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A b s t r a c t   

The heat transfer between particles and walls plays an important role in several industrial 

processes. Since established models often deal with simplifications for the surrounding 

gaseous phase, this work aims to acquire a fundamental understanding of the occurring 

transport phenomena. In this work, a high-resolved finite-volume method is applied carrying 

out direct numerical simulation of fluid dynamics and heat transfer simultaneously. The 

influence of turbulence on the heat transfer is discussed in this paper. 
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S t r e s z c z e n i e   

Przekazywanie ciepła pomiędzy cząstkami i ścianami odgrywa ważną rolę w wielu procesach 

przemysłowych. W uznanych modelach często wprowadzane są uproszczenia – celem tej 

pracy był opis fundamentalnych zjawisk transportu. Zastosowano metodę objętości 

skończonych do przeprowadzenie bezpośredniej symulacji numerycznej ruchu płynu i 

wymiany ciepła jednocześnie z uwzględnieniem wpływu turbulencji na transfer ciepła. 

Słowa kluczowe:  przenikanie ciepła, cząstki, symulacja numeryczna bezpośrednia, 

turbulencja 
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1.  Introduction  

The heat transfer between spherical particles and walls on the one hand, and solely 

between particles on the other hand is relevant in several pieces of industrial apparatus – 

amongst others, these include fixed-bed reactors, fluidised beds, tube dryers and rotary 

kilns. The occurring mechanisms are not yet fully understood or rather, their different 

degrees of contribution have not yet been quantified satisfactorily. For the purposive 

development and efficient design of the mentioned pieces of apparatus, a fundamental 

understanding of the occurring mechanisms is crucial. 

In previous work [1], the heat conduction through the gaseous gap between a single 

spherical particle and a planar surface was identified as the dominating mechanism for the 

laminar regime. The investigation was carried out with CFD simulations and the results 

were validated against both experimental data and a correlation from literature for a static 

sphere on a planar surface [2].  

For calculating the heat transfer, simplified approaches via Nusselt correlations are 

often chosen. These correlations frequently neglect transport resistances in the solid phase 

and the actual fluid dynamics in the surrounding fluid (i.e. gas or liquid) phase.  

In order to identify the basic transport mechanisms, the generic system is transformed to 

a system of basic geometries, i.e. sphere and plate. 

2.  Methods  

Since the particles are small (< 1 mm) an experimental approach would require 

enormous effort, if it was possible at all; therefore, a 3D finite volume approach was chosen 

for the simulations in order to resolve both temperature and velocity boundary layers in all 

involved phases.  

2.1.  Solver-development 

The open source toolbox OpenFOAM® developed on the basis of [3] and [4] was used 

to carry out the simulations. The toolbox offers a variety of preassembled standard solvers, 

which can be customised in order to meet specific requirements. For the fundamental 

investigations of heat transfer between a rolling sphere and plate, the solver has to fulfil 

several requirements that no standard solver incorporates, i.e. different regions for solids 

and fluids (gas or liquid), topological mesh movement, temperature dependent physical 

properties and arbitrary composition of the fluid phase. The postulated requirements can be 

met by modification of the standard solver chtMultiRegionFoam with: 

 the dynamicFvMesh library for the topological mesh movement; 

 a modified thermophysicalModels library for the temperature dependent properties;  

 a link between energy and momentum balance, which describes the momentum 

dissipation. 

 

The simulation domain is built with three different meshes, each representing a region 

with different physical properties, i.e. sphere, plate and surrounding gas phase. Fig. 1 shows 

the assembly. 
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Fig. 1. CFD Domain with different regions: mid-grey – gas phase; dark grey – plate; light grey – 

sphere 

2.2.  Simulation conditions 

For the fluid phase, the compressible Navier-Stokes equations  

 
𝜕ρ𝑣̂

𝜕𝑡
+ ∇(ρ𝑣̂𝑣̂) = ∇(η∇𝑣̂) − ∇𝑝 + ρ𝑔 (1) 

are applied, although the Mach Number is small. The reason is to be able to implicitly link 

density and temperature with the perfect gas equation 

 𝑝𝑉 = 𝑛𝑅𝑇. (2) 

The heat transfer is described with the energy equation  

 
𝜕ρ𝑒+

1

2
ρ|𝑣̂|2

𝜕𝑡
+ ∇ (ρ𝑒 +

1

2
ρ|𝑣̂|2) 𝑣̂ = ∇ (

λ

𝑐𝑝
∇𝑒) − ∇𝑝𝑣̂ + ρ𝑔𝑣̂ + ∇τ𝑣̂ (3) 

incorporating convective and diffusive heat transfer terms as well as the dissipation term.  

For the solid phase, the movement is described by a moving mesh approach and the 

diffusive heat transport is calculated with the equation for transient heat conduction  

 
𝜕ρ𝑒

𝜕𝑡
= ∇ (

λ

𝑐𝑝
∇𝑒). (4) 

The simulation is set up in a way, which implies the observer to be moving with the 

coordinate system at the same absolute velocity as the sphere does. This way the sphere’s 

mesh only has to perform an according rotational movement within the surrounding gas 
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phase, whereas the translational movement is simulated by an approaching flow with 

according velocity. The plate is represented by a mesh adjacent to the bottom of the gas 

phase. Due to the prescribed view of a moving observer the plate has to perform a linear 

movement with the sphere’s velocity. The plate’s movement is represented by treating the 

plate as an inviscid fluid with the physical properties of a solid, so that the plate’s mesh 

does not have to be moved. The mesh regions are coupled via a Cauchy boundary condition 

for the temperature and the temperature gradient respectively 

 𝑇𝑠𝑝ℎ𝑒𝑟𝑒,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑇𝑓𝑙𝑢𝑖𝑑,𝑠𝑢𝑟𝑓𝑎𝑐𝑒  (5) 

 𝑞̇𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑞̇𝑓𝑙𝑢𝑖𝑑 (6) 

By using the arbitrary mesh interface (AMI) mapping function, which works with an 

algorithm using Galerkin projection [5], the faces at the boundaries do not need to conform 

with adjacent faces. 

During the evaluation of the equation system, different arithmetical operations have to 

be carried out including surface and volume integrals as well as time integration. In order to 

do this numerically, the operations have to be carried out in a discretised form. There are a 

variety of discretisation schemes available which have different influences on the solution 

of the equation system. The upwind differencing scheme increases solution stability due to 

numerically dissipative behaviour. This is a first-order scheme which means the interpola-

tion error decreases linearly with an increasing discretisation resolution. On the other hand, 

higher order schemes, like central differencing schemes, behave in the opposite way. In 

Table 1, the applied discretisation schemes are listed for the gas region and the plate region. 

The significant difference lies in the scheme for the divergence discretisation. For the gas 

region, a scheme of high order, which is not diffusive, is applied in order to use the 

truncation error for turbulence creation. In contrast, a first order scheme, which is very 

diffusive, is applied for the plate region in order to supress any turbulence, since this region 

actually describes a solid. 

T a b l e  1  

Spatial and temporal discretisation schemes for gas and plate region  

region temporal gradient divergence Laplace 

gas 
Crank-Nicolson, 

2nd order 

least squares, 

2nd order 

central 

differencing, 

4th order 

central 

differencing, 

2nd order 

plate 
Crank-Nicolson, 

2nd order 

central 

differencing, 

2nd order 

upwind, 

1st order 

central 

differencing, 

2nd order 

 

2.3.  Meshing 

As mentioned in section 2.1, the three different regions (i.e. sphere, gas and plate) are 

each treated with their own mesh. The meshes for the sphere and plate are physically 

describing solids where only the heat flux is investigated in this work. The resolution is 



47 

 

rather coarse compared to the gas region, so that the mesh generation is not described in 

detail. In the latter region, fluid dynamics is of high interest; therefore, the mesh generation 

is crucial. The mesh for direct numerical simulation in this region has to fulfil certain 

conditions. The spatial resolution has to be high in order to resolve all vortices down to 

where the energy is dissipated, the so-called Kolmogorov scale [6], which is basically 

determined by the viscosity. 

 η = (
ν3

ε
)

1
4⁄

 (7) 

The mesh is built on the basis of a structured hexahedral mesh which is advantageous 

for parallelisation during the actual calculation. The sphere is inserted via the 

OpenFOAM® meshing tool snappyHexMesh. The grid is simultaneously refined in this 

step. Fig. 2 depicts the refined mesh assembly for all regions. The overall domain includes 

a very highly resolved region of interest, which was gained by previous turbulence 

modelling simulations. The point distance in each coordinate direction is maximal 25 µm 

wide. The surface of the sphere and the gap are resolved even with a smaller point distance. 

Employing the results from the DNS to equation (7) gives a Kolmogorov scale of about 

50µm for this case, so that the condition is satisfied. 

The contact point between the sphere and plate cannot be represented in a finite volume 

method. In the literature, several approaches can be found that introduce solutions for this 

task. The particle is flattened near to the contact point to leave a gap between two solid 

surfaces in the ‘caps’ approach by Eppinger et al. [7]. Dixon et al. [8], alternatively, give an 

overview of possible solutions; in particular, shrinking, overlap, bridge connection and an 

approach similar to the ‘caps’ approach.  

Since this work is a fundamental investigation of heat transfer mechanisms, the 

characteristic geometry of the sphere should be conserved. The contact point is therefore 

replaced by a gap of 1µm width which is resolved with at least four finite volume cells. 

 

 

Fig. 2. Refined mesh assembly 
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2.4.  Boundary conditions 

The flow fields of the gas and plate are velocity driven since the pressure does not 

significantly change in this case. Constant values for velocity (5 m/s) and temperature 

(430 K) are applied at the inlet. At the outlet and the top of the gas phase region, a mixed 

boundary condition is applied – this changes between the Dirichlet and Neumann condition 

depending on the direction of the flux. Hereby, backflow into the domain, which might 

occur, can be handled. At the boundaries between gas and solid regions, the velocity is also 

fixed in order to represent the no slip condition for the mentioned moving observer. As 

mentioned in section 2.2, a Cauchy boundary condition for the temperature at the contact 

surfaces of the gas with the solid is implemented.  

The velocity and pressure field results from the turbulence modelling simulations 

mentioned in section 2.3 were used as starting values for the direct numerical simulations in 

order to improve convergence. The initial values for the temperature were 550 K for the 

sphere and 430 K for the gas and plate region. 

3.  Results  

Simulations with Reynolds Averaged Navier Stokes turbulence were carried out for the 

generation of starting values for the actual direct numerical simulation. In these steady state 

simulations, only the fluid dynamics in the gas phase was solved, neglecting the transient 

heat transfer. The OpenFOAM® standard solver simpleFOAM was used and both standard 

k-ε- and k-ω-SST-models were applied in a low-Reynolds approach with the absence of 

wall functions. Since the standard k-ε-model showed better stability in the convergence 

behaviour, the DNS was initialised with its results for velocity and pressure field.  

The velocity magnitude field for both DNS and the standard k-ε-model are depicted in 

Fig. 3. One has to keep in mind that for an observer, who moves with the same velocity as 

the sphere does, the relative velocity is depicted. The domain’s symmetry plane in rolling 

direction is shown, so that the sphere moves from right to left. For the transient DNS, a 

time-averaged velocity field is generated for comparison with the stationary RANS model. 

The simulations show qualitatively similar results with a slight difference in the description 

of the flow detachment. The direct numerical simulation predicts a more distinct vortex in 

the flow detachment area behind the sphere and a slightly different shape of the area near 

the wall. 

In Fig. 4, the energy dissipation rate is shown for the same cases shown before. Both 

results show a qualitatively strong agreement. The highest values for the dissipation rate are 

predicted around the surface of the sphere and near to the plate in the sphere’s wake. As can 

be seen in Fig. 3, there is a very sharp gradient near to the surface of the sphere due to its no 

slip condition. The displacement of fluid caused by the sphere enforces this effect by 

accelerating the fluid. Referring once more to the observer, who moves with the sphere’s 

velocity, it can be seen, that downstream of the touching point of sphere and plate large 

gradients occur as well. The velocity gradients ‘feed’ eddies in which the energy is finally 

dissipated. 

 



49 

 

 

Fig. 3. Velocity magnitude fields: left – DNS; right – standard k-ε-model 

Conversely, the quantity of the dissipated energy differs significantly. The DNS delivers 

much higher dissipation rates compared to the standard k-ε-model.  

 

 

 

Fig. 4. Dissipation rate of turbulent kinetic energy: left – DNS; right – standard k-ε-model 

In order to determine the influence of turbulence on the heat transfer, both convective 

and diffusive heat flux are calculated and shown in Fig. 5 for turbulent conditions (DNS, 

5 m/s) on the left-hand side, and for a simulation under laminar conditions (0.1 m/s) on the 

right-hand side. In each picture, the convective heat flux is on the sphere’s left-hand side 

and the diffusive heat flux on its right-hand side. The sphere rolls towards the observer, so 

that the fluid flow is in accord with the convective heat flux (Z-direction). Both vector 

fields are scaled in size with the absolute amount of heat flux. The heat flux component in 

the Y-direction (i.e. normal to the plate) is represented in colour. Due to the no slip 

condition on the sphere’s surface, heat is convectively transported to the plate on the 

sphere’s front side and transported away on the rear side. On the other side, heat is 

diffusively transported by conduction in normal direction to the plate. In the turbulent case, 

both mechanisms take place at the same order of magnitude, whereas in the laminar case, 

the diffusive transport clearly dominates. In Table 2, the overall heat transfer coefficients 

for the wall-heat transfer  
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 𝑘𝑠𝑝ℎ𝑒𝑟𝑒 𝑤𝑎𝑙𝑙⁄ =
𝑄̇𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑇̅𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛−𝑇̅𝑙𝑜𝑤𝑒𝑟 ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒)
 (8) 

and the heat transfer towards the surrounding fluid  

 𝑘𝑠𝑝ℎ𝑒𝑟𝑒 𝑔𝑎𝑠⁄ =
𝑄̇𝑠𝑝ℎ𝑒𝑟𝑒

𝐴𝑠𝑝ℎ𝑒𝑟𝑒(𝑇̅𝑠𝑝ℎ𝑒𝑟𝑒−𝑇̅𝑔𝑎𝑠)
 (9) 

are listed. For ksphere/wall, the overall heat flux into the plate is integrated over the sphere’s 

projection area and area averaged values are applied for the temperature difference. For 

ksphere/gas, the heat overall flux into the gas phase is integrated over the surface of the sphere 

and again area averaged values are applied for the temperature difference. 

The wall-heat transfer is not significantly affected by the occurrence of turbulence, 

whereas the heat transfer towards the surrounding fluid increases.  

 

 

 

Fig. 5. Convective and diffusive heat flux: left – DNS; right – laminar 

T a b l e  2  

Overall heat transfer coefficients  

regime ksphere/wall, W/m²K ksphere/gas, W/m²K 

turbulent 790 437 

laminar 807 317 

4.  Summary & Conclusion  

In this paper, a first direct numerical simulation of a rolling sphere on a flat plate 

incorporating heat transfer is shown. The fluid dynamics is compared against a stationary 

RANS simulation with the standard k-ε-model. It is shown that the turbulence model 

underestimates the dissipation of turbulent kinetic energy in comparison to the solution of 

the DNS.  

In the second step, the result for the heat transfer is compared against a simulation of the 

heat transfer under laminar conditions. Although the convective heat flux is shown to have 
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increased with the presence of turbulence, the overall wall-heat transfer coefficient does not 

change significantly from the laminar to the turbulent regime. Nevertheless, the heat 

transfer from the sphere to the surrounding gas phase increases with rolling speed and 

occurring turbulence as expected due to the decreased thickness of the boundary layer.  

5.  Outlook  

The thesis that the presence of turbulence seems to have negligible influence on the heat 

transfer between a rolling sphere and a plate has to be verified by a wider range of 

parameter variation (e.g. velocity, diameter). To this aim, further simulations with 

turbulence models are planned. It has to be established if the standard k-ε-model’s 

parameters can be calibrated with the result from the DNS in order to represent the correct 

velocity field and amount of dissipated energy. 
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