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ON COMPUTATION OF SKEW-SYMMETRIC GENERATOR

FOR AN ORTHOGONAL MATRIX

by Iwo Biborski

Abstract. In this paper, we constructively prove that for any matrix A
over a field of characteristic 0 and its eigenvalue λ 6= 0 there exists a diago-
nal matrix D with diagonal coefficients ±1 such that DA has no eigenvalue
λ. Hence and by the canonical result on Cayley transformation, for each or-
thogonal matrix U one can find a diagonal matrix D and a skew-symmetric
matrix S such that U = D(S − I)−1(S + I).

1. Introduction. Let S be a skew-symmetric matrix of dimension n over
the field of real numbers and let I be the identity matrix of the same dimension.
It is known that the Cayley transformation U = (S − I)−1(S + I) transforms
a skew-symmetric matrix S into an orthogonal matrix U which has no eigen-
value equal to 1. Since there exist orthogonal matrices which have 1 in their
spectrum, the Cayley transformation is not a bijection between the set of all
skew-symmetric matrices and the set of all orthogonal matrices. Thus this is
not a way to generate all orthogonal matrices. A. Osborne and H. Liebeck
proved that for any orthogonal matrix U there exists a diagonal matrix D
with diagonal coefficients ±1 such that DU does not have 1 as an eigenvalue
(it follows directly from Lemma in [1]).

In this paper we present an algorithm which, for a given orthogonal matrix
U , enables a construction of a diagonal matrix D with coefficients on diagonal
±1 such that DU has no eigenvalue 1. Hence, via Cayley transformation one
can find a skew-symmetric matrix S such that U = D(S − I)−1(S + I). Of
course, if we find an appropriate matrix D then S = (DU − I)−1(DU + I).
Therefore, to compute D is the most difficult part of the task. From Lemma
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in [1] it easily follows that we are always able to find a matrix D by checking
all 2n − 1 matrices whose diagonal entries are equal to ±1 (we count without
identity matrix). We provide some quicker method based on Theorem 1, which
is a modified version of the Lemma.

2. Main theorem. Let A be a square matrix of dimension n over a field
of characteristic 0, and λ its eigenvalue. We denote by ka(A, λ) the algebraic
multiplicity of λ. We always write D for a diagonal matrix with diagonal
coefficients ±1. We denote by Di the diagonal matrix where the i-th element
on the diagonal is equal to −1 and the others are equal to 1.

Theorem 1. If λ 6= 0 and ka(A, λ) = k, then there exists a diagonal matrix
Di such that ka(DiA, λ) < k.

To prove Theorem 1 we need the following description of characteristic
polynomials. Consider the characteristic polynomial of A given by W (t) =
det(tI−A), where I is the identity matrix and t is a variable. It is well known
(see Theorem 7.1.2 in [2]) that

(?) W (t) = tn +
n∑

k=1

(−1)kMkt
n−k,

where Mk is the sum of all (k) × (k) minors obtained by crossing out n − k
columns and n − k rows of the same indices. In particular, M1 = tr(A) and
Mn = det(A). This form of characteristic polynomial will be crucial in our
proof.

Proof of Theorem 1. For the contrary, let us suppose that there exists
a matrix A with an eigenvalue λ 6= 0 such that ka(DiA, λ) ≥ k := ka(A, λ) for
all Di, i = 1, . . . , n. Let

A =


a11 . . . a1i . . . a1n
...

. . .
...

...
...

ai1 . . . aii . . . ain
...

...
...

. . .
...

an1 . . . ani . . . ann

 .
Then

DiA =


a11 . . . a1i . . . a1n
...

. . .
...

...
...

−ai1 . . . −aii . . . −ain
...

...
...

. . .
...

an1 . . . ani . . . ann

 .
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Let Wi(t) = det(tI −DiA) be the characteristic polynomial of DiA. Since the
coefficients in the i-th row of DiA have signs opposite to the coefficients in the
i-th row of A, every minor which occurs in the sum Mk and is not obtained by
crossing out the i-th row and column, changes its sign. Hence and by (?), for
i = 1, . . . , n, we get

Wi(t) = W (t) + 2[aiit
n−1 −M i

2t
n−2 + . . . (−1)k+1M i

kt
n−k + . . .

+(−1)n+1 det(A)] = W (t) + 2

n∑
k=1

(−1)k+1M i
kt

n−k,

where M i
k is the sum of all minors from Mk that contain elements of the i-th

row of the matrix A. It is obvious that each minor from Mk is a summand of
exactly k of the sums M i

k. We observe that

tW ′(t)− nW (t) =
n∑

k=1

(−1)k+1kMkt
n−k =

n∑
k=1

n∑
i=1

(−1)k+1M i
kt

n−k.

Putting

F (t) =
n∑

i=1

Wi(t),

we thus get

F (t) = nW (t) + 2
n∑

k=1

n∑
i=1

(−1)k+1M i
kt

n−k = nW (t) + 2[tW ′(t)− nW (t)]

= −nW (t) + 2tW ′(t).

We assumed that λ is a root of multiplicity ≥ k of each polynomial Wi, whence
λ is a root of F (t) of multiplicity at least k. Consequently

W (t) = Q(t)(t− λ)k

with Q(λ) 6= 0. Hence W ′(t) = Q′(t)(t− λ)k + kQ(t)(t− λ)k−1 and thus

F (t) = (t− λ)k−1[−nQ(t)(t− λ) + 2tQ′(t)(t− λ) + 2tkQ(t)].

Put

S(t) := −nQ(t)(t− λ) + 2tQ′(t)(t− λ) + 2tkQ(t).

Since S(λ) = 2λkQ(λ) 6= 0, S(t) is not divisible by t − λ, whence F (t) is not
divisible by (t − λ)k, and thus λ is a root of F (t) of multiplicity < k. This
contradiction completes the proof.
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3. Computation of a skew-symmetric generator for an orthogonal
matrix. Let U be a matrix of dimension n over a field of characteristic 0, and
let λ 6= 0 be an eigenvalue of U . Now we aim to find a diagonal matrix D
such that DU does not have an eigenvalue λ. We know from Theorem 1 that
there exist a diagonal matrix Di1 such that ka(Di1U, λ) < ka(U, λ). To find
Di1 we have to check at most n matrices. If ka(Di1U, λ) > 1, we repeat the
reasoning with U replaced by Di1U . In the j-th step we check n−1 matrices of
the type Di. If we encounter the least optimistic situation when multiplicity is
decreasing by 1 in each step, we have to check n+(k−1)(n−1) = k(n−1)+1
matrices of the type Di with k = ka(U, λ). Since k ≤ n, we have to check
at most k(n − 1) + 1 ≤ n2 − n + 1. Let l ≤ k be the number of steps in the
procedure. Then D = Di1Di2 . . . Dil is the diagonal matrix looked for.

This procedure seems to be more effective than the method based on the
original Lemma from [1], where we have to check at most 2n − 1 diagonal
matrices.

Assume now that U is an orthogonal matrix over the field of real numbers.
If we apply the algorithm described above to U and an eigenvalue 1, we can
find a diagonal matrix D such that ka(DU, 1) = 0. Then we can use the Cayley
transformation to get a skew-symmetric generator for U, i.e. a skew-symmetric
matrix S such that U = D(S − I)−1(S + I). We provide an example which
illustrates how this algorithm works.

Example 1. Let

A :=
1

2601


−1951 192 −568 −756 −1424

192 801 −744 −2016 1212
−568 −744 2201 −972 316
−756 −2016 −972 135 1080
−1424 1212 316 1080 1415

 .
Then Spec(A) = {−1, 1} and ka(A, 1) = 3. We obtain Spec(D1A) =

{
−1, 1,

1951−20
√
7397i

2601 , 1951+20
√
7397i

2601

}
and ka(D1A, 1) = 2. Repeating the procedure

for D1A, we get ka(D2D1A, 1) = 1. In the next step, we check that 1 6∈
Spec(D3D2D1A). Then the Cayley transformation of D3D2D1A gives us S =
(D3D2D1A− I)−1(D3D2D1A+ I), which is a skew-symmetric generator of A.
Finally, we get

S =
1

13


0 0 0 −18 −32
0 0 0 −8 6
0 0 0 −6 −2
18 8 6 0 0
32 −6 2 0 0

 .
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4. Open problem. It is easy to check that the argument used in the
proof of Theorem 1 will not work over a field of positive characteristic p for
an eigenvalue of algebraic multiplicity divisible by p. Some basic calculations
show that the theorem is valid for matrices of dimension 3 and 4 over a field of
characteristic p = 3. However, in other cases we formulate it as a conjecture:

Conjecture 1. Let A be a matrix over a field of characteristic p 6= 2
and λ 6= 0 its eigenvalue. Then there exists a diagonal matrix Di such that
ka(DiA, λ) < ka(A, λ).
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