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A b s t r a c t
The paper discusses the parametric identification of a system model for the charge output 
accelerometer based on the simultaneous approximation of amplitude and phase characteristics. 
The mathematical relationships refer to three models: the mechanical, electrical and complete 
models, are discussed in detail.
The numerical calculations include the parametric identification of the system model for 
the PCB357B73 accelerometer and determination of the uncertainties associated with the 
parameters of this model.
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Artykuł przedstawia parametryczną identyfikację modelu systemu dla akcelerometru z wyj-
ściem ładunkowym opartą na równoczesnej aproksymacji charakterystyk amplitudowej i fa-
zowej. Szczegółowo omówiono w nim matematyczne relacje dotyczące trzech modeli: mecha-
nicznego, elektrycznego i sumarycznego.
Obliczenia numeryczne obejmują parametryczną identyfikację modelu systemu akcelerometru 
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1.  Introduction

The identification of the wide range of accelerometers is generally carried out 
in frequency domain on the basis of the weighted linear least squares method, which allows 
the easy estimation of the parameters of the mathematical model for the accelerometers in an 
analytical manner [1, 2]. This mathematical model is, in most cases, presented as the typical 
system model for the seismic mass accelerometer. The numerator and the denominator of 
the  transfer function of such accelerometers are specified by the constant value and the 
second degree polynomial respectively. Only if the transfer function contains the constant 
value in the numerator it is possible to conduct the re-parameterisation procedure of the 
corresponding complex frequency response – this is performed by dividing the denominator 
by the numerator of this response and then through the extraction of the two three- 
-component vectors. One of these vectors contains combined parameters, while the second 
vector consists of  the  constant  values  or complex frequency multiplied by the constant 
values [2–4].

However, in the case of the complete system model for the charge output accelerometer, 
it is impossible to perform the re-parameterisation procedure because the polynomial occurs 
in the numerator of the corresponding transfer function. This makes it impossible to apply 
the analytical weighted least squares method for the parametric identification of this system 
model. Moreover, it is not possible to determine the resonant frequency and the damping 
ratio  in the same way as for the seismic mass accelerometer, i.e. by means of the first 
frequency-derivative of the relation referring to the amplitude characteristic.

Both the Monte Carlo (MC) method [5, 6] and the Levenberg–Marquardt (L-M) 
algorithm [7] are proposed as the identification procedure of the system model for the charge 
output accelerometer as a response to above mentioned difficulties. 

The MC method is used for minimizing the assumed cost function, represented by c2 
test of matching the complex frequency response of the system model for the charge output 
accelerometer to the complex frequency response determined on the basis of the measurement 
data of both frequency characteristics [8–15]. The parameter values of the system model 
are drawn within the ranges specified by the error margins from the values determined 
by the L-M algorithm. This algorithm minimizes the objective function, which represents 
the  sum of squared errors between the function describing the amplitude characteristic 
and the measurement data corresponding to this characteristic.

2.  System model for the charge output accelerometer

The complete system model for the charge output accelerometer combines the 
mechanical  and electric models. The system model for the charge output accelerometer 
can  be easily obtained based on the differential equation of the seismic mass  
accelerometer
	 my t cv t kv t ( ) ( ) ( )+ + = 0 	 (1)

corresponding to the mechanical construction shown in Fig. 1.
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In Figure 1, the following notations are assumed: v(t) – the relative mass displacement 
(relative output); y(t) – the absolute mass displacement (absolute output); x(t) – the vibration 
(excitation); m [kg] – the seismic mass; c [kg/s] – the dumping coefficient; k [N/m] 
– the  spring  constant; my t( )  – the moment of inertia; cv t ( )  – the moment of dumping; 
kv(t) – the moment of elasticity.

For the seismic mass accelerometer, the following relation is met:
	 y t v t x t( ) ( ) ( )= + 	 (2)

and after substitution eq. (2) into eq. (1), we obtain the following differential equation:
	 mv t cv t kv t mx t   ( ) ( ) ( ) ( )+ + = − 	 (3)

which represents the mathematical model of this accelerometer [6, 16].

2.1.  Mechanical model for the charge output accelerometer

The response of the charge output accelerometer to the forcing represents the absolute 
mass displacement y(t). Unlike to the seismic mass accelerometer, it implies the following 
substitution in eq. (1):
	 v t y t x t( ) ( ) ( )= − 	 (4)
which gives:

	 my t cy t ky t cx t k x t  ( ) ( ) ( ) ( ) ( )+ + = + 	 (5)
Transforming eq. (5) to the s – domain, we have:

	 m
k
s Y s c

k
sY s Y s c

k
sX s X s2 ( ) ( ) ( ) ( ) ( )+ + = + 	 (6)
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Fig.  1.  Mechanical construction of the seismic mass accelerometer
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The quartz crystal deformation by the compression or tension force F(t) generates the 
electric charge Q(t)  on the surfaces of the electrodes connected to the sides of this crystal:
	 Q t k F tp( ) ( )= 	 (9)

where kp = 22·10‒12 [C/N] is the piezoelectric constant.
Figure 2 shows the mechanical construction of the charge output accelerometer.

The force that the mass m acts on the crystal is proportional to the absolute  
acceleration:
	 F t my t( ) ( )=  	 (10)

Based on eqs. (9) and (10) and after the transformation to the s – domain, we have:

	 Y s Q s
s mkp

( ) ( )
= 2 	 (11)

Substitution eq. (11) into eq. (7) finally yields the mathematical model of the charge 
output accelerometer:

	 K s Q s
s X s

S
s

s sq( ) ( )
( )

= =
+

+ +2
0 0

2

2
0 0

2
2
2
βω ω

βω ω
	 (12)

where Sq = kpSm [C/ms2] is the charge sensitivity of the accelerometer, while Sm = m [kg] 
is the mechanical sensitivity of the accelerometer. 

2.2.  Electrical model for the charge output accelerometer

The conversion of the electric charge Q(t) to the voltage V is carried out by 
connecting the  output of the accelerometer with the voltage amplifier using the low 
noise coaxial  cable.  Figure  3 shows the equivalent circuit model for the charge output 
accelerometer [17]. 

In Figure 3, the following notations are assumed: Q – the electric charge; Ra, Ca – the 
internal resistance and capacitance of the accelerometer; Rc – the resistance between cable 
screen and centre conductor, Cc – the capacitance of the cable, Ri, Ci – the inputs resistance 
and capacitance of the voltage amplifier.

Fig.  2.  Construction of the charge output accelerometer
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Figure 4 shows the simplified circuit model of the charge output accelerometer, where:
	 R R R Rt a c i= // // 	 (13)

	 C C C Ct a c i= + + 	 (14)

are the total resistance and capacitance.

Analyzing the circuit shown in Fig. 4, it is easy to get:

	 V s
Q s

sR
sR C

t

t t

( )
( )

=
+1

	 (15)

2.3.  Complete system model of the charge output accelerometer

Substitution eq. (15) into eq. (12), gives:

	 K s V s
s X s

S s
s

s
s sv( ) ( )

( )
= =

+
+

+ +2
0 0

2

2
0 0

21
2
2

τ
τ

βω ω

βω ω
	 (16)

where τ = RtCt [s] and Sv = SeSm [V/ms2] are respectively the time constant and voltage 
sensitivity of the complete system model for the charge output accelerometer, and

	 S k Ce p t= / [ ]V/N 	 (17)

is the electrical sensitivity.

Fig.  3.  Equivalent circuit model for the charge output accelerometer

Fig.  4.  Simplified circuit model for the charge output accelerometer 
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The frequency characteristics resulting from eq.(16) are as follows:
A
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and
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3.  Identification procedure

Let us present the system model for the charge output accelerometer in the form 
of the corresponding complex frequency response:
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where:
	 θ ω β τ= [ , , , ],Sv 0 	 (21)

is the vector of the parameters of the complete system model.
It is also assumed that the complex frequency response for the measurement data 

of amplitude A and phase Φ is determined as
	 K A( ) ( ) exp[ ( )], , , ,ω ω ωn n nj n N= =Φ 1 2 …Φ 	 (22)

The identification procedure is based on eqs. (20)–(22) and includes seven main stages.
In the first stage, on the basis of the vector A and by the application of the L-M algorithm, 

the initial values �θi of the vector θ are determined:

	 θ θ ω θ ω θ µ ω θ ω θk k
T T

k k k
T

k kA k+
−= − + =1
1 0 1[ ( , ) ( , ) ] ( , ) ( , ), , ,J J I J …θ θ θ θ θ θ 	 (23)

where:

	 J( , )

( , ) ( , ) ( , ) ( , )

ω θ

ω θ
θ

ω θ
θ

ω θ
θ

ω θ
θ

k

k k k kA A A A

A
=

∂
∂

∂
∂

∂
∂

∂
∂

∂

0

0

0

1

0

2

0

3

(( , ) ( , ) ( , ) ( , )

(

ω θ
θ

ω θ
θ

ω θ
θ

ω θ
θ

ω

1

0

1

1

1

2

1

3

1

k k k k

N

A A A

A

∂
∂

∂
∂

∂
∂

∂

∂ −

� � � �
,, ) ( , ) ( , ) ( , )θ

θ
ω θ
θ

ω θ
θ

ω θ
θ

k N k N k N kA A A
∂

∂
∂

∂
∂

∂
∂












− − −

0

1

1

1

2

1

3



















	 (24)



241

is the Jacobian matrix with (N ‒ 1) × 4 dimension and k represents the successive iteration 
step [6, 7]. In equation (23) I and µk are the 4 × 4 dimension unit matrix and the variable 
which changes during each iteration, respectively. The L-M algorithm determines the initial 
values of the vector parameters for the MC method minimizing the criterion:

	 �θ ω ω θ
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n
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1

	 (25)

In the second stage, the error margins of the vector �θi are collated as:
	 �θ δ δ δ δδ = [ , , , ]0 1 2 3 	 (26)

In the third stage, the type of the random number generator is selected and the number M 
of MC trials is assumed.

In the fourth stage, the matrices:
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and
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are calculated on the basis of the parameters drawn from the ranges
	 � � � � �θ δ ω δ β δ τ δm vm m m mS= ± ± ± ±[ , , , ]0 0 1 2 3θ 	 (29)
in accordance with the uniform distribution [5, 6].

In the fifth stage, the cost function:
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for the successive MC trials is calculated, where σ ωK( )n

2  is the variance of the complex 

frequency response – eq. (22) [8].
In the sixth stage, both the minimum value of the vector – eq. (30) and corresponding 

number mc of MC trials are determined. Resulting from this number, the vector �θcθ  is taken as 
an optimal estimate of the system model for the charge output accelerometer.
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In the last stage, the uncertainties associated with the vector �θcθ  are determined as the 
standard deviation of the mean [18]:
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and
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In order to check the consistency of the measurement data with the system model for 
the charge output accelerometer corresponding to the vector �θC ,θ  it is proposed to check 
the criterion:
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where χ αv,
2  is the α – th quantile of the χ2 distribution of 2N ‒ 4 degrees of freedom and 

α = 0.05 [2].

4.  Results of parametric identification

The procedure discussed in section 3 was applied to the identification of the system model 
for the PCB357B73 accelerometer with the parameters declared by the manufacturer, i.e. 
sensitivity Sq = 10.2 pC/ms2 (±5%), frequency range fcut = 2 kHz (±5%), resonant frequency 
fr ≥ 8 kHz, capacitance Ca = 1500 pF and resistance Ra = 108 Ω. The PCB cable of the length 
equals 1 m and the capacitance Cc = 190 pF was used. The measured vectors A and Φ were 
determined by the application of the ‘back to back’ identification procedure [19] supported by 
LabVIEW software [16], while mathematical calculations were carried out using MathCad14 
software [20].

For the L-M algorithm, the input values: µk = 0.1 and �θk= = ⋅0
35 96 57 8 10 0 1 1 49[ . , . , . , . ]θ   

were assumed. The value of Svk=0  was calculated as Sq divided by Ct for Ci = 20 pF, while 

the value of τk=0  was determined for Ra = 1 GΩ, Rc = 20 GΩ and Ri = 10 GΩ. The ω0 0k=   
and  βk=0  were assumed in advance as equal to 57.8·103 [rad/s] and 0.1, respectively.



243

When the objective function for the k + 1 iteration step had a value greater than for 
the step k, the coefficient µk was multiplied by the constant value η. The initial value of η 
was assumed to be equal to 10. In the case of a decrease in the value of the objective function 
in k + 1 iteration step, the coefficient µk was divided by η.

For the MC method, two assumptions were made. Firstly, the total number of MC trials 
were equal to 105. Secondly, the percentage deviation of the error margins from the values 
of the vector �θiθ  obtained by means of the L-M algorithm were equal to 5% for each parameter. 
The determined values of the vector �θiθ  were equal to [5.97, 55.90·103, 0.21, 1.48].

The frequency, amplitude and phase measurement data for the system model are tabulated 
in Table 1, where N = 34.

T a b l e  1
Frequency, amplitude and phase measurement data 

F [kHz] Amplitude A
[mV/ms2]

Phase Φ
[deg.] F [kHz] Amplitude A

[mV/ms2]
Phase Φ

[deg.]

0.04 6.1 ‒0.8 2.0 5.9 ‒0.2

0.05 6.2 ‒0.1 2.5 7.0 ‒0.8

0.06 5.7 ‒0.1 3.0 6.0 ‒1.6

0.07 6.0 ‒0.7 3.5 6.9 ‒1.2

0.08 6.2 ‒0.6 4.0 7.6 ‒2.5

0.09 6.3 ‒0.4 4.5 8.2 ‒3.3

0.1 5.7 ‒0.5 5.0 8.8 ‒6.1

0.2 5.8 ‒1.3 5.5 8.8 ‒9.3

0.3 5.7 ‒0.2 6.0 10.1 ‒7.3

0.4 6.1 ‒0.4 6.5 10.2 ‒10.2

0.5 5.8 ‒0.1 7.0 11.2 ‒19.8

0.6 6.2 ‒0.1 7.5 13.4 ‒35.6

0.7 5.7 0 8.0 14.2 ‒25.9

0.8 6.2 0 8.5 16.5 ‒37.6

0.9 5.7 ‒0.6 9.0 14.3 ‒74.4

1.0 5.9 ‒0.2 9.5 15.5 ‒95.6

1.5 6.3 0 10.0 13.8 ‒97.0

Tables 2 contains the identification results of the system model (second column) with 
associated uncertainties (fourth column), obtained for mc = 86 540.
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T a b l e  2

Parameters of the vectors �θcθ  and θ�cθ

Svc [ ]mV/ms2 5.78 Svc [ ]mV/ms2 5.46·10‒4

ω0c [ ]rad/s 57.37·103 ω0c [ ]rad/s 5.34

βc 0.205 βc 1.92·10‒5

τc [ ]s 1.56 τc s[ ] 1.37·10‒4

Figure 5 shows the fitting error of system model for the charge output accelerometer. 

Based on Fig. 5, it is easy to notice that the greatest value of fitting error was obtained 
for the frequency equal to 8 kHz.

For both the measured data and the results of the identification, the criterion – eq. (34) 

was met, because the value of c2  =47.2 was in the range between χ64 0 05
2 46 6, . .=  and 

χ64 0 95
2 83 7, . . .=

5.  Conclusions

The application of both the L-M algorithm only in the first step of the identification 
procedure, as well as the MC method in the following steps, results most of all from the 
need to determine the sensitivity from the range of 5% error specified by the manufacturer. 
The MC method produces the identification results within the ranges providing the practical 
implementation of the system model. Additionally, the MC method is the procedure 
recommended by the dedicated standards for determining the uncertainties associated with 
the parameters of such a system. The L-M algorithm as a gradient procedure works well 
in the case of the initial calculation of model parameters, which are a basis to the execution 

Fig.  5.  Fitting error of system model for the charge output accelerometer
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of the MC method. Using only this algorithm for the identification of the system model can 
lead to results being outside of the non-real ranges for these systems.

Based on the obtained parameters of the system model for the charge output accelerometer, 
it can be easily noticed that the  Svc cand β  values are lower while  ω τ0c cand  values are 
higher than those obtained by the application of the L-M algorithm. Additionally, the value 
βc  is more than two times higher than that assumed as the input parameter for the L-M 

algorithm. This means that as an outcome of the MC method execution, the correction of 
the results obtained based on the L-M algorithm was made by checking the fitting error 
of the phase characteristic.
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