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Abs t r a c t
A data-driven score test of fit for testing the conditional distribution within the class of stationary GARCH(p,q)
models is presented. In this paper extension of the complete results obtained by Inglot and Stawiarski in [7], as well
as in Stawiarski [15] for the parsimonious GARCH(1,1) case is proposed. The null (composite) hypothesis subject
to testing asserts that the innovations distribution, determining the GARCH conditional distribution, belongs to
the specified parametric family. Generalized Error Distribution (called also Exponential Power) seems of special
practical value.
Applying the pioneer idea of Neyman [13] dating back to 1937, in combination with dimension selection device
proposed by Ledwina [10] in 1994, lead to derivation uf the efficient score statistic and its data-driven version for
this testing problem. In the case of GARCH(1,1) model both the asymptotic null distribution of the score statistic
has been already established in [7] and [15], together with the asymptotics of the data-driven test statistic with
appropriately regular estimators plugged in place of nuisance parameters. Main results are only stated herewith,
while for detailed proofs inspection and power simulations, ample reference to these papers is provided. We show
that the test derivation and asymptotic results carry over to stationary ARCH(q) models for any q ∈ N. Moreover,
thanks to ARCH(∞) representation of the GARCH(p,q) model, the test can asymptotically encompass the full
GARCH family, which as a final result provides the flexible testing tool in the GARCH(p, q) framework.
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S t r e s z c z e n i e
W pracy przedstawiono adaptacyjny test zgodności dla testowania warunkowego rozkładu w klasie stacjonarnych
modeli GARCH(p,q). Jest to rozszerzenie kompletnych wyników uzyskanych w pracach [7] oraz [15] dla przypadku
mniej rozbudowanego modelu GARCH(1,1). Podlegająca testowaniu (złożona) hipoteza zerowa postuluje, że rozkład
szumu determinujący warunkowy rozkład szeregu GARCH, należy do określonej rodziny parametrycznej. Szczególne
znaczenie w kontekście zastosowań ma klasa rozkładów GED.
Zastosowanie pionierskiego pomysłu Neymana z 1937 r. [13] w połączeniu z kryterium wyboru wymiaru, zapropono-
wanym przez Ledwinę w 1994 r. w pracy [10] pozwala wyprowadzić dla omawianego zagadnienia testowego efektywną
statystykę wynikową i jej adaptacyjną wersję. W przypadku modelu GARCH(1,1) zarówno asymptotyczny rozkład
statystyki przy hipotezie zerowej, jak i asymptotyka jej adaptacyjnej wersji z odpowiednio regularnymi estyma-
torami parametrów zakłócających zostały już uzyskane w [7] oraz [15]. Główne wyniki są tu tylko przywołane z
przywołaniem licznych referencji do tych prac. Pokazano, że konstrukcja testu i wyniki asymptotyczne przenoszą
się na stacjonarne modele ARCH(q) dla dowolnego q ∈ N. Ponadto dzięki reprezentacji modeli GARCH poprzez
ARCH(∞) test pozwala asymptotycznie objąć całą klasę GARCH, co w ostateczności daje elastyczne narzędzie
testowe dla modeli GARCH(p,q).

Słowa kluczowe: Model GARCH, gładki test Neymana, adaptacyjny test zgodności, rozkład GED

*Institute of Mathematics, Cracow University of Technology; bstawiarski@pk.edu.pl



130
1. Introduction

The Autoregressive Conditionally Heteroscedastic class of time series models, ARCH,
was introduced by Engle in 1982 and four years later extended to GARCH by Bollerslev
in [3]. Modelling financial time series was main empirical motivation standing behind
introduction of such models, allowing for fluctuation of their conditional variance.
Throughout more than two decades of research, vast theoretical and computational
research concerning GARCH models has been done. A good deal of summaries or
even books dedicated specifically to this class of time series has appeared, e.g. Francq
and Zakoïan (2010), [5].

Widely exploited in the early days, conditionally normal GARCH models were
soon questioned because of unsatisfactory fitting to econometric data. Therefore, the
problem of checking conditional distribution assumptions in nonlinear time series has
become vital. Apart from ad-hoc imposed innovations distribution (t, α-stable or
Laplace), several constructive tests have been proposed only in early 2000’s. Specifically,
Chen in 2002 [4] proposed a characteristic function based test, while Bai in 2003 [1]
presented a martingale transform approach to testing conditional distribution of
some dynamic models. Inglot and Stawiarski [7] reconsidered - in the GARCH(1,1)
time series context - the idea of smooth tests conceived by Neyman [13] and their
data-driven versions devised by Ledwina in [10]. A data-driven score test of fit for
conditional distribution for the simple hypothesis i.e. when the null density is fully
specified, was derived. Just as the composite hypothesis case for i.i.d. random variables
was considered in [6] and [8], Stawiarski [15] extended that result to the composite
hypothesis case in the GARCH(1,1) framework. This was also desirable from the
applicational point of view as testing conditional distribution for financial time series
should naturally allow for flexible, parametric families.

In Sections 2 and 3 of this paper we rather succinctly refer the test construction and
quote main theoretical results determining the asymptotic behavior of the test statistic.
We also briefly report the test power simulation study in Section 4. Detailed theoretical
derivations and proofs and simulation studies, due to capacity constraints, can be found
in [7] and [15]. The substantially new results are reported in Section 5, which contains
extension of the proposed test to the case of ARCH(q), then GARCH(p,q) models.
Main theoretical results carry over from the two papers due to general properties such
as imposed stationarity (strict and weak), but the present general GARCH context
results in some differences of technical nature (ampler parametrization influencing the
final test statistic). Therefore the derivation of complete theoretical results leading
to fully-fledged data-driven score test of fit for the whole class of stationary GARCH
models calls for some future refinements at several stages. Some power simulation
study can be a potential subject of further interest. We conclude the paper with
Appendix and discussion concerning the above-mentioned possible paths of future
research.
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2. Score test of fit for composite hypothesis in the GARCH(1,1) model

In [7] and [15] the following GARCH(1,1) time series model {Xt}t∈Z , introduced by
Bollerslev [3], was the object of research:{

Xt =
√
htεt

ht = ω + αX2
t−1 + βht−1

(2.1)

where ϑ = [ω, α, β]T is a column vector of model parameters and {εt}t∈Z is a sequence
of i.i.d. random variables, satisfying Eεt = 0, V arεt = 1. Denoting by F t =
σ{..., εt−1, εt} the process filtration up to time t, it is evident that the conditional
variance ht is F t−1–measurable. It is assumed hereafter that ϑ ∈ Θ = {[ω, α, β]T :
ω, α, β > 0; α+β < 1}, which ensures weak and strict stationarity as well as ergodicity
of Xt (see e.g. [3]).

The null hypothesis in [7] asserted that the zero-mean and unit-variance innovations
εt have a fully specified unknown density f(x) on R. Stawiarski [15] allowed for
extension to a parametric family of noise distribution densities, namely G = {f(x, λ) :
λ ∈ Λ, Λ ⊂ Rm} (Λ - an open set), satisfying

∫
R

xf(x, λ)dx = 0,
∫
R

x2f(x, λ)dx = 1 for

all λ ∈ Λ.
Given a finite “data set” of observations X(n) = (X1, ..., Xn) of the process {Xt}t∈Z

obeying (2.1), the hypothesis we consider is as follows:

H0: εt ’s have a density f(x, λ) belonging to G ; ϑ ∈ Θ.

Exploiting the concept of "smooth tests" conceived in [13], we restate the above null
hypothesis in the equivalent, parametric form, subject to testing. To this end, choose
a natural number k and Φ(x) = [Φ1(x), ...,Φk(x)]T – a vector of bounded orthonormal

functions in L2[0, 1] satisfying
1∫
0

Φ(x)dx = 0. Denoting byF (x, λ) the cdf of f(x, λ),

we immerse the hypothetical density into a k−parametric exponential family

exp{τTΦ(F (x, λ))− Ck(τ)} · f(x, λ) (2.2)

where τ = [τ1, ..., τk]T ∈ Rk and Ck(τ) - the normalizing constant.
Let η=[ϑT ,λT ]T ∈ Θ × Λ ⊂ R3+m denote a vector of all nuisance parameters

appearing in this testing problem, stemming from the GARCH(1,1) model and density
f , respectively. Hence we get the parametric reformulation of the above hypothesis:

H∗0 : τ = 0; η ∈ Θ× Λ. (2.3)

For notational simplicity, we shall denote by ε the r.v. distributed as εt, i.e. under
H∗0 with true values of all parameters. Densities (2.2) no longer have zero mean or
unit variance. Still, small values of ||τ || accounting for moderate departures from the
null density are of major interest from the perspective of the test sensitivity.
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Let us quote basic assumptions – being rather standard regularity conditions –

imposed on the family G in our testing problem. For every λ ∈ Λ:
(A1) ∂ log f(x,λ)

∂λ exists and is continuous with respect to λ for almost all x ∈ R;

Fisher information matrix I(λ) = E
{
∂ log f(ε,λ)

∂λ
∂ log f(ε,λ)

∂λT

}
is well-defined, continu-

ous w.r.t. λ and nonsingular;
(A2) f(•,λ) is absolutely continuous on R and the function ς(x, λ) = x∂ log f(x,λ)

∂x +1
defined on the set {x : f(x, λ) > 0} is not almost everywhere constant;

(A3) the following set of functions is linearly independent:

{
Φ1(F (x, λ)), ...,Φk(F (x, λ)),

∂ log f(x, λ)

∂λ1
, ...,

∂ log f(x, λ)

∂λm

}
.

(A4) E |ς(ε, λ)|3 <∞ and E
∥∥∥∂ log f(ε,λ)

∂λ

∥∥∥3

<∞.

Fundamental for our derivation will be the following representation of the condi-
tional variance obtained from (2.1) by successive iteration for t = 1, 2, ..., n

ht = ω

t−2∑
s=0

βs + α

t−2∑
s=0

βsX2
t−1−s + βt−1h1. (2.4)

Thus the conditional variance ht is expressed in terms of the observed sample path
X(n). From now on, all calculations will be carried out conditionally on h1 = h with
h > ω(1−β)−1, which establishes the link between the infinite past and the present of
the process. The constant h is assumed given and its influence asymptotically vanishes
due to the exponentially decaying memory of the series. Let Ph be the probability
on the σ-field σ(X1, X2, ...) induced by the family of conditional distributions of
(X1, ..., Xn), n = 1, 2, ..., conditionally on h1 = h and under the true value of η.
Accordingly, Eh will stand for respective expectation.

Following the lines in [15] we obtain the log-likelihood Lk(X1, ..., Xn; τ, ϑ, λ) of
X(n), which further is employed in calculating a score vector ` = `(η), defined as
derivatives of Lk with respect to all parameters involved, evaluated under H∗0 :

`(η) =

[(
∂Lk(X(n); τ, ϑ, λ)

∂τ

)T (
∂Lk(X(n); τ, ϑ, λ)

∂ϑ

)T (
∂Lk(X(n); τ, ϑ, λ)

∂λ

)T]T ∣∣∣∣∣∣
τ=0

.

(2.5)
More explicitly, the constituent vectors – respectively: k-, 3-, and m-dimensional –

are as follows
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`τ = ∂Lk

∂τ

∣∣
τ=0

=
n∑
t=1

Φ(F (Xt/
√
Qt, λ)),

`ϑ = ∂Lk

∂ϑ

∣∣
τ=0

= − 1
2

n∑
t=2

ς(Xt/
√
Qt,λ)

Qt

∂Qt

∂ϑ ,

`λ = ∂Lk

∂λ

∣∣
τ=0

=
n∑
t=1

∂ log f(Xt/
√
Qt,λ)

∂λ ,

(2.6)

where Q1 = h, and for t > 2

Qt = Qt(X1, ..., Xt−1;h, ϑ) = ω
t−2∑
s=0

βs + α
t−2∑
s=0

βsX2
t−1−s + βt−1h ,

∂Qt

∂ϑ =

[
t−2∑
s=0

βs
t−2∑
s=0

βsX2
t−1−s

t−2∑
s=1

sβs−1(ω + αX2
t−1−s) + (t− 1)βt−2h

]T
.

(2.7)

Now, in the form of brief remarks we cite three results concerning the elementary
properties of `(η), holding true for h > ω(1− β)−1 and t > 1, cf. Proposition 3.1 – 3.3
in [15].

For {Xt}t∈Z following (2.1) random variables ε̃t = Xt/
√
Qt are i.i.d. under Ph

and have the same distribution as εt’s. Under former assumptions (A1) – (A4),
Eh`(ϑ, λ) = 0 and Eh||`(ϑ, λ)||2 < ∞, where || · || denotes the Euclidean norm;
moreover, the components of the score vector given by (2.6) are linearly independent
random variables in L2(Ph) for any η ∈ Θ× Λ.

Determining the covariance matrix B̃(n)(η) of the normalized score vector n−1/2`(η)
is another step. Thanks to (2.6) and by orthonormality of the system Φ, B̃(n)(η)
admits the block representation

B̃(n)(η) = n−1Eh{`(η)(`(η))T } = n−1Eh

[
`τ `

T
τ `τ `

T
η

`η`
T
τ `η`

T
η

]
=

[
Ik B̃

(n)
12 (η)

B̃
(n)
21 (η) B̃

(n)
22 (η)

]
.

(2.8)
Obviously, B̃(n)

21 (η) = [B̃
(n)
12 (η)]T and the block matrix B̃(n)

22 (η) is invertible for any
n and η ∈ Θ × Λ, by Proposition 3.3 in [15]. Explicit forms of B̃(n)

12 (η) and B̃(n)
22 (η)

are given there in (6.7) and (6.12), respectively.
An efficient score vector `∗(η) is defined as the residual of the orthogonal projection

in L2(Ph) of n−1/2`τ upon the subspace generated by components of `η. Standard
theorems, cf. [14], imply that `∗(η) = n−1/2(`τ − B̃(n)

12 (η)[B̃
(n)
22 (η)]−1`η). This leads

to the explicit formula for `∗(η), which we state in the following proposition for the
sake of convenient reference.

Proposition 2.1. [Proposition 3.4 in [15]]. Suppose {Xt}t∈Z obeys (2.1) and (A1)–
(A4) are satisfied. Then for any h > ω(1− β)−1 the efficient score vector `∗(η) for
testing H∗0 has the form
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`∗(η) =
1√
n

n∑
t=1

Φ(F (ε̃t, λ))− 1√
n
B̃

(n)
12 (η)[B̃

(n)
22 (η)]−1

 − 1
2

n∑
t=2

ς(ε̃t, λ) 1
Qt

∂Qt

∂ϑ

n∑
t=1

∂ log f(ε̃t,λ)
∂λ


(2.9)

and its covariance matrix under Ph is given by

M̃ = M̃ (n)(η) = Ik − B̃(n)
12 (η)[B̃

(n)
22 (η)]−1B̃

(n)
21 (η). (2.10)

The martingale-difference array structure of the vector `∗(η) in (2.9) paves the way
for main limit result, leading in the sequel to establishing the asymptotics of our score
test statistic. We quote verbatim Theorem 3.5 from [15] and in Appendix below we
provide the outline of its proof.

Theorem 2.2. Suppose {Xt}t∈Z obeys (2.1) and (A1)–(A4) are satisfied. Then for
almost every h > ω(1− β)−1 (with respect to the Lebesgue measure) it holds

[M̃ (n)(η)]−1/2`∗(η)
D−→ N(0, Ik) (2.11)

under Ph in Rk as n→∞.

Now, for fixed natural k introduce a score statistic being a quadratic form

Wk = Wk(η) = ||[M̃ (n)(η)]−1/2`∗(η)||2 = (`∗(η))T [M̃ (n)(η)]−1`∗(η). (2.12)

Hence, as a direct implication of the above theorem we get, under its assumptions,

Wk
D−→ χ2

k (2.13)

under Ph as n→∞, where χ2
k is a central chi-square random variable with k degrees

of freedom.
Now, let us proceed to define a dimension selection rule. Choose fixed K > 1 - a

maximal dimension of the exponential family (2.2) built on G. Define a selection rule
S(η) as

S(η) = min{k : 1 6 k 6 K, Wk(η)−k log n >Wj(η)−j log n ∀ j = 1, ...,K}. (2.14)

Thus, the resulting data-driven score statistic is WS(η)(η). Since K is fixed, (2.13)
implies that Ph(S(η) = 1) → 1 as n → ∞ (cf. Section 3.3 in [7]). Accordingly,
we obtain the asymptotic behaviour of WS(η)(η) under H∗0 . Therefore, under the
assumptions of Theorem 2.2 it holds
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WS(η)
D−→ χ2

1 (2.15)

under Ph as n→∞, where S(η) is given by (2.14).
Still, WS(η) is not suitable for testing as it depends on an unknown nuisance

parameter. In the following subsection we will focus on the estimated test statistic ŴŜ

with a square-root consistent estimator η̂ instead of η, briefly recalling main results.

3.Data-driven test statistic and its asymptotics

Let η̂ = [ϑ̂T , λ̂T ]T be a square-root consistent estimator of the nuisance parameter

η = [ϑT , λT ]T . For t > 2 we set ε̂t = Xt

/√
Q̂t, Q̂t = Qt|ϑ=ϑ̂ and ∂Q̂t

∂ϑ = ∂Qt

∂ϑ

∣∣∣
ϑ=ϑ̂

.

Suppose that B̂is a consistent estimator of B̃(n)(η), which naturally implies consistency
of the block matrices estimators B̂12, B̂22 for B̃(n)

12 (η) and B̃(n)
22 (η), respectively. Then

the estimated efficient score vector ˆ̀∗(η̂), with η̂ and B̂ plugged into it, is as follows

ˆ̀∗(η̂) =
1√
n

n∑
t=1

Φ(F (ε̂t, λ̂))− 1√
n
B̂12B̂

−1
22

 − 1
2

n∑
t=2

ς(ε̂t, λ̂) 1
Q̂t

∂Q̂t

∂ϑ

n∑
t=1

∂ log f(ε̂t,λ̂)
∂λ

 (3.1)

while

M̂ = Ik − B̂12B̂
−1
22 B̂21 (3.2)

is a consistent estimator of the covariance matrix M̃ .
In order to proceed, some further theoretical assumptions in addition to (A1)–(A4)

on our model have to be imposed. These are listed precisely as (A6)–(A13) in [15] and,
besides the consistency of nuisance estimators, they concern the distribution of ε - r.v.
with the density f(x, λ) and appropriate regularity conditions for f itself, as well as
the system Φ. Specifically it is worth mentioning that (A5) requires E|ε|2κ <∞ for
some κ > 2.

The main limit theorem being a counterpart of Theorem 2.2 is stated below, but
for its lengthy proof we refer to Section 8 in [15].

Theorem 3.1. [Theorem 4.1 in [15]] Under assumptions (A1)–(A13) in [15] for
almost every h > ω(1− β)−1 the following asymptotic result holds

M̂−1/2 ˆ̀∗(η̂∗)
D−→ N(0, Ik) (3.3)

under Ph in Rk as n→∞, where ˆ̀∗(η̂∗) is parallel to ˆ̀∗(η̂) from (3.1) with discretized
version η̂∗ of the estimator η̂ and M̂ as in (3.2).
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Consequently, the estimated score statistic corresponding to (2.12) takes the form

Ŵk = Ŵk(η̂∗) = ||M̂−1/2 ˆ̀∗(η̂∗)||2 = (ˆ̀∗(η̂∗))
T M̂−1 ˆ̀∗(η̂∗), (3.4)

while the ready-to-perform in practice data-driven score test statistic is just ŴŜ with

Ŝ = Ŝ(η̂∗) = min{k : 1 6 k 6 K, Ŵk − k log n > Ŵj − j log n ∀ j = 1, ...,K}.

Hence, as far as the testing is concerned, we directly obtain the result of major
importance:

Proposition 3.2. Under the assumptions of Theorem 3.1 it holds

Ŵk(η̂∗)
D−→ χ2

k and ŴŜ

D−→ χ2
1 (3.5)

under Ph as n→∞.

Detailed remarks concerning the LeCam’s discretization method can be found in
[15]. Here we just mention its basic concept. Suppose the parameter space Θ× Λ is
partitioned into cubes with edges of length O(n−1/2). The estimator η̂∗ = [ϑ̂T∗ , λ̂

T
∗ ]T

is defined to be a discretized version of η̂ as the center of the cube to which η̂ belongs
(see e.g. [2], p. 44). The origination of the vector ˆ̀∗(η̂∗) in (3.1) and the test statistic
(3.5) follow accordingly.

4. Simulation study

The test performance in practice was also examined, both for simple and composite
hypothesis in [7] and [15], respectively. In the simple case, conditional normality
and standard Laplace distribution were considered as null hypotheses, whereas in
the composite framework the class G of standardized Generalized Error Distributions
(GED) was taken as a hypothetical family. Recall that the p.d.f. of this (standardized,
therefore one-parameter) class describing the random behavior of our innovation
sequence {εt} has the form

f(x, λ) =
λCλ

2Γ(λ−1)
exp(−|Cλx|λ), (4.1)

where x ∈ R, λ ∈ Λ = R+ is a parameter indexing the family, Cλ =
√

Γ(3λ−1)/Γ(λ−1)
is a normalizing constant and Γ denotes the Euler gamma function. This symmetric
class is flexible enough to encompass the Laplace (λ = 1) and normal (λ = 2)
distributions as special cases, see e.g. [12]. Validity of the formerly mentioned
assumptions from among (A1)–(A13) concerning the GED family has been checked in
Section 9 of Stawiarski [15].
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The issue of estimating the nuisance parameter η is vital. As for its GARCH(1,1)

part ϑ, the Quasi Maximum Likelihood Estimator ϑ̂, QMLE, well-described in litera-
ture, was computed by iterative methods. Under mild conditions (cf. [11]) the QMLE
ϑ̂ is square-root consistent and asymptotically normal with the asymptotic covari-
ance matrix Σ = V ar(ε2)U−1

∞ , where U∞ appears in (6.11) below. Hence, for fixed

h > ω (1− β)−1 we get Q̂t and the estimated innovations ε̂t = Xt

/√
Q̂t, t = 1, .., n

appearing in (3.1). This estimated sequence, {ε̂t}t=1,...,n, serves in turn to obtain the√
n-consistent estimator λ̂ of λ stemming from the hypothetical family G, given by

(4.1), subject to our testing procedure. Specifically, λ̂ is calculated numerically by
common method of moments. Its

√
n-consistency is not trivial and was proved in

Section 9 of [15].
Accordingly, all other matrices and quantities appearing in the data-driven score

statistic WShad to be estimated, yielding finally the data-driven test statistic ŴŜ(η̂),
see (3.4). Details can be found in Section 5 of [15], together with versatile discussion
concerning numerical issues emerging during estimating critical values and performing
the test power study against vast scope of alternatives. Especially, using the asymptotic,
nominal χ1 quantiles is largely disputable due to present time series framework implying
slower asymptotic convergence for moderate path lengths.

We set the quadratic scale coefficient ω = 0.001 and the starting value h = 0.1
throughout our simulations. The maximal embedding dimension K was fixed at 10,
and the cosine orthonormal system Φj(x) =

√
2 cos(jπx), j = 1, 2, ..., on [0,1] was

chosen. The significance level is fixed at 0.05. To show the influence of nuisance
parameters on the empirical critical values, we considered various combinations of
ϑ and λ. Theoretical results imply the stability of c.v.’s with respect to changing η,
hence the critical value was proposed as a common average.

Focusing upon 1 6 λ 6 2 is motivated by empirical research in modelling real
stock and commodities returns, see e.g. [4], [16]. Changing λ from 2 down to 1
results in heavier tails of the distribution. Various values of λ were paired with several
combinations of the GARCH(1,1) parameters (α, β). Again, in accordance with results
found in papers concerning econometric time series modelling, we deliberately focused
on ϑ’s such that β > α and α+β > 0.8. In such cases, the influence of past conditional
variances hs on the present ht, is stronger, providing more pronounced autocorrelation
structure (“memory”) within the squares of the time series. The results are reported
in Table 1 as empirical .95-quantiles from 5000 Monte Carlo runs for sample size
n = 1000.
The observed stability of estimated critical values justifies using the global average
4.501 as the critical value of our test for n = 1000. Under the null hypothesis, the
Schwarz selection rule picks out Ŝ = 1 with frequency about 95-97%. Slow convergence
rate of the estimators, especially λ̂, suggests caution with time series of length e.g.
n = 500 in the composite hypothesis case, while for simple hypotheses considered in
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Tab. 1: Simulated critical values for ŴŜ in case of GED family of null distributions
with λ ∈ (0.99; 2.01). Significance level 0.05, ω = 0.001, h = 0.1, K = 10, n = 1000,
MC = 5000 Monte Carlo loops

(α , β)
λ
1 1.25 1.5 1.75 2

(0.3; 0.5) 4.543 4.334 4.525 4.464 4.306
(0.2; 0.7) 5.025 4.770 4.871 4.280 4.195
(0.4; 0.5) 4.378 4.492 4.770 4.324 4.311
(0.25; 0.65) 4.860 4.474 4.769 4.255 4.069
Column-wise
averages

4.701 4.517 4.734 4.331 4.220

Average critical value : 4.501

[7] such length was large enough.
Proceeding now to checking the test performance, we consider n = 1000 and take

the critical value
∧
CV = 4.501 at 0.05 significance level (the asymptotic CV being 3.84).

Following alternative distributions (centered and scaled when necessary) have been
considered:

-t-Student with a degrees of freedom, referred to as t(a);
-chi-square with 5 degrees of freedom, χ2

5;
-normal mixture (bimodal) with µ > 0 and σ = 1, SN (µ), with the density
f1(x, µ) = 1

2
√

2π

(
exp{−(x− µ)2/2}+ exp{−(x+ µ)2/2}

)
, x ∈ R;

-first-type beta with a, b > 0 including uniform (a, b = 1), B(a, b);
-symmetric Pareto-type with shape b > 2, PR(b), given by the density

f1(x, b) = b√
2(b−1)(b−2)

(
1 + |x|

√
2√

(b−1)(b−2)

)−b−1

, x ∈ R ;

-GED(λ) with λ > 2.
To check the test performance and sensitivity when necessary, the “contaminated”

alternatives fρ were considered, namely
fρ(x, λ) = (1−ρ)f(x, λ)+ρ f1(x),where 0 6 ρ 6 1, f(x, λ) is the null GED density

(4.1) and f1(x) is taken from the above-listed alternatives. The simulations were run
for the specific GARCH(1,1) model, namely with ϑ = (0.001; 0.3; 0.5), and the power
was estimated as percentage of H∗0 rejections out of 2000 Monte Carlo loops. The
results are collected in Tables 2 and 4.

Naturally, the power is generally weaker than that reported in [7] for the simple
hypothesis. However, such deviations from GED as bimodality, skewness, excess
kurtosis are detected satisfactorily well. Some light-tailed distributions are hardly
distinguished from the GED null family, while ultra-thin tails, as those of GED(λ)
with λ > 6 are detected quite well. Heavy Pareto-type tails are easily distinguished,
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Tab. 2: Simulated powers of ŴŜ(η̂) under symmetric, unimodal alternatives. Sig-
nificance level 0.05, h = 0.1, K = 10, n = 1000, MC = 2000 Monte Carlo loops;
contaminations of conditionally GED GARCH(1,1) model with ϑ = (0.001; 0.3; 0.5)
and three values of λ. H0: f - GED(λ); λ ∈ [1, 2]

f1 ρ
Simulated power
(% of rejections)
λ = 1 λ = 1.5 λ = 2

PR(2.5)
1 41
0.8 19 19 20

PR(5.5) 1 19
PR(5) 1 11

t(3)
1 59
0.8 39 43 44
0.6 30 33 34

t(5) 1 22
GED(4) 1 5
GED(6) 1 7
GED(8) 1 7

B(1,1)
0.8 97 81 62
0.6 90 72 43
0.4 34 30 28

B(1.2; 1.2) 1 25
B(2,2) 1 18
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Tab. 3: Simulated powers of ŴŜ(η̂) under skew and bimodal alternatives. Significance
level 0.05, h = 0.1 ,K = 10 , n = 1000 ,MC = 2000 Monte Carlo loops; contaminations
of conditionally GED GARCH(1,1) model with ϑ = (0.001; 0.3; 0.5) and three values
of λ. H0 : f− GED(λ); λ ∈ [1, 2]

f1 ρ
Simulated power
(% of rejections)
λ = 1 λ = 1.5 λ = 2

B(1; 1.5)
1 100
0.8 98 93 87
0.6 72 57 46

χ2
5

0.6 99 100 100
0.4 68 74 80
0.2 16 21 23

SN (1.6)
0.8 99 98 98
0.6 86 87 82
0.4 50 43 41

SN (1.2) 1 19

provided that 2 < b < 3. Overall, the sensitivity of the test against wide range of
alternatives is satisfactory.

The proposed data-driven methodology works well and can be used as an omnibus
testing tool against various type alternatives. Other null hypotheses also can be
considered upon checking the distributional assumptions imposed in our paper. More
accurate and reliable conditional distribution testing procedure can substantially
improve the quality of empirical time series modeling and resulting inference, providing
fundamentals to better deal with financial engineering, including risk management,
hedging, option pricing issues, especially in the face of lingering economic instability,
market anomalies like asset bubbles, crashes translating into non-gaussian, heavy-tail
and often skew, asymmetric indices, stocks or commodities returns.

5. Score test of fit in general GARCH(p,q) case

Now, we aim at extension of the previously obtained data-driven score test of fit,
valid for GARCH(1,1) case to the general, finite dimensional GARCH class. This will
provide us with useful, more flexible testing tool within the whole GARCH family, but
at the price of some more complex derivations. Specifically, the technical lemmas stated
in [7] and [15] carry over to the present situation under appropriate reformulations
handling the higher dimensionality of the problem. Here we provide main outline
of the extension construction, while some minor work might be an object of future
research.
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According to the pioneer definition in Bollerslev (1986), the class of symmetric

GARCH(p,q) models allows q-step backward dependency upon squared series values,
as well as p-step backward dependency upon its past conditional variances, namely:

Xt =
√
htεt

ht = ω +
q∑
i=1

αiX
2
t−i +

p∑
j=1

βjht−j
(5.1)

with zero-mean, unit variance white noise {εt}, and ω > 0, αi, βj > 0 but αq, βp > 0.
As we employ the data-driven score test methodology to strictly stationary series

with finite second unconditional moment, let us quote some already known theorems
establishing necessary and sufficient conditions for stationarity. To this end, it is
convenient to express the GARCH(p,q) model as a vector Markov process Zt =
Bt +AtZt–1, where

Bt =
(
ωε2

t , 0, ..., ω, 0, ..., 0
)T ∈ Rp+q, Zt =

(
X2
t , ..., X

2
t−q+1, ht, ..., ht−p+1

)T ∈ Rp+q,

At =



α1ε
2
t ... αqε

2
t β1ε

2
t ... βpε

2
t

1 0 ... 0 0 0 0 ... 0 0
0 1 ... 0 0 0 0 ... 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 ... 1 0 0 0 ... 0 0
α1 ... αq β1 ... βp
0 0 ... 0 0 1 0 ... 0 0
0 0 ... 0 0 0 1 ... 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 ... 0 0 0 0 ... 1 0


(5.2)

Thus At is a square, sparse (p+ q)× (p+ q) matrix with stochastic first row. Now,
successively iterating the formula for Zt we get the strictly stationary solution

Zt = Bt +

∞∑
i=1

i−1∏
j=0

At−j

Bt−i (5.3)

provided the almost sure existence of the series. The examination of strict stationarity
can be carried out by means of top Lyapunov exponent γ associated with the sequence
of (strictly stationary and ergodic) matrices At, t ∈ Z. Assuming that E log+||
At|| <∞ holds, (here x+= max{x; 0}) the top Lyapunov exponent can be derived as
[cf. [5]]



142

γ = lim
t→∞

t−1E(log ||AtAt−1...A1||) = a.s. lim
t→∞

t−1 log ||AtAt−1...A1||.

Now we cite two theorems concerning strict and weak (second-order) stationarity
of the GARCH process, which are the objects of our interest.

Theorem 5.1. [Theorem 2.4 in [5]]
Let γ be the top Lyapunov exponent of the sequence {At} given by (5.2). The

process (5.1) admits strictly stationary solution if and only if γ < 0. Such a solution
is also nonanticipative (with respect to process filtration) and ergodic.

Theorem 5.2. [Theorem 2.5 in [5]]
If the process obeying (5.1) is weakly stationary and nonanticipative, then

q∑
i=1

αi +

p∑
j=1

βj < 1. (5.4)

If, conversely, (5.4) holds, the unique strictly stationary solution of (5.1) is weakly
stationary.

Remark. Under the conditions of Theorem 5.1 the unconditional variance of GARCH(p,q)
model equals

EX2
t = v2 =

ω

1−
q∑
i=1

αi −
p∑
j=1

βj

. (5.5)

Moreover, (5.4) implies that γ < 0 as the weakly stationary solution stated in
Theorem 5.1 is also strictly stationary. In the case of GARCH(1,1) checking the
Lyapunov exponent in Theorem 5.1 simplifies greatly: the stationarity condition reads
as γ = E log(αε2

t + β) < 0.
Further vast and versatile theoretical results concerning not only the GARCH

models but their various modifications (xARCH), together with broad empirical
applications, simulations etc. can be found in [5] and in numerous preceding papers.
Now, we proceed to extending our former results derived in [7] and [15] to finite
dimensional ARCH family, and then finally for the whole GARCH(p,q) class.

5.1. ARCH(q) case

For ARCH(q) submodel with no dependence on past conditional variances,
Xt =

√
htεt

ht = ω +
q∑
j=1

αjX
2
t−j

(5.6)
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with ω > 0 and non-negative αj ’s but αq > 0, we shall test the conditional distribution
of Xt by addressing the distribution of innovations εt. With the observed strictly (and
weakly) stationary series (X1,. . . , Xn) obeying (5.6), and its induced joint distribution
taken, as before, conditionally on h1 = h > ω(1−α1− . . .−αq)−1, we aim at deriving
our data-driven test statistic. This can be done by repeating vast part of calculus done
for GARCH(1,1) model along the lines from Section 2 and 3, but there are indeed some
differences in the score vector and the efficient score vector as now the dynamics of ht is
somewhat different than that of GARCH(1,1). The nuisance parameter in our testing
problem becomes now (q+1+m)-dimensional, namely η = (ω, α1, . . . , αq, λ1, . . . , λm)T

∈ Θ× Λ, where the set Θ of ARCH parameter values ensures finite variance of Xt.
In this case, too, we have to derive successively: score vector, efficient score vector

and score-statistic with its data-driven version, culminating in the test statistic with
nuisance parameters, estimated regularly enough. We put into closer inspection
the stages in which derivation differs significantly from the previously considered
GARCH(1,1) model. Such a first notable difference is obviously the conditional
variance ht in (5.6), compare (2.1). Successive iteration in a manner leading to formula
(2.4) does not carry over which is not cumbersome until some details in proofs of the
limit theorem paralleling Theorems 2.2 and 3.1.

The second part of the score vector `(η) given in (2.6), namely `ϑ, changes ac-
cordingly to difference between dynamics of conditional variance in GARCH(1,1) and
ARCH(q) models, compare (2.1) and (5.6). Now, instead of (2.7) we have, conditionally
on h1 for t > 2

Qt = Qt(X1, ..., Xt−1;h, ϑ) = ω +

min{t−1;q}∑
j=1

αjX
2
t−j (5.7)

with Q1 = h, while

∂Qt
∂ϑ

=

[
∂Qt
∂ω

,
∂Qt
∂α1

, ...,
∂Qt
∂αq

]T
=



1
X2
t−1 (I{t > q}+ I{1 < t 6 q})

...
X2
t−j (I{t > q}+ I{j < t 6 q})

...
X2
t−q (I{t > q}+ I{q < t 6 q})



T

(5.8)

except for the first row always being 1, contains X2
t−j ’s or just zeroes depending on

whether t > q or whether t falls between j + 1 and q; j = 1, . . . , q. The formula (2.6)
retains its shape but it must be underlined that `ϑ is now (q + 1) dimensional in
accordance with (5.8), therefore the whole `(η) is now (k + q + 1 +m)-dimensional.
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The present ARCH(q) setup implies generally larger (for q > 2) dimensions of the

block matrices constituting B̃(n)(η) in (2.8). The whole score statistic construction
goes along the same lines as in Section 2. The main proofs, stating the asymptotic
result concerning Wk and WS apply, too, but with one important remark. Namely,
some stages of the proofs derivation call for a bit modified re-writing whenever we
deal with blocks containing the “subvector” `ϑ. Main obstacle to overcome is the
fact that it is by a long chalk harder to descend down to h1 in (5.7), than it was
possible to do outright in (2.7) by successive iterations. Obviously, it is attainable via
vector representation like (5.2), but in that case the crucial Lemmas 5.2 and 5.3 in [7]
providing the limit behaviors of V̄n, EhV̄n, Ūn and EhŪn (cf. (6.1) and (6.2)) under
Ph as n→∞ deal with some other expressions. Specifically, in the present context, it
remains to show that

Eh

{
1

n

n∑
t=2

1

Qt

}
n→∞−→ Ψ0 , Eh

{
1

n

n∑
t=2

X2
t−j
Qt

}
n→∞−→ Ψj (5.9)

under Ph for j = 1, . . . , q. Obviously, the same argument as in Appendix of [7] can be
used here, namely the Birkhoff’s ergodic theorem applied for appropriately defined
L1-integrable functional operating on the sequence of squared innovations {ε2

t} driving
our model (5.6). In the GARCH(1,1) context, conditionally on h1 = h, Qt could be
expressed outright as

Qt = ω

1 +
t−2∑
i=1

i−1∏
j=0

(β + αε̃2
t )

+ h
t−1∏
j=0

(β + αε̃2
t ) (5.10)

which in Section 6 of [7] served to prove the crucial Lemmas 5.2 and 5.3, with the aid
of the fact that Eẽ2

t = E(αε̃2
t +β) < 1. Now, to prove (5.9) for the ARCH(q) case, one

has to express Qt tracking back down to h similarly as in (5.10) but taking the model
difference into account. The analogue of (5.10) in this context will contain cumulative
products of variables being now ẽ2

t,j = αj ε̃
2
t−j , with Eẽ2

t,j < 1 for j = 1, . . . , q and
any t. Formal proof of (5.9) calls for readjustment in calculus and is the object of
current research. Thank to the general properties of ARCH model resulting from our
assumptions, the validity of (5.9) can be ascertained with next to zero risk of failure.
This will imply the validity of the whole Section 4, as the martingale-difference-array
structure of the efficient score vector `∗(η) in (2.9) remains intact and the Kundu et
al. [9] limit theorem applies accordingly.

Repeating the proof of Theorem 3.1 for the data-driven score statistic with QMLE
ϑ̂ of the ARCH nuisance parameter, and the estimator λ̂ as before follows directly.
Obviously, detailed estimations and derivations in the auxiliary lemmas in Section 7
of [15] will change accordingly, but with no detriment to the validity of the main limit
theorem.
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5.2.GARCH(p,q) case

For the whole GARCH(p,q) model (5.1) with r = max{p, q} > 2 we obviously have

ht = ω +
r∑
j=1

(αjε
2
t−j + βj)ht−j , (5.11)

but successive iteration in (5.11) for each of ht−j down to h1 and conditionally on
h1 = h exceeding the right-hand side of (5.5) will not yield any constructive form of Qt
from our test derivation standpoint. Indeed, the products of expressions (αjε

2
t−j + βj)

will proliferate so amply that the derivation of the score vector `(η) defined in (2.5),
(2.6) in the closed form is unattainable due to the cumbersome derivative ∂Qt

∂ϑ in
(2.7). The same remark applies to the block covariance matrix B̃(n)(η) in (2.8) and
the efficient score vector `∗(η) in (2.9), due to the indisposable component `ϑ. The
technically intricate and computationally hardly tractable matrix representation (5.2),
using higher-order Kronecker products, does not facilitate the task, either.

However, we can propose a circumvention of these major technical obstacles,
transforming the GARCH(p, q) model into the reparametrized ARCH(∞) model, then
consequently truncating it at some fixed lag, say Q. This comes at a minor expense of
disposing the exponentially vanishing process history tracking back beyond (t−Q)
time scale, but allows us to employ the results from the above subsection, dealing
again with ARCH(Q) model. Thus our data-driven score test of fit (asymptotically)
encompasses the whole GARCH(p,q) family. Such a shortcut comes with no harm
to practical applications, since it is common to consider lower or moderate model
sizes, so that the model can successfully serve for applicational purposes imposed by
financial time modeling objectives.

Formalizing our concept, let us quote a theorem providing the needed transfor-
mation. Such an “inversion” of GARCH model to ARCH(∞) goes in a similar spirit
to the classical case of causal and invertible (linear) ARMA models. The result has
already been stated in the pioneer paper of Bollerslev [3], pp. 309-310, refined later
on by other authors.

Theorem 5.3. For a strictly stationary GARCH(p,q) model {Xt} following (5.1),

with Eε2
t = σ2 <∞ and σ2

q∑
i=1

αi +
p∑
j=1

βj < 1, there exists a non-negative, summable

sequence {ψj}j>0 such that

ht = ψ0 +
∞∑
j=1

ψjX
2
t−j (5.12)

with expansion coefficients given as
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ψ0 = ω

1−
p∑

r=1
βr

,

∞∑
j=1

ψjz
j =

q∑
i=1

αiz
i

1−
p∑

r=1
βrzr

, j > 1, z ∈ C; | z| < 1
(5.13)

With this result, having the GARCH(p,q) model with σ2 = 1 and original parame-
ters ω, αi, βj we can reparametrize it into ARCH(∞), solving the system (5.13) to find
the new coefficients ψ0, ψ1,. . . . Next, the resulting conditional variance ht in (5.12)
can be truncated to ARCH(Q) representation with Q picked so that an arbitrarily
chosen accuracy measured e.g. by L1 norm can be obtained. Define

h
(Q)
t = ψ0 +

Q∑
j=1

ψjX
2
t−j (5.14)

and for any fixed accuracy δ > 0 choose Q so that (cf. (5.5))

E
{
ht − h(Q)

t

}
=

∞∑
r=Q+1

ψrEX
2
t−r = ν2

∞∑
r=Q+1

ψr < δ. (5.15)

Finally, we can employ the former derivation of our data-driven score test of fit for
the ARCH(Q) model parallel to (5.1):

Xt =

√
h

(Q)
t εt

h
(Q)
t = ψ0 +

Q∑
i=1

ψiX
2
t−i

(5.16)

where after reparametrization now ϑ = [ψ0, ψ1, ..., ψQ]T . Thus, our data-driven score
test of fit, designed primarily to verify the hypothetical conditional distribution in the
GARCH(1,1) model has been ”asymptotically” extended over the whole GARCH(p,q)
class of stationary time series, and its performance also can be checked by means of
computer simulations.

6.Appendix

We provide a brief proof of Theorem 2.2, in which Theorem 1.3 from Kundu et al. [9]
for martingale-difference arrays is very helpful. The present arguments mimic the ones
used in the proof of Theorem 3.6 in [7]. Reasoning goes along the lines of Subsection
6.2 in [15].

Let us first examine limiting behaviour of the matrices B̃(n)
12 (η) and B̃(n)

22 (η) appear-
ing in (2.8), (2.9), (2.10) – originally in (6.7) and (6.12) in [15]. For t > 2 introduce
random matrices
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Vt =
1

Qt

∂Qt
∂ϑ

, Ut = VtV
T
t , (6.1)

for notational convenience, set V1 = 0, U1 = 0 and define two corresponding random
averages

V̄n =
1

n

n∑
t=1

Vt, Ūn =
1

n

n∑
t=1

Ut. (6.2)

By mutual independence of ε̃t’s under Ph, straightforward calculation gives

n−1Eh`τ `
T
ϑ = −∆1(EhV̄

T
n )/2, (6.3)

where

∆1 = ∆1(λ) = EΦ(F (ε, λ))ς(ε, λ) (6.4)

with ς defined in (A2). Similarly we get

n−1Eh`τ `
T
λ = EΦ(F (ε, λ))

∂ log f(ε, λ)

∂λT
= ∆2(λ) = ∆2. (6.5)

Now, (6.3) together with (6.5) yield the following block representation of B̃(n)
12 (η):

B̃
(n)
12 (η) = [−∆1(EhV̄

T
n )/2 ∆2]. (6.6)

By similar derivation we obtain

n−1Eh`ϑ`
T
ϑ = Jς(EhŪn)/4 (6.7)

with Jς = Jς(λ) = Eς2(ε, λ). We further have

n−1Eh`ϑ`
T
λ = −(EhV̄n)∆T

3 /2, (6.8)

∆3 = ∆3(λ) = E

{
ς(ε, λ)

∂ log f(ε, λ)

∂λ

}
. (6.9)

Finally, n−1Eh`λ`
T
λ = I(λ) - the Fisher information matrix defined in (A1). This

and (6.7)-(6.9) lead to the following block form of B̃(n)
22 (η)

B̃
(n)
22 (η) =

[
Jς(EhŪn)/4 −(EhV̄n)∆T

3 /2
−∆3(EhV̄

T
n )/2 I(λ)

]
. (6.10)

By Lemma 5.2 and 5.3 from [7] it follows that

V̄n
Ph−→ V∞, EhV̄n → V∞,
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Ūn
Ph−→ U∞, EhŪn → U∞ (6.11)

as n → ∞, where V∞ and U∞ are deterministic matrices given explicitly by (A.12)
and (A.13) in Appendix of [7]. Hence

B̃
(n)
12 (η) −→

n→∞
B̃∞12(η) = [ −∆1V

T
∞/2 ∆2 ] (6.12)

and

B̃
(n)
22 (η) −→

n→∞
B̃∞22(η) =

[
JςU∞/4 −V∞∆T

3 /2
−∆3V

T
∞/2 I(λ)

]
. (6.13)

For further convenience, let us introduce the abbreviated notation for the projection
matrix in (2.9),

Ã = Ã(n)(η) = B̃
(n)
12 (η)[B̃

(n)
22 (η)]−1. (6.14)

Thus, (6.12) and (6.13) directly imply that for n→∞
Ã(n)(η)→ Ã∞(η) = B̃∞12(η)[B̃∞22(η)]−1and M̃ (n)(η)→ M̃∞(η) =
Ik − B̃∞12(η)[B̃∞22(η)]−1B̃∞21(η).
Now, we can view `∗(η) as a sum composed of martingale difference array summands.

To this end, define for t > 1 σ-fields σt = σ(X1, ..., Xt) and

Xtn = M̃−1/2 1√
n

(
Φ(F (ε̃t, λ))− Ã

[
−ς(ε̃t, λ)Vt/2
∂ log f(ε̃t,λ)

∂λ

])
, (6.15)

with M̃ given by (2.10).
It is straightforward to show that the sequence {X1n, ..., Xnn} is, under Ph, a

martingale difference array adapted to {σ1, ..., σn} (cf. Proposition 3.5 in [7]) and
n∑
t=1

Xtn = M̃−1/2`∗(η). This observation allows us to apply Theorem 1.3 from [9].

Since (A4) is satisfied, checking the Lindeberg-type condition (ii) of that theorem
can be replaced with the following stronger, Lyapunov-type one

n∑
t=1

Eh{||Xtn||3|σt−1}
Ph−→ 0 as n→∞.

However, this is carried out along exactly the same lines as in the proof of Theorem
3.6 in [7], therefore we omit the details citing just this reference.

Turning now to condition (i) in the aforementioned theorem of Kundu et al. it
suffices to show that

n∑
t=1

Eh{XtnX
T
tn|σt−1}

Ph−→ Ik (6.16)
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in Rk as n→∞, with Xtn as in (6.15). According to the form of Xtn the left-hand
side of (6.16) can be decomposed into S1n + S2n + S3n. By Proposition 3.1 in [15] and
orthonormality of Φ,

S1n = M̃−1/2EΦ(F (ε, λ))ΦT (F (ε, λ))M̃−1/2 = M̃−1 → (M̃∞)−1as n→∞. (6.17)

Recalling that ε̃t is independent of σt−1 and Vt is σt−1−measurable, from (6.2),
(6.4) and (6.5) we immediately get

S2n = M̃−1/2{[ ∆1V̄
T
n /2 −∆2 ]ÃT + Ã[ V̄n∆T

1 /2 −∆T
2 ]T }M̃−1/2 (6.18)

and consequently, by (6.11)-(6.14) and the forms of Ã∞(η) and M̃∞(η),

S2n
Ph−→ −2(M̃∞)−1/2B̃∞12(B̃∞22)−1B̃∞21(M̃∞)−1/2 = 2Ik − 2(M̃∞)−1 as n→∞.

(6.19)
Exploiting similar arguments and from (6.2), (6.7)-(6.14) we obtain

S3n = M̃−1/2Ã

[
Jς Ūn/4 −V̄n∆T

3 /2
−∆3V̄

T
n /2 I(λ)

]
ÃT M̃−1/2 Ph−→ (M̃∞)−1 − Ik as n→∞.

(6.20)
Finally, we conclude (6.16) from (6.17)-(6.20), which completes the proof. Q.E.D.

7. Final remarks and acknowledgements

The paper essentially solves the problem of testing the conditional distribution in the
framework of general (symmetric) GARCH(p,q) models via the omnibus data-driven
score test of fit methodology. Composite hypothesis case naturally embraces the simple
one by including additional nuisance parameter λ. Obviously, some minor technical
readjustments and restatements of the lemmas and propositions proved in [7] and [15]
are welcome to absolutely fully complete the testing problem, whereas the simulation
study and practical test performance for empirical data could prove the usefulness
of the proposed tool. The possible future computational paper can also contain the
primary model diagnostics, while the implementation of the test statistic itself goes
exactly along the same lines as described and practiced in the above-mentioned former
papers, but with taking into account the presented extension which numerically can
be handled outright. However, these issues fall beyond the scope of this paper, due to
volume constraints, too.

The author would like to thank two referees for their constructive comments and
remarks, improving the clarity and transparency of this paper.
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