) 9, 0, T e 81(4?2}))

8 0 1.97e-07 8.09e-08 -—- --- 0.985 1.90e-08 3.12¢-08
16 0 4.34e-09 1.78e-09 5.5 5.5 0.991 8.82e-10 9.61e-10
32 0 8.12e-11 3.34e-11 5.7 5.7 0.996 | 8.52e-12 1.17e-11

8 1 7.56e-05 1.45e-03 -—- --- 1.160 | 1.67e-05 2.75e-04
16 1 7.80e-06 3.81e-04 33 2.0 1.110 | 3.46e-07 5.25e-05
32 1 7.50e-07 8.86e-05 34 2.1 1.040 | 6.70e-08 1.84e-05

8 2 5.64e-05 5.23e-04 - --- 0910 | 1.22e-05 8.53e-04
16 2 3.94e-06 3.75e-05 3.8 39 0.960 | 1.21e-06 1.68e-05
32 2 2.65e-07 2.49e-06 3.9 3.8 0.790 | 8.67e-08 1.98e-06

Table 5
Solution errors obtained for example 3"

n Iy sgoo) 85{?3)) 0, 0, T sgoo) ai?ff

8 | 1e03 1.53e-09 8.31e-08 - --- 0.96 1.05e-10 2.72e-08
16 | 1e03 2.77e-11 1.51e-09 5.8 5.9 0.98 2.29¢e-12 3.79¢-10
32 | 1e03 4.69¢-13 2.53e-11 5.9 5.9 0.99 4.42¢-14 5.84e-12

Table 6
Solution errors obtained for example 4"

n A af,oo) 5,(;(?)) 0, 0, T 8§,°°) SS%)

8 4 2.40e-10 3.90e-09 - -—- 0.995 | 2.99e-11 4.66e-09
16 4 5.32e-12 8.57e-11 5.5 5.5 0.997 | 6.49¢-13 1.05e-10
32 4 1.06e-13 1.60e-12 5.7 5.8 0998 2.55e-14 2.07e-12

* Column 3-6 refer to uniform meshes, column 7-9 refer to geometric meshes.
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