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A b s t r a c t

In the article, the means of application of the direct spectral method for the identification of 
the stress cycles for multiaxial stress is discussed. Two cases are analyzed. The first, when 
components of stress tensor are in phase, and the second, when they are shifted in phase. The 
second case is associated with the practical application for the crane wheel. 
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W artykule przedstawiono sposób zastosowania metody spektralnej bezpośredniej do identy-
fikacji cykli naprężeń o charakterze wieloosiowym. Rozważane są dwa przypadki. Pierwszy, 
gdy składowe tensora naprężeń są zgodne w fazie i drugi, gdy są one przesunięte w fazie. Dru-
gi przypadek jest związany z praktycznym zastosowaniem dla koła suwnicy. 
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1. Introduction

In the fatigue analyses of engineering structures, it sometimes happens that vibrations 
of elements have the bi-modal type. Such types have been observed for one of the considered 
magnetic focusing machine for particles in CERN at the beginning of the 21st century or 
vibrations of vehicle suspension system analyzed by T.-T.Fu and D.Cebon [6]. Methods of fatigue 
analysis of the stress history of irregular (non-harmonic) type in time domain, which are known 
in literature, are in practice associated with one of the cycle counting methods (including the 
“rain-flow” attempt) [5, 10, 15, 16] or the spectral methods [23–25]. Due to the existence of the 
two harmonic components with different frequencies in the bi-modal type stress histories, there 
are limited numbers of articles in which the methods dedicated for this case are proposed [2, 3, 6]. 

Due to the geometry of the structure, during its vibrations, the generated deformations 
are reason of the case of multiaxial stress. Fatigue analysis of such cases have been 
considered for several years with the application of different theories. The authors present 
only the part of the important articles in this topic, not thinking about doing a review of 
the completely state-of the art. Reviews and comparisons of different multiaxial fatigue 
theories can be found e.g. in [7, 9, 26, 28, 32, 33]. The commonly used criterions are based 
on: empirical equivalent stress approach – Pollard [8], stress invariants – Sines [31], average 
stress approach – Papadopoulos et.al. [26], critical plane methods – Carpinteri and Spagnoli 
[4], Dang Van [1, 15], Matake [21], McDiarmid [22], Liu and Mahadevan [17], Papadopoulos 
[27], energy – Łagoda [18]. The simplest way for fatigue analysis of the multiaxial type 
stress history is the determination of the equivalent mean stress, equivalent stress amplitude 
and the equivalent completely reversed stress [1, 5]. In Polish literature, the fatigue analyses 
of the cases of stress multiaxial are discussed e.g. in [16, 18–20, 25, 28, 29, 30].

The authors proposed an original method of the fatigue analysis for the bi-modal stress 
history, based on the idea of reconstruction of the histories in the time domain, called the 
direct spectral method [13, 14]. The preliminary ideas of application of the method for 
multiaxial stress histories were presented in [11, 12]. 

The aim of the paper is to present the possibility of application of the direct spectral 
method for cycle counting of the bi-axial stress in-phase history (simulation) and the 
multiaxial stress history out-of phase associated with the realistic case of the rail wheel. 

2. Basis of the spectral direct method for multiaxial stress

The bi-modal stress history can be theoretically defined in the form:
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where:
Ax,1, Ax,2, Ay,1, Ay,2, Az,1, Az,2, Axy,1, Axy,2, Axz,1, Axz,2, Ayz,1, Ayz,2  – stress amplitudes of the 
harmonic components for the stress tensor components,
w1, w2  –  angular frequencies of the harmonic components, 
jx,1, jx,2, jy,1, jy,2, jz,1, jz,2, jxy,1, jxy,2, jxz,1, jxz,2, jyz,1, jyz,2 – phases of the harmonic 
components for the stress tensor components.

With such a formulation, the component frequencies f1 and f2 and corresponding periods 
T1 and T2 can be obtained using the equations (2) and (3). 
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The basic assumptions and form of the application of the direct spectral method for bi-
modal waveforms for multiaxial stress can be described as follows:
 – Based on the values of periods T1 and T2, the so-called block of stress is determined, of 

which length (time range) TB depends on the ratio T1/T2. It is the smallest integer number 
of period T1, for which the ratio TB/T2 is an integer. In practical applications, this condition 
is satisfied approximately, hence assuming the value of TB, is an arbitrary decision. It 
depends on the precision of determination of T1 and T2, usually by the identification of 
frequencies f1 and f2.

 – The primary stress cycle – only one present within the block – has the stress amplitude 
equal to Ak,1 + Ak,2 for each stress component (where k = x, y, z, xy, xz, yz), and if not stated 
otherwise (e.g. constant value present in FFT function of stress’ signals, static assembly 
stress or thermal stress), the average stress value is equal to zero. This assumption is the 
basis for calculating the equivalent stress amplitude e.g. by the application of the Huber-
Mises-Hencky (von Mises) formula (5) [3] and then the equivalent complety reversed 
stress, e.g. Morrow’s type (6) [5].

 – The amplitudes of secondary stress cycles vary depending on the value Ak,2 and the 
leading waveform of frequency f1 for each component of stress tensor. Some of the 
identified cycles are not taken into account, when they do not have the full stress-cycle 
form. For the slow-changing waveforms of frequency f1 when comparing to frequency 
f2, the amplitudes of the secondary cycles are approximately equal to Ak,2. The acquired 
values are the basis to obtain the equivalent stross amplitude, e.g. by the application of 
the Huber-Mises-Hencky (von Mises) formula (5) [3], equivalent mean stress value, e.g. 
in the form of Sines stress (4) [3] and then to obtain the equivalent a completely reversed 
stress e.g. of Morrow type (6) [3]. 

 – The obtained data, which describes the identified stress cycles for a given waveform, 
are the basis for fatigue analysis using the chosen stress cumulative hypothesis, 
e.g. Palmgreen-Miner’s (7) [5]. 
In the analysis, the following parameters are used: equivalent mean stress value (Sines 

stress) (4), equivalent stress amplitude (according to the von Mises equivalent stress) (5), 
equivalent completely reversed stress (Morrow stress) (6).



56

 σ σ σ σm m m m= + +1 2 3, , ,  (4)

 σ σ σ σ σ σ σ τa x a y a x a z a y a z a xy a= −  + −  + −  + +
1
2

6
2 2 2 2

, , , , , , , ττ τxz a yz a, ,
2 2+   (5)

 σ

σ
σ
σ

σ

σ σ

EQV

for

for

= −
>

≤










a

m

u

m

a m

1
0

0

 (6)

 B
N
N

i

f i
i

N

⋅ ( ) =
=
∑ 1

1
 (7)

 T B TB= ⋅  (8)
where:

σm   –  equivalent mean stress,
σ σ σ1 2 3, , ,, ,m m m   –  main values of mean stress,
σa   –  equivalent stress amplitude,
σ σ σ τ τ τx a y a z a xy a xz a yz a, , , , , ,, , , , , – amplitude stress components,
σar –  equivalent completely reversed stress,
σu –  ultimate stress,
N  –  total number of cycles identified in a block,
Ni  –  number of cycles with amplitude σi identified in a block, 
(Nf)i  –  number of cycles to damage for stress with amplitude σi (S-N curve), 
B  –  number of blocks,
TB  –  time length of block,
T  –  estimated lifetime.

3. Examples of cycle identification by the direct spectral method

3.1. Simulation of the bi-axial in-phase stress history 

Let us consider the case when the bi-axial stress’ components sx(t) and txy(t) are of the 
bi-modal type (9). The time histories are shown in Fig. 1. There are two active frequencies f1 
= 10 Hz and f2 = 50 Hz. Hence the block length is equal to TB = T1 = 0.1 s. The amplitudes of 
normal stress are equal to Ax,1 = 310 MPa and Ax,2 = 155 MPa. The amplitudes of shear stress 
are 10% of the suitable normal ones, hence Axy,1 = 31 MPa and Axy,2 = 15.5 MPa. It is assumed 
that material has ultimate stress equal to su=625 MPa. The identified equivalent completely 
reversed stress cycles after application of the spectral direct method are given in Table 1. 
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Fig. 1. Time histories of normal stress sx(t) – left and shear stress txy(t) – right

T a b l e  1

Identified cycles for one block of the analyzed bi-axial and bi-modal stress histories

Number
of

cycles

Normal stress Shear stress
Equivalent

mean
stress

Equivalent
stress

amplitude

Equivalent
completely
reversed
uniaxial

stress
Mean Amplitude Mean Amplitude

1 0 465 0 46.5 0 471.9 471.9

1 176.5 85.3 17.7 8.5 176.5 86.6 120.7

1 278.1 186.9 27.8 18.7 278.1 189.7 341.7

1 –176.5 85.3 –17.7 8.5 –176.5 86.6 86.6

1 –278.1 186.9 –27.8 18.7 –278.1 189.7 189.7

3.2. Analysis of the multiaxial out-of-phase stress history 

After P. Romanowicz and B. Szybiński [30], let us consider the interesting case when 
stress existing in a crane wheel, which is in contact with a rail, is of the multiaxial type, and 
the stress components are shifted in phase during contact. The shear stress tyz(t) are shifted 
in phase in comparison with the normal stress components sx(t), sy(t) and sz(t) – see Fig. 2. 
The same effect can be observed for the ball bearings [29]. The direct spectral method can be 
applied for finding the equivalent completely reversed stress for the one stress block. By one 
stress block, the variation of stresses during one rotation of wheel is understood (Fig. 2). For 
one stress block, two cycles are identified:
 – for maximal values of normal stresses (x/a = 0) – zero-to-tension;
 – for maximal values of shear stresses (x/a = 1) – completely reversed.

The detailed values of stress components used for the identification of completely 
reversed stress by the direct spectral method are given in Table 2.
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Fig. 2. Subsurface stress distribution on radius of Palmgren-Lundberg points for crane wheel;  
a – semi-axis of contact ellipse [30]

T a b l e  2

Identified cycles for a crane wheel

Number
of

cycles

Normal stress [MPa] Shear stress [MPa]
Equivalent

mean
stress
[MPa]

Equivalent
stress

amplitude
[MPa]

Equivalent
completely
reversed

stress
[MPa]

Comp. Mean Ampl. Comp. Mean Ampl.

1
sx
sy
sz

–360

–133

–125

360

133

125

txy
tyz
txz

0

0
 0

0

0
 0

–618 231 231

1
sx
sy
sz

–579

–235

–344

0

0

0

txy
tyz
txz

0

0
 0

0

376
0

–1158 651 651

The application of the other theories for the determination of the equivalent completely 
reversed stress leads to the values of equivalent completely reversed shear stress given in 
Tab. 3. After application of the von Mises relationship, the equivalent completely reversed 
normal stress given in Tab. 3 is estimated. The values estimated by the proposed direct 
spectral method are not far from those obtained by Papadopoulos 2, Crossland and energy 
methods, assuming that the ultimate stress for the material is equal to su = 1250 MPa, and 
elasticity limit is equal to Re = 1050 MPa. 
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T a b l e  3

Comparison of equivalent completely reversed stress

Theory

Equivalent
completely reversed

shear stress
[MPa]

Equivalent
completely reversed

(normal) stress
[MPa]

Papadopoulos 1 [30] 471 816

Papadopoulos 2 [30] 373 646

Crossland [30] 386 669

energy [30] 376 651

direct spectral – 651/231

 4. Conclusions

Fatigue analysis of engineering problems, when stresses are of the multiaxial type, is not 
easy and there is no representative fatigue hypothesis to estimate it. Moreover, the results of 
analyses are different for the application some of theories. 

The cases that were analyzed in this article make it possible to formulate the following 
conclusions:
 – The direct spectral method seems to be an alternative approach for counting the stress 

cycles of the multiaxial type. 
 – The direct spectral method can be formulated for the cases when components of the 

stresses are in-phase or out-of phase. 
 – The natural applications of the direct spectral method in fatigue analysis are the cases of 

the single-modal (harmonic) and the bi-modal stress process in the frequency domain.
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