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A b s t r a c t

In the paper, some aspects of nonlinearity of micro/nanoelectromechanical systems (MEMS/
NEMS) are presented. Because of great values of strains of micro/nanobeams the nonlinear 
description is necessary. Particularly, the nonlinear inertia term is added to equation relating 
to motion of the beam. Numerical calculations of  resonance curves and instability regions 
are given. Results are presented on graphs.
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S t r e s z c z e n i e

W artykule przedstawiono pewne aspekty nieliniowości w mikro/nanoukładach elektrome-
chanicznych (MEMS/NEMS). Ze względu na duże odkształcenia mikro/nanobelek nieliniowy 
opis jest konieczny. W szczególności do równania ruchu belki wprowadzono wyraz opisujący 
nieliniową bezwładność. Podano wyniki obliczeń numerycznych dla krzywych rezonansowych 
oraz obszarów niestateczności. Rezultaty przedstawiono na wykresach.
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1.  Introduction

Microelectromechanical and nanoelectromechanical systems (MEMS and NEMS) 
are applied in different types of detectors and sensors e.g. in mass sensors. These systems 
frequently work in parametric resonance states. Great values of strain and of quality factor 
are  characteristic features of considered mechanical systems. Therefore the nonlinear 
description of the systems is necessary. Response of the system depends on the types 
of nonlinearities.

This paper bases on references [1–4] where some mechanical micro/nanosystems 
connected with excitation electric systems are described.  In the papers [1, 2] a parametrical 
excited microelectromechanical oscillator is analysed. To describe this oscillator, a Mathieu 
equation with nonlinearity is adopted and a perturbation method of solution is used. Two kinds 
of nonlinearities are taken into account: nonlinear elasticity and nonlinear excitation caused 
by  an electric field. The system without damping and with small damping is  considered. 
The system is used for example as mass sensor. In [3] the similar system is described but 
it is subject to harmonic forcing or to parametric excitation. Theoretical and experimental 
investigations are presented. The Duffing equation and the Mathieu equation with nonlinearity 
are used. In [4] a microbeam which is forced by an electric field is described. Discretization 
of the equation of motion of the beam and saving only the first ordinary differential equation 
lead to the same equation as adopted in [1–3] for lumped-mass systems.

The paper, a nonlinear inertia force is taken into account and its effect on the motion 
of system is presented. The nonlinear inertia force is particularly important if we consider 
mass sensors. The nonlinearity changes the value of excitation frequency for which 
a transition between stable and unstable solutions occurs.

2.  Equation of motion of the system with additional nonlinearity

First we consider MEMS oscillator presented in Fig. 1, [1]. The system consists of: 
A, B – non-interdigitated comb-drive actuators, C – flexures, D – backbone. The oscillator 
is excited by an electric signal. The equation of motion of the system presented in Fig. 1 has 
the following form (cf. [1] equation (1))

	 m d x
dt

c dx
dt

k x k x r x r x V tA

2

2 1 3
3

1 3
3 2 1 0+ + + + + + =( ) ( cos ) ,θ 	 (1)

where m is the mass of an oscillator (a shuttle, a backbone [1, 2, 6]), c is the damping 
coefficient, k1 and k3 are respectively the linear and cubic nonlinear mechanical elastic 
coefficients, r1 and r3 are respectively the linear and cubic nonlinear electrostatic stiffness 
of the non-interdigitated comb-fingers, finally the excitation voltage V(t) applied to the system 
is: V t V tA( ) cos ,= +1 θ  VA and q are positive constants.

The values of coefficients of equation (1), measured by different methods, are 
the following (cf. [1])
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Nonlinearities in equation (1) arise from the excitation (term with r3) and from the property 
of the system (term with k3).

Equation (1) is written in the form (cf. [5, 6])

	 d x
dt

c
m
dx
dt

k
m

r
m
V t x

k
m

r
m
VA A

2

2
1 1 2 3 3 21 1+ + + +





+ + +( cos ) ( cosθ θtt x) .





=3 0 	 (3)

Next we consider a microbeam presented in Fig. 2, [4]. The microbeam of length l 
is actuated by three capacitors. Two ends of the microbeam are fixed. Equation of motion 
of the microbeam which is treated as Bernoulli beam is given in [4] equation (1). Limiting 
considerations to the first vibration mode of the microbeam one can prove (cf. [5] eq. (3), 
(7) and  [4] eq.(21)) that the identical equation as (3) describes deflection of the center 
of the microbeam.

In agreement with considerations of V.V. Bolotin [7], one can add to equation (3) 
an additional nonlinear term – the so-called nonlinear inertia term. The nonlinear inertia term 
has the following form (cf. Appendix)

	 2 2 2κ( ),x x xx + 	 (4)

where k is a coefficient of nonlinear inertia; for two-articulated joint beam 
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Fig.  1.  Parametrically excited MEMS oscillator – electron microscope image [1]
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Therefore the initial equation of motion (3) is replaced with the equation

d x
dt

c
m
dx
dt
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+ + +( cos ) ( cosθ θtt x x x xx) ( ) .
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+ + =3 2 22 0κ   	 (5)

Introducing the nondimensional time τ θ
=
2

t  we get the following form of equation with 
nonlinear inertia term
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where (cf. [2, 3])
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3.  Solution method, resonance curves

We look for vibration amplitudes in the steady state of the main parametric resonance 
on  the  base of Floquet theorem – at the boundaries of stable and unstable solutions, 
the  solutions are periodic. Then solutions may be represented with Fourier series. If we 
confine ourselves to the first term of the series, we get
	 x a b= +sin cos .τ τ 	 (8)
We employ the harmonic balance method equating the coefficients at sin t and cos t to zero 
and neglecting higher harmonics. Finally we get
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Fig.  2.  Parametrically excited microbeam actuated by electric field [4]. The letter x in this figure 
denotes a coordinate of the cross-section of the beam
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where the square of vibration amplitude A2 = a2 + b2. It is a system of two algebraic nonlinear 
equations of the third order for unknown a and b. We look for non-zero solutions of (9) 
(a ≠ 0, b ≠ 0) because only in this case A ≠ 0.

To solve the system of equations (9) we put b = az, where z is an unknown, we get

	 a z

z

2
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and next for z we get the following algebraic equation of the fourth order

	 a z a a z a z a a z a a4
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where
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The Ferrari method was used to solve this equation. Only real, not equal to zero roots 
of  this equation are important, which inserted into (10) give a2 > 0. If this requirement 
is fulfilled the amplitude of vibration is calculated as

	 A a z= +1 2 . 	 (13)

Results of numerical calculations are presented in the Fig. 3. The resonance curve, 
without taking into account the nonlinear inertia, is drawn by a dotted line. The resonance 
curve, taking into account the nonlinear inertia, is drawn by a dashed line. The difference is 
visible. The values of amplitudes are different but the frequency of transition between zero 
solution region to nonzero solutions region are the same.

4.  Regions of unstable solutions

Inserting the solution (8) to equation (6) and neglecting nonlinear terms one obtains 
(cf. [7, 8]) the formulae for the boundaries of the first, more dangerous region of dynamic 
instability in the form

	 θ
µ µ
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= ± − ∗ , 	 (14)

where m* is the critical value of parameter of excitation, cf. [7, 8]
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or		  (16)
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In the papers [1] and [5] the boundaries of the first instability region are obtained 
on the ground of the perturbation method and given by the formulae
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where f1 and f2 are frequencies.
The results obtained by these two different methods are presented on the graphs in Fig. 4. 

The regions of instability are almost identical and the value of critical amplitude of voltage 
for which the unstable solutions occur are the same.

5.  Conclusions

In cited papers the resonance curves are given for two special cases: 1. for nonlinear 
elasticity without damping or 2. for damping without nonlinear elasticity. In this paper 
the  viscous damping together with two types of nonlinearities: the nonlinear elasticity 
and nonlinear inertia are taken into consideration. The nonlinear inertia term was introduced 
by analogy to considerations connected with beam. The solution for amplitude of vibrations 
is obtained in half-analytic form. The value of nonlinear inertia coefficient k has an effect 
on the value of vibration amplitude.

6.  Appendix

We quote the considerations of V.V. Bolotin [7] which concern two articulated-joint 
beams excited by axial force of the form P(t) = P0 + Pt cosqt. Limiting considerations 
to the first vibration mode of the beam, the time dependence of deflection x(t) of the beam 
is described by the Mathieu equation

	 d x
dt

dx
dt
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t x
2

2
22 1 2 0+ + − =ε µ θΩ ( cos ) , 	 (19)
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w0  is natural circular frequency of the beam, P∗  is the value of the first Euler critical 
force for this beam. The replacing elastic constant k1 is introduced which models the beam 

by a mass m on the spring with elastic constant k
l
EI1

4

3=
π .

Comparing (18) and (19) with equation (3) one gets
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According to [7] one can add to equation (19) a term of nonlinear inertia (nonlinearity 
of  geometric nature). An inertia force connected with longitudinal displacement u 
of concentrated mass ML has the form: −M uL   and modify the longitudinal force in eq. (18). 

The longitudinal force is now P t P P t M ut L( ) cos ,= + −0 θ   where u w
z
dz
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Confining ourselves to the first vibration mode one gets   u
l
xx x= +

π2

2
( ),  where x(t) is 

the time part of transverse displacement of the beam.
Equation (19), including (20), takes the following form
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The microbeam considered in the paper [4] has no concentrated mass on its end. 
Nonlinear inertia is connected only with distributed mass of the beam. In [7] is demonstrated 
that taking into account the distributed mass is equivalent to adding the concentrated mass 

M mL = −







1
3

5
8 2π

,  where m is the mass of the beam. Finally, the inertia term is written 

in the form (4).
It seems that the inertia forces cannot be neglected because of large deflections which 

appear in MEMS and NEMS which are taken into consideration.
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