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Kalibracja modeli mikrosymulacyjnych systemów 
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Abstract
This paper presents a calibration and validation procedure for microsimulation models, which used metrics 
(mean, variance, and mean absolute percentage error) with statistical tests (t-test, Shapiro-Wilk, Kolmogorov-
Smirnov and Wilcoxon), to compare empirical and simulated data. A genetic algorithm was used to identify 
calibration parameters set. The paper justifies the approach using VISSIM microsimulations to analyze two 
safety countermeasures: Advance Detection System and Advance Warning System, which can be applied 
at signalized intersection. The end result was a  calibrated and validated model, which could be used to 
compare different safety countermeasures at rural signalized intersections in the state of Nebraska (USA). 
The proposed approach could be utilized in similar studies.
Keywords: signalized intersection, safety countermeasures, calibration, validation, simulation model

Streszczenie
W artykule przedstawiono procedurę kalibracji i  walidacji modeli mikrosymulacji z  użyciem mierników 
(średnia, wariancja i  średni bezwzględny błąd procentowy), oraz testów statystycznych (studenta, Shapiro-
Wilka, Kolmogorow-Smirnova oraz Wilcoxona) dla porównania danych empirycznych i z symulacji. Algorytm 
genetyczny wykorzystano do doboru parametrów kalibracyjnych. Metodologia została sprawdzona w programie 
VISSIM do analizy dwóch systemów poprawy BRD: Systemu Wczesnej Detekcji i  Wczesnego Ostrzegania, 
które stosuje się na skrzyżowaniach z sygnalizacją świetlną. W wyniku uzyskano skalibrowany i zweryfikowany 
model, który można użyć do porównania środków poprawy BRD na zamiejskich skrzyżowaniach z sygnalizacją 
w stanie Nebraska (USA). To podejście można wykorzystać w podobnych analizach.
Słowa kluczowe: skrzyżowanie z sygnalizacją, środki poprawy brd, kalibracja, walidacja, model symulacyjny
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1. Introduction

The main advantage of using microsimulation tools to examine potential traffic safety 
improvements is their ability to handle the dynamic and stochastic nature of traffic. However, 
it is critical that the user calibrates and validates the models for the particular site and safety 
countermeasure being studied. Traffic micro-simulation models are very useful tools for 
simulating the effects of proposed network improvements, and have the potential to model 
a  subset of safety countermeasures. Typically, these countermeasures are operation-based, 
e.g. an Advance Detection System (ADS) and an Advance Warning System (AWS).

The key features of VISSIM include driver and vehicle behavior management, a comprehensive 
toolbox for signal control that allows the user to define signal control logic, and flexibility in 
collecting disaggregated data. The basic VISSIM model contains a set of default parameter values 
related to the driver, the vehicle, and the system. However, it is crucial that these default values 
are adjusted for the specific problem being studied to ensure that the simulation output reflects 
reality. As these parameters directly affect modeled vehicle interactions, failure to properly 
calibrate them can result in erroneous conclusions. The calibration process for safety-related 
studies should include car-following, lane-changing, and signal control parameters.

This paper is focused on the calibration of a  VISSIM microsimulation model (PTV, 
version 5.30, 2011) that will be utilized to examine ADS and AWS safety countermeasures. 
The model was calibrated for four high-speed, isolated, rural intersections in Nebraska (USA). 
Due to spatial constraints of the current paper, the process will be described with respect 
to a  selected single location, the intersection of US-77 and Pioneers Boulevard outside of 
Lincoln, Nebraska. The calibration procedure utilized a  genetic algorithm (GA). The GA 
procedure was selected because, by definition, it examined the entire solution space, and 
was less likely than other optimization techniques to identify a local minimum. Due to the 
stochastic nature of the model, nonparametric statistical techniques were also incorporated 
within the GA to ensure that empirical and simulated data were statistically identical. Because 
the study was safety-related, it was imperative that the resulting model adequately replicates 
the distribution of speeds, rather than the average speed only. Therefore, speed distribution 
was used as the primary calibration measure of effectiveness. Subsequently, the calibrated 
model was validated to ensure that the simulated speed distributions at key points matched 
the empirical distributions, that the simulated queues matched the observed queues, and 
that the simulated delays matched the observed delays. These comparisons were made 
using appropriate statistical tests. The end result was a  calibrated and validated model for 
Nebraska that replicated driver behavior and could be utilized to compare various safety 
countermeasures at isolated, rural, high-speed signalized intersections.
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2. Methodology

In recent years, a number of studies have been conducted in relation to the development 
of systematic calibration methodologies. Many of these studies were based on statistical 
comparisons and utilized GAs to identify potential parameter sets [3, 7, 8, 9, 11]. In addition, 
many made use of ITS data, which are becoming more widely available.

Mathew et al. [9] proposed heuristics and the GA based optimization for model calibration. 
The calibration parameters were identified through sensitivity analysis. The optimum values 
of these parameters were obtained by minimizing the error between the simulation and 
field delays using the GA technique. The authors found that the time and effort required to 
accurately tune a large number of potential simulation parameters could be reduced through 
the use of optimization methods. Park et al. [11] proposed an innovative calibration and 
validation procedure, successfully applying the approach to several case studies. The first 
step of the procedure required the identification of key calibration parameters and their 
acceptable ranges. The generation of a reasonable number of parameter sets using a statistical 
experimental design was then performed. Each parameter set was run five times to test the 
statistical feasibility of each set. The GA optimization program obtained an optimal calibration 
parameter set from the potential parameter ranges that were accepted during the feasibility 
test step. Since VISSIM is a microscopic and stochastic simulation model, a small number 
of runs was conducted for each feasible parameter set to reduce variability. An objective 
function of the GA was obtained through the comparison of field data to simulation output. 
A recent study indicated that an automatic calibration procedure could be more effective [7] 
than a manual approach. The authors used the GA procedure to determine ideal parameters. 
Five steps were proposed for the approach, and the procedure was iterative. The first step 
was the initialization of the GA. Next, the microscopic simulation model was run with the 
input file (generated parameters were translated into the appropriate VISSIM format). The 
model output and selection of the potential parameter set was then evaluated. This was the 
most important component in the calibration procedure. The model output was evaluated 
using statistical tests (Moses’s test, the Wilcoxon test, and the Kolmogorov-Smirnov test). 
Finally, two descriptive statistics (median and dispersion) and the maximum difference in 
the cumulative function were tested using nonparametric testing methods. Cunto et al. [3] 
utilized a calibration procedure consisting of four steps. Their procedure included a heuristic 
selection of the initial model inputs; statistical screening using a  Plackett–Burnman with 
factorial design; the development of a  linear expression relating significant model inputs 
to safety performance (fractional factorial analysis); and the GA procedure to obtain best 
estimate model parameters. The next attempt to determine a formal calibration procedure was 
conducted by Park et al. [10], who implemented an experimental design. They argued that this 
was appropriate because the number of controllable feasible parameter combinations was so 
large that the set of possible scenarios could not be evaluated in a reasonable amount of time. 
This problem was compounded if multiple simulation runs were required to reduce stochastic 
variability. The authors also used statistical tests, including the t-test and the Kolmogorov–
Smirnov test, to determine how well their calibration procedure performed.
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Calibration is a process used to determine an appropriate set of model parameters that 
replicate observed information, such as local driver behavior. In general, the user adjusts the 
select behavioral parameters until the simulated output matches the empirical data at some 
predefined statistical level. Validation is then employed to ensure that the calibrated model 
is appropriate by determining whether the output of the model accurately reproduces the 
specified behavior. Similar to calibration, validation compares empirical data with simulated 
data. However, this empirical data need to be different than that used in the calibration.

The objective of the current paper was to demonstrate the calibration and validation of 
a VISSIM microsimulation model for signalized intersections in Nebraska. The model will be 
utilized to study ADS and AWS systems, which are engineering countermeasures intended to 
improve road safety. As such, it was critical that the model accurately reflects driver behavior, 
as measured by vehicle speeds, when these systems were active. A microsimulation model 
was developed for four Nebraska test sites. Key inputs included traffic volume, turning 
movements, and heavy vehicle percentages. The models were then calibrated based on speed 
distributions at particular points at each location. The calibrated model was then validated by 
examining speed distributions at other locations and waiting times on the minor approaches.

Fig. 1 displays the calibration procedure adopted in the current study, which is described 
more thoroughly in subsequent sections.

Fig. 1. Procedure for model calibration
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3. Calibration procedure

The procedure of the calibration, presented in the current paper, was applied to four 
intersections in Nebraska: (1) US Highway 77 and Saltillo Rd in Lincoln, (2) US Highway 77 
and Pioneers Boulevard in Lincoln, (3) Highway N-133 and Highway N-36 in Omaha, and 
(4) US Highway 75 and Platteview Road in Bellevue. However, based on space limitations of 
the current document, the US-77 and Pioneers Blvd test site was treated as the primary focus 
of the current paper.

3.1. Simulation model setup

The intersection of the US-77 and Pioneers Blvd was located in a rural area approximately five 
miles south of Lincoln. US Highway 77 is a four-lane divided expressway, as pictured in Fig. 2.

The speed limit on US-77 before the intersection was 55 mph, and on Pioneers Blvd was 
45 mph in both directions. The SB approach of US-77 was examined because it had been 
outfitted with an AWS by the Nebraska Department of Roads (NDOR) [14]. This approach 
had an exclusive left-turn lane, one through lane, and one shared through and right-turn lane. 
All lanes were 12 ft wide, while the left-turn lane was 180 ft long. The lane configuration for 
this approach, with detector locations, is pictured in Fig. 2. Additionally, the EB and WB 
approaches on Pioneers Boulevard had an exclusive left-turn lane and shared through with 
the right-turn lane. The advance warning sign, which operates in pulse mode, was located 667 
ft before the intersection, as shown in Fig. 2. Stop line detection was provided for all approach 
lanes, and the detectors operated in presence mode. The SB approach on US-77 had one 
phase, which included all movements. It had a 15.0 sec minimum green, a 2.0 sec passage 
time, a 50.0 sec maximum green, a 4.5 sec yellow, and a 0.5 sec all-red interval.

Fig. 2. Study site – US-77 & Pioneers Blvd in Lincoln, NE
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This intersection was coded in VISSIM software and the plan and overall geometry of the 
intersection were based on a scaled map obtained from Google [5]. Lane width and length 
were confirmed on site. Additional data pertaining to the intersection, including signal timing 
and the location of the safety countermeasures (AWS and detectors), was obtained from 
materials provided by NDOR. Empirical traffic data, including volumes, turning movement 
counts, and heavy vehicles percentages, were collected by the authors. All VISSIM parameters 
were initially set to the default values. The signal control logic was coded using vehicle 
actuated programming (VAP) to enable the phase-based, traffic-actuated signal control logic 
to be implemented in the microsimulation [13].

Due to the nature of the traffic safety countermeasures being analyzed, it was critical that 
the speed distribution of drivers at critical locations be adequately modeled. Therefore, the 
empirical data collection effort focused on speed distribution as a function of space and time. 
The speed and location of every northbound vehicle were collected using wide area detectors 
(WAD) mounted on a  mobile trailer. These devices were connected to programmable 
controllers. Three WADs were used to collect data: two Wavetronix SmartSensor Advance 
models and one Wavetronix SmartSensor HD. The two Wavetronix SmartSensor Advance 
models were used to track approaching vehicles upstream and downstream of the trailer 
location. The sensors recorded distance and speed at 0.1 sec intervals. The Wavetronix 
SmartSensor HD was used to record vehicle information equidistant with the pole location 
[1]. More detailed information on the specific capabilities of these devices can be obtained 
from the Wavetronix website [6]. The data collection scheme, including the location of each 
WAD and their coverage (up to 600 ft upstream and downstream), is illustrated in Fig. 3.

In calibrating a  microsimulation model, it is critical that the end application is known 
so that key metrics are appropriately modeled. For example, for safety applications, the 
distribution of metrics, such as speed, is often required; however, if the model is calibrated to 
mean speed, it may fail to perform in the desired manner. The motivation behind the current 
paper was to analyze two safety countermeasures (ADS and AWS). A complete description 
of these systems can be found elsewhere [14].

Fig. 3. WADs data coverage [14]
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To model the ADS countermeasure, two critical locations were identified, as illustrated 
in Fig. 4. The first location, denoted as DS1, was 2,000 ft upstream of the stop bar. This 
location was selected because the status of the traffic signal was deemed to have no effect 
upon observed speed. The second location, denoted as DS2, was 600 feet from the stop bar. 
This location was selected in order to model driver behavior in the vicinity of the intersection 
as a function of traffic signal status.

Empirical speed distribution data were collected at both locations, and are presented in 
Fig. 5. Distribution DS1 corresponded to location DS1, and distribution DS2a corresponded 
to location DS2. In order to model speed change, a  decision point was input in VISSIM. 
In essence, the desired speed distribution was added as part of the input parameter set. 
The simulated vehicles were then assigned a speed from this input distribution when they 
crossed the point. In this way, the behavior of drivers slowing down as they approached the 
intersection was modeled.

There were three key points to note from Fig. 5. First: because the ADS could not be 
detected by drivers in real life, it was not necessary to model driver reactions to that system in 
VISSIM. Second, users are able to add as many decision points as they wish to simulate driver 
deceleration upon approaching an intersection. While two decision points were adequate 
for the four test sites analyzed in the current project, other test sites may require additional 
decision points. Third, the distribution is defined by the user. In the current paper, five points 
were used to define the curve. However, users may choose as many points as desired in order 
to model the desired speed distribution.

In essence, the AWS simulation followed ADS logic. The primary difference was that the 
AWS utilized an AWS device (i.e., a sign with the flashers). Because drivers react to active AWS 
signs, it was necessary to model the reactions of simulated drivers to the AWS sign in VISSIM. 
In Nebraska, the recommend sign location was 650 ft from the intersection stop bar. The flasher 
activated (i.e., began to flash) a few seconds (typically 7 sec, but 8 sec in this case) before the 
traffic signal transitioned from green to yellow. Any driver upstream of the AWS sign was then 
in a position to slow and come to a gradual stop. To model this component of driver behavior 
in VISSIM, two speed distributions were utilized at location DS2: DS2a and DS2b. When AWS 
flashers were inactive (i.e., from the end of the red phase until 8 sec prior to the transition from 

Fig. 4. Location of desired speed decision points [14]
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green to yellow), vehicles crossing DS2 followed the speed distribution DS2a, as detailed in Fig. 
5. This was the same speed distribution followed by all vehicles in the ADS simulation. When 
the AWS flashers were active (i.e., eight 8 sec prior to yellow phase and then during the yellow 
and red phases) drivers followed the adjusted speed distribution DS2b, as shown in Fig. 5. In 
this latter situation, each vehicle that crossed location DS2 was assigned a new speed from the 
speed distribution DS2b, and was traveling, on average, at the slower rate [13]. Therefore, when 
the AWS was active, simulated drivers traveled, on average, at a slower rate compared to periods 
when the AWS was off (i.e., during the green signal and until 8 sec prior to the yellow signal). It 
was further assumed that a change in speed would occur at DS2. Note that the model could be 
easily adjusted to add additional decision points to reflect a more gradual change in driver speeds. 
Additionally, when the system was active, change in speed distribution implied that a percentage 
of vehicles potentially sped up to beat the yellow signal. Note that the percentage of drivers that 
exhibited this behavior was controlled by the user through the input speed distribution. However, 
red light running is not modeled in VISSIM, so therefore the number of vehicles entering the 
intersection during the red signal was precluded from being an MOE in the current analysis.

3.2. Selection of calibration parameters

Calibration was carried out for the parameters of car-following, lane change, desired 
speed distribution, and signal control [13]. The initial set of VISSIM parameters utilized in 
the calibration was identified and selected based upon engineering judgment and the review 
of the salient literature [3, 4, 9–12]. All 19 parameters and their acceptable ranges, identified 
in the literature review, are presented in Table 1.

Fig. 5. Empirical and simulated speed distributions at the DS1 and DS2 locations
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Table 1. Set of VISSIM parameters for the initial evaluation and calibration

BEHAVIOR PARAMETER DEFAULT 
VALUE

ACCEPTABLE 
RANGE UNIT

CAR 
FOLLOWING

Number of observed 
preceding vehicles NUMB_PRECED 2 1 – 4 -

Maximum look ahead 
distance

OBS_DISTANCE 
MAX 820.21 700 – 900 ft

CC0 (Standstill Distance) CC0 4.92 3.0 – 6.0 ft

CC1 (Headway Time) CC1 0.9 0.5 – 3.0 s

CC2 ('Following' Variation) CC2 13.12 1.0 – 30.0 ft

LANE 
CHANGE

Waiting time before diffusion T_DISAPPEAR 60.0 30 – 90 s

Minimum headway (front/
rear) MIN_LC_GAP 1.64 0.5 – 3.0 ft

DESIRED 
SPEED 1

Frequency at 50mph DESIRED_SPEED 1 0.150 0.10 – 0.30 -

Frequency at 60mph DESIRED_SPEED 1 0.750 0.60 – 0.80 -

Frequency at 70mph DESIRED_SPEED 1 0.900 0.85 – 0.95 -

DESIRED 
SPEED 2a

Frequency at 40mph DESIRED_SPEED 2 0.070 0.05 – 0.15 -

Frequency at 50mph DESIRED_SPEED 2 0.400 0.30 – 0.50 -

Frequency at 60mph DESIRED_SPEED 2 0.900 0.80 – 0.95 -

DESIRED 
SPEED 2b

Frequency at 30mph DESIRED_SPEED 3 0.040 0.03 – 0.15 -

Frequency at 40mph DESIRED_SPEED 3 0.300 0.25 – 0.45 -

Frequency at 50mph DESIRED_SPEED 3 0.800 0.70 – 0.90 -

SIGNAL 
CONTROL

Reaction to amber signal: α AMBER_ALPHA 1.59 1.0 – 15.0 -

Reaction to amber signal: β1 AMBER_BETA1 -0.26 - 0.40 – -0.20 -

Reaction to amber signal: β2 AMBER_BETA2 0.27 0.10 – 0.30 -

The default values of all parameters were utilized in the initial evaluation of the simulation 
model. The definitions of these parameters and their functions in VISSIM can be obtained 
from the VISSIM manual [13], as well as from a number of papers describing VISSIM model 
calibration [3, 4, 9–12].

3.3. Initial evaluation

The primary goal of the initial evaluation was to determine whether the default model 
(e.g. based on the default values of the parameters) was able to adequately model real traffic 
conditions at the test intersection. If the output did not match the empirical data, it became 
necessary to conduct additional steps in the calibration procedure.

A calibration procedure was performed to obtain a  set of driving behavior parameters 
that would result in simulation results similar to the observed empirical values. As discussed 
previously, the procedure involved the use of a GA and a variety of metrics and associated 
statistical tests.
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Speed–in particular, speed distribution–was selected as a  criterion because it effectively 
characterized the nature of road traffic and could also be used to measure safety. Following each 
simulation run, the approach speeds of all vehicles were recorded at the cross-section 900 ft from 
the stop bar. This location was selected for the provision of speed data reflecting driver behavior 
under the influence of activated flashers. A speed distribution was created and parameters were 
calculated: mean, median, mode, standard deviation, and kurtosis. Mean absolute percentage 
error (MAPE) was used as a  measure of accuracy to determine the difference between the 
empirical and simulated speed distributions, as demonstrated in Equation (1).

 MAPE� �
�

��1
5 1

5 R S
R

i i

i
i

 (1)

where: Ri = empirical speed mean, median, mode, standard deviation, and kurtosis;
 Si-= simulated speed mean, median, mode, standard deviation, and kurtosis.

A MAPE value of less than 5% was targeted to indicate sufficient model fit and merit 
further analysis.

In addition, the Shapiro-Wilk (S-W) and Kolmogorov-Smirnov (K-S) tests were performed 
to check the normality of the approach speed. The K-S and Wilcoxon tests were also used 
to test the hypothesis that the empirical and simulated speed distributions were identical. 
Descriptions of all statistical tests utilized in the current study can be found elsewhere [14].

After 20 simulation runs, based on the default values of the select VISSIM parameters, the 
lowest noted MAPE value was 5.4% (see Table 2).

Table 2. Average MAPE in the initial model evaluation

Distribution parameter Unit Simulated speed Empirical speed MAPE [%]

Mean [mph] 56.25 54.92 2.4

Median [mph] 55 55 0.0

Mode [mph] 58 58 0.0

Standard Deviation - 7.76 6.30 23.2

Kurtosis - 0.295 0.290 1.6

avg MAPE = 5.4

The difference between the four distribution parameters was less than 5%, but the difference 
in standard deviation was higher than 20%. That is, in comparison to the empirical data, 
simulation speed was distributed more evenly. The MAPE results indicated that a simulation 
model using the default parameter set could be satisfactory for this type of analysis; however, 
as discussed previously, simply using the MAPE may not provide adequate results if the user 
is interested in the distribution of a particular metric, such as speed.

While the functions were similar, it can be seen in Fig. 6 that the greatest differences occurred 
within the 46-53 mph range, and at speeds above 58 mph. Only for low speeds (< 46 mph), and 
for speeds in the range of 53-58 mph, were the distributions close. Overall, the simulated speed 
distribution had higher tails than did the empirical speed distribution. Tests for normality were 
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performed to determine whether both speed distributions were normally distributed. The S-W 
test indicated that, at the 5% significance level, empirical speed (p = 0.0499) was normally 
distributed, but simulated speed (p < 0.0001) was not normally distributed. Additionally, the 
K-S test confirmed the non-normality of both speed distributions with p < 0.01. The K-S and 
Wilcoxon tests were also used to check the equality of the distributions, providing separate 
results. The K-S test rejected the hypothesis that both speed distributions resulted from the 
same continuous distribution (p = 0.0352 and < 0.05). At the same time, the Wilcoxon test 
accepted the hypothesis that the analyzed speed distributions were equal (p = 0.1919).

In summary, the microsimulation model resulted in a  MAPE slightly higher than 5%, 
and failed the normality test. Additionally, the K-S and Wilcoxon tests provided different 
results as to the question of whether both speed distributions follow the same continuous 
distribution. Therefore, it was determined that the model may not have been acceptable and 
required calibration to facilitate further analysis. A full analysis can be found elsewhere [14].

3.4. Parameter set calibration

The calibration procedure was designed to identify the “best” parameter set for a given 
problem. In the current study, 19 driving behavior-related parameters were selected for 
testing. The desired parameter set depended on the MAPE and the results of the statistical 
tests. Following the calibration, the 10 parameter sets with the lowest MAPE value, having 
passed all statistical tests, were output.

Fig. 6. Graphical comparison of speed distributions
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As discussed previously, many researchers have identified the GA method as an 
appropriate tool for calibrating traffic microsimulation models. Based on these experiences, 
a GA was selected for the current research. The theory of the genetic algorithm is based on the 
Darwinian biological evolutionary processes occurring in nature; as such, it is ideal for solving 
complex problems. Put simply, a GA sets select parameters as “chromosomes” [8]. The GA 
for each task must include the following elements: the representation of potential solutions, 
a method to create an initial population, an evaluation function, a selection procedure, basic 
operators, and the values of parameters, such as population size, etc. The biggest advantage 
of using a  GA is that, as a  product of its approach, it considerably reduces the number of 
search steps and the amount of time required to determine a solution to a given problem. Fig. 
7 illustrates the calibration procedure using GA.

The objective of the calibration process was to minimize MAPE values. First, agents that 
represented all select parameters needed to be defined. GA uses agent and gene terms, where 
a  gene is represented by the binary digits 0  or 1. One agent is defined as a  group of genes 

used to represent a value of each parameter. One generation is then defined as the specified 
number of agents. The size of the population is defined as the number of agents included in 
one generation [15]. Second, for each calibrated parameter, the number of genes needed to 

Fig. 7. Procedure based on GA for VISSIM model calibration [14]
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be estimated, which depended on the characteristics of the parameter and the increment of its 
value. The number of genes (ni) for each parameter was calculated using the following equation:

 n
x x

i
i i

i

�
� �� � �

�
�

�
�

�

�
�log

max min
2 1

�
 (2)

Where: xi = value of i parameter;
 max(xi) = maximum value of xi;
 min(xi) = minimum value of xi;
 ai = increment value of xi.

Prior to calculation, the acceptable range of values (i.e., max(xi) and min(xi) values) for 
every parameter needed to be identified. The results of the calculations for all 19 VISSIM 
parameters are presented in Table 3.

Table 3. Number of genes with increments for calibrated parameters

PARAMETER Min 
(xi)

Max 
(xi)

Number 
of genes (ni)

Increment 
(ai)

Number of observed preceding 
vehicles NUMB_PRECED 1 4 2 1

Maximum look ahead distance OBS_DISTANCE MAX 700 900 5 7

CC0 (Standstill Distance) CC0 3 6 3 0.5

CC1 (Headway Time) CC1 0.5 3 5 0.1

CC2 ('Following' Variation) CC2 1 30 5 1

Waiting time before diffusion T_DISAPPEAR 30 90 6 1

Minimum headway (front/rear) MIN_LC_GAP 0.5 3 5 0.1

Frequency at 50mph DESIRED_SPEED 1 0.10 0.30 5 0.007

Frequency at 60mph DESIRED_SPEED 1 0.60 0.80 5 0.007

Frequency at 70mph DESIRED_SPEED 1 0.85 0.95 4 0.007

Frequency at 40mph DESIRED_SPEED 2a 0.05 0.15 4 0.007

Frequency at 50mph DESIRED_SPEED 2a 0.30 0.50 5 0.007

Frequency at 60mph DESIRED_SPEED 2a 0.80 0.95 4 0.01

Frequency at 30mph DESIRED_SPEED 2b 0.03 0.15 4 0.008

Frequency at 40mph DESIRED_SPEED 2b 0.25 0.45 5 0.007

Frequency at 50mph DESIRED_SPEED 2b 0.70 0.90 5 0.007

Reaction to amber signal: α AMBER_ALPHA 1 15 6 0.23

Reaction to amber signal: β1 AMBER_BETA1 -0.4 -0.2 3 0.03

Reaction to amber signal: β2 AMBER_BETA2 0.1 0.3 3 0.03

84



136

In the next step of the GA approach, the initial generation, based on agents, was set. These 
agents were composed of genes. Table 3  illustrates that there were 84 genes representing 
the 19 calibrated parameters in the current study. A  population size of 32 was defined as 
the number of agents in one generation. In the initial generation, each gene of the agent was 
randomly assigned a 0 or 1. To decode each agent to the value of the parameter value xi, the 
following approach was adopted:
 x A Bi i� � � �� �  (3)

Where: A = (a1, a2, a3, …. an)
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 i = 1, 2, 3, … , 19
 xi = value of i parameter
 ai = increment value of xi (0 or 1)
 bi = min(xi) as shown in Table 3
 A = vector representing agent
 B = coefficient vector
 ni = number of genes of agent representing xi

MAPE, as a measure of accuracy or fitness, was utilized to evaluate agent quality. The given 
parameter set was deemed to be more ideal if the fitness value was higher (e.g. lower MAPE). 
The procedure was automated, as shown in Fig. 8. Following each generation, the assessment 
of each agent was executed based on MAPE, and the best agent was selected.

When one generation was complete and agents were evaluated, steps for agent selection, 
crossover, and mutate were performed, resulting in the subsequent generation of agents. 
The selection was based on probability, and agents with lower MAPE values were the most 
likely to be selected. To crossover, two agents interchanged part of their genes to create two 
new agents. One agent was mutated to create a new agent by changing one of its genes from 
1 to 0, or from 0 to 1 (15). After these steps were completed for the agents of the previous 
generation, additional agents were presented to create a new generation.

The GA described in the current paper was implemented using the MatLab software. 
The toolbox developed by the University of Sheffield provided all the necessary functions 
to implement the GA operators, i.e., selection, crossover, and mutation (2). The complete 
calibration procedure used in this study combined the MatLab software, Visual Basic, GA 
toolbox, and VISSIM.
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3.5. Calibration results

After nine generations of the GA, the procedure was complete, and 10 sets of parameters 
with the lowest MAPE values were recorded, as shown in Table 4.

Fig. 8. Procedure for VISSIM model calibration [14]

Table 4. Calibration results for the intersection of US-77 & Pioneers Blvd
DEFAULT 

VALUE 1 2 3 4 5 6 7 8 9 10

PA
RA

M
ET

ER

NUMB_
PRECED 2 4 4 3 3 3 3 3 4 3 4

OBS_
DISTANCE 

MAX
820.21 889 889 791 791 791 791 791 847 700 889

CC0 4.92 3.5 3.5 6.5 6.5 6.5 6.5 6.5 3 5.5 3.5
CC1 0.9 1.9 1.3 0.8 1.6 2.9 0.8 0.8 3.6 3.1 1.9
CC2 13.12 1 18 12 12 18 12 12 20 8 1

T_DISAPPEAR 60.0 70.0 54.0 34.0 34.0 54.0 34.0 34.0 49.0 62.0 70.0
MIN_LC_GAP 1.64 3 3.5 3.1 3.1 3.5 3.1 3.1 2.1 3.5 3

DESIRED 
_SPEED 1

0.150 0.210 0.270 0.230 0.230 0.270 0.230 0.230 0.230 0.210 0.210
0.750 0.750 0.810 0.810 0.810 0.810 0.810 0.810 0.750 0.740 0.750
0.900 0.910 0.950 0.950 0.950 0.950 0.950 0.950 0.930 0.890 0.910

DESIRED 
_SPEED 2a

0.070 0.120 0.110 0.110 0.110 0.110 0.110 0.110 0.060 0.100 0.120
0.400 0.300 0.520 0.520 0.520 0.520 0.520 0.520 0.300 0.330 0.300
0.900 0.820 0.900 0.940 0.940 0.900 0.940 0.940 0.840 0.880 0.820
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Additionally, each parameter set was checked to verify that the simulated speed distribution 
and empirical speed distribution were equally distributed, and to determine whether they 
displayed the same continuous distribution. The latter check was performed using the 
K-S and Wilcoxon tests. The set with the lowest value of MAPE (4.96%) passed the non-
parametric tests (K-S and Wilcoxon), which meant that the empirical approach speed and 
simulated approach speed distributions originated from the same continuous distribution. 
Consequently, this parameter set was utilized for further evaluation. While the MAPE values 
for the calibrated and default parameter sets were similar, the distributions from the latter 

Fig. 9. Calibration results for the analyzed intersection

PA
RA

M
ET

ER
DESIRED 

_SPEED 2b

0.040 0.130 0.130 0.140 0.140 0.130 0.140 0.140 0.130 0.130 0.130
0.300 0.340 0.340 0.290 0.290 0.340 0.290 0.290 0.380 0.380 0.340
0.800 0.810 0.870 0.830 0.890 0.880 0.830 0.830 0.720 0.720 0.810

AMBER_
ALPHA 1.59 12.5 3.53 7.9 7.9 3.53 7.9 7.9 1.23 1 12.04

AMBER_BETA1 -0.26 -0.25 -0.22 -0.34 -0.34 -0.22 -0.34 -0.34 -0.37 -0.37 -0.37
AMBER_BETA2 0.27 0.22 0.25 0.22 0.22 0.25 0.22 0.22 0.31 0.13 0.13

T
ES

T
S

MAPE [%] 5.45 4.96 5.34 5.8 5.88 6 6.13 6.23 6.23 6.35 6.39
Kolmogorov-

Smirnov 
(Passed/Not 

Passed)

N P N P N N P P P P N

Wilcoxon                           
(Passed/Not 

Passed)
P P N P N N P P P P P
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scenario did not differ statistically from the empirical distribution. Therefore, the calibrated 
parameter set was utilized in subsequent analyses.

Fig. 9 displays the results for each generation in the GA.
As can be seen, following nine generations, MAPE values were nearly steady; consequently, 

the algorithm was terminated.

3.6. Evaluation of the calibrated parameter set

Table 5 displays a comparison between the simulated results from the default parameter 
set and the calibrated parameter set.

It can be seen that the calibrated results had lower MAPE values, as calculated using the 
five measures of speed distribution. In addition, the calibrated model passed statistical testing, 
indicating that the simulated and empirical speed distributions were statistically equivalent. 
The calibrated VISSIM parameter set is displayed in Table 6.

Table 5. Evaluation of calibrated parameter sets

Distribution 
Parameter

MICROSIMULATION MODEL

Default Calibrated

M
AP

E 
[%

]

Mean 2.4 1.8

Median 0.0 0.0

Mode 0.0 0.0

Standard Deviation 23.2 22.3

Kurtosis 1.6 0.8

T
ES

T

Average MAPE [%] 5.40 4.96

K-S test Not Passed Passed

Wilcoxon test Passed Passed

MAPE Improvement 8%

Table 6. Calibrated parameter set for microsimulation model

BEHAVIOR PARAMETER DEFAULT 
VALUE

CALIBRATED 
MODEL

CAR 
FOLLOWING

Number of observed 
preceding vehicles NUMB_PRECED 2 4

Maximum look ahead 
distance

OBS_DISTANCE 
MAX 820.21 889

CC0 (Standstill 
Distance) CC0 4.92 3.5

CC1 (Headway Time) CC1 0.9 1.9

CC2 ('Following' 
Variation) CC2 13.12 1
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LANE CHANGE

Waiting time before 
diffusion T_DISAPPEAR 60.0 70.0

Minimum headway 
(front/rear) MIN_LC_GAP 1.64 3.0

DESIRED 
SPEED 1

% at 50mph DESIRED_SPEED 1 0.150 0.210

% at 60mph DESIRED_SPEED 1 0.750 0.750

% at 70mph DESIRED_SPEED 1 0.900 0.910

DESIRED 
SPEED 2a

% at 40mph DESIRED_SPEED 
2a 0.070 0.120

% at 50mph DESIRED_SPEED 
2a 0.400 0.300

% at 60mph DESIRED_SPEED 
2a 0.900 0.820

DESIRED 
SPEED 2b

% at 30mph DESIRED_SPEED 
2b 0.040 0.130

% at 40mph DESIRED_SPEED 
2b 0.300 0.340

% at 50mph DESIRED_SPEED 
2b 0.800 0.810

SIGNAL 
CONTROL

Reaction to amber 
signal: α AMBER_ALPHA 1.59 12.5

Reaction to amber 
signal: β1 AMBER_BETA1 -0.26 -0.25

Reaction to amber 
signal: β2 AMBER_BETA2 0.27 0.22

3.7. Model validation

As mentioned previously, validation was performed to determine whether the calibrated 
microsimulation model performed properly by comparing the output with data not utilized 
in the original calibration. The calibrated model was run 10 times to determine whether the 
model was capable of reflecting actual traffic conditions at the test intersection. Waiting time 
on the minor approaches was used as a  validation parameter. Real values of waiting times 
were gathered during data collection. The mean value of waiting time for the EB and WB 
approaches, the output from 10 simulation runs, was compared to the values derived from the 
collected empirical data. The results are displayed in Table 7.

Table 7. Summary of calibrated model validation

Test intersection Minor 
approach

Average waiting time [s] t-test  
(p)

Result (Passed 
/Not passed) Validation

Empirical data Simulated data

US-77 &            
Pioneers Blvd

EB 21.6 22.2 0.397 Passed
YES

WB 17.1 16.3 0.395 Passed
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Two statistical tests, the F-test, and the t-test, were performed to determine whether statistically 
significant differences existed between the analyzed values at the 5% level of confidence. It can be 
observed that the statistical tests were passed (p = 0,397 > 0,05 and p = 0,395 > 0,05), indicating 
that the microsimulation model could effectively mimic real traffic at the signalized intersection 
[14] by providing the values of the wait time on minor approaches that were proximate to the 
empirical values determined through data collection (see Table 7). Therefore, the calibrated 
model was acceptable, and was deemed eligible for further safety analysis.

4. Conclusions

This study resulted in a calibrated stochastic model of a signalized intersection located in 
Nebraska. The model was calibrated using a genetic algorithm with non-parametrical statistical 
tests. The GA approach provided a quick and effective method for finding the “best” set of 
VISSIM parameters, and seemed to be a very effective tool for the calibration of traffic and 
the development of a stochastic simulation model for the studied signalized intersection. An 
innovative approach described in this paper utilized speed distribution as the objective function 
in the calibration process. While other researchers have calibrated microsimulation models to 
measures of central tendency (e.g. mean), this paper proposed calibrating to approach speed 
distribution. Mean absolute percentage error, calculated for the speed distribution parameters, 
was used as a measure of fitness. Non-parametric statistical tests were then utilized to indicate 
whether the subsequent value of MAPE was acceptable at a  5% level of significance (see 
Table 2). The distributions of the observed and calibrated speeds were compared, and it was 
determined that no statistically significant differences existed at the 5% confidence level (see 
Table 5). The calibration process resulted in a microsimulation model (see Table 6), which was 
also validated to the wait time on the minor approaches (see Table 7).

The VISSIM model that was developed, calibrated, and validated in this paper could 
be used as the basis for a  methodology to implement specific safety countermeasures at 
signalized intersections.
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