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Abstract
The objective of the paper was to conduct dynamic measurements of free-field vibrations in three profiles 
and establish decay relations of propagating vibrations. The sources of vibrations were passages of the 
Pendolino train with dedicated speeds from 40 to 293 km/h. In each profile, soil properties tests were carried 
out. Based on the data for a few selected speeds of the Pendolino train’s passages, the Vibration Reduction 
Coefficients (VRC) were determined at selected points. The paper is also focused on the analysis of vibrations 
of the selected one-storey masonry residential building located in the vicinity of one of the profiles and 
their evaluation of the harmfulness on the building structure using standard scales of dynamic influence.
Keywords: free-field vibrations, dynamic investigation, speed of passage of a train, building vibrations, harmfulness of 
vibrations

Streszczenie
W pracy przedstawiono wyniki analiz pomiarów drgań gruntu w trzech profilach oraz podano zależności 
tłumienia propagujących się w gruncie drgań, których źródłem były przejazdy pociągu Pendolino 
z  dedykowanymi prędkościami 40–293 km/h. W każdym profilu określono właściwości gruntu. Na 
podstawie danych pomiarowych wyznaczono współczynniki redukcji drgań w wybranych punktach. W pracy 
przedstawiono także wyniki analiz pomierzonych drgań murowego, jednopiętrowego budynku mieszkalnego 
zlokalizowanego w sąsiedztwie jednego z profili pomiarowych prowadzonych pod kątem oceny ich 
szkodliwości na konstrukcję budynku. W ocenach wykorzystano normowe Skale Wpływów Dynamicznych.
Słowa kluczowe: wstrząsy górnicze, przekazywanie drgań z gruntu na fundament budynku, transmisja spektrów odpowiedzi
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1.  Introduction

In countries where high-speed lines operate, free-field vibrations generated by passing 
trains at speeds of 250 km/h and more are of particular concern due to the impact of 
vibrations on neighbouring buildings and people inside them. Confirmation of the need for 
research in this area can be found in Council Directive 96/48/EC of 23 July 1996 concerning 
the interoperability of the trans-European high-speed rail system. Annex III of the Directive, 
which contains the essential requirements given in section 2.6.2, concerning the protection 
of the environment, mentions the following: Operation of the trans-European high-speed rail 
system must not cause a level of ground vibrations, which is unacceptable for the immediate 
environment in the vicinity of the infrastructure and in a  normal state of maintenance. 
Results of studies conducted in different countries published in (e.g. [1–3]) are not always 
comparable because of differences in the structures of trains and surface rail, the differences 
in soil conditions, and finally due to local differences of the buildings’ construction receiving 
the vibration. Therefore, also in Poland, after purchasing the Pendolino trains, it was decided 
that test drives need to be performed within the test framework of vibration generated by the 
passing train (Fig. 1). The study refers to a portion of the vibration measurements made at the 
turn of November and December 2013 by accredited Laboratory of Distortion and Vibration 
Research within the Structural Mechanics Institute at the Cracow University of Technology.

2.  Research of propagation of free-field vibrations

One of the tests was to study the propagation of free-field vibration during the trial runs of the 
Pendolino trains on the Central Railway route (CMK) connecting the Upper Silesian Industrial 
Region with the Warsaw agglomeration, near the town of Przyłęk located between Psary and 
Góra Włodowska in three selected sections of measurement. The source of vibration excitation 
was the passages of the Pendolino train with dedicated speeds. During the tests, acceleration of 
the horizontal components (x, y) and the vertical component (z) of free-field vibrations were 
measured. The direction of the x is perpendicular to the railway track. Soil conditions in selected 
sections of the measurement were recognised before measuring free-field vibrations. Soil conditions 
are essential for the propagation of communication vibrations. Such vibrations depend on their 

Fig. 1.	 The Pendolino train on the track at the site of the testing research
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source and the nature of the medium transferring them to the surroundings. In each measuring 
section, soil properties were investigated at two locations (at the foot of the railway embankment 
and at the distance of 20 m) located adjacent to the points of measurement of free-field vibrations.

In the first section, free-field vibrations caused by 20 passages of the Pendolino running 
along the railway track A at the dedicated speeds of 40–270 km/h were recorded. Figure 2a 
and 2b show the locations of measuring points and sensors in the first monitoring section 

Fig. 2.	 Distribution of points and sensors in the first measuring profile (kilometre 177–10) on the 
embankment and its vicinity

a)

b)
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(kilometre 177-10) on the embankment and its vicinity. The measurement profile in this 
location is situated about 5.5 m below the railway track. In this section, the railway line runs 
along the embankment by extensive morphological reduction. In this section, the ground is 
layered. In the first ground profile under a thin layer of humus land is natural coarse, non-
cohesive sands, sandy silt changing with depth to sands with gravels. In some locations, 
single dusty inter-beddings were also drilled. The water level has been drilled to at a depth 
of 1.08 m below the ground surface. Medium sand layer with a dash of coarse and fine sand 
occurs at about 2.7 m below the surface in the medium-compacted state. In this profile there, 
is a clear vadose zone with a thickness of approx. 0.9–1.0 m demarcated by the underground 
water level; the saturation zone is located 1.4 m below the surface.

Fig. 3.	 Distribution of points and sensors in the second measuring profile (kilometre 180-9) on the 
embankment and its vicinity

a)

b)
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In the second section, free-field vibrations, due to 21 passages of the Pendolino running 
along the railway track A at the dedicated speeds of 40–293 km/h, were recorded. Figure 3a 
and 3b show the distribution of points and gauges in the measuring section (kilometre 180-9) 
on the embankment and its vicinity, respectively. Geological studies indicate that this section has 
a simple geological structure; the substrate is layered with a thin layer of humus and natural soils 
underneath. The profile is dominated by lithographic layers consisting of sandy, coarse-grained 
(non-cohesive) sands, medium sand with an additive of fine and coarse sand. This profile has 
also inter-beddings of fine-grained soils (cohesive), dust and sandy dust. Groundwater has not 
been drilled in this profile. Therefore, the profile is in the vadose zone.

Fig. 4.	 Distribution of points and sensors in the second measuring profile (kilometre 180-9) on the 
embankment and its vicinity

a)

b)
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In the last, third section, free-field vibrations as well as building vibrations indicated 
by 27 passages of the Pendolino train running along track A, with dedicated speeds of 
40–250 km/h, were recorded. Figure 4a and 4b show the distribution of measuring points, 
accelerometers in this cross section (kilometre 177-6) and on selected residential building. 
It should be noted that, during tests along the third measurement section, track A was farther 
away in relation to the adopted cross-section. On the basis of geological studies, it was found 
that the substrate is layered. The soil profile under a thin layer of humus (approx. 0,1 m) in 
the track area consists of a thin layer of anthropogenic soil – not buildable with a thickness 
of approx. 0.70 m. Farther from the track, there are natural soils. A slab of soft rock, which 
consists of chalk marl, was drilled at a depth of about 0.8 meters below ground level. The 
maximum values of the horizontal components x, y, and the vertical component of the 
vibration acceleration caused by passage of the Pendolino train for allocated speeds in the 
analysed measurement sections are shown as an example in Tables 1, 2 and 3. An analysis 
of all measurement data showed that the highest values of the vibration acceleration of 
horizontal vibration components are present in the x-direction, i.e. perpendicular to the 
direction of the passages of the trains.

Table 1.	 Summary of maximum acceleration values of the horizontal components 
x and y and the vertical component z, cm/s2 in the profile No. 1 for selected 
measuring points

Speed,
km/h

Point No. 1 Point No. 3 Point No. 5 Point No. 7

P-
04x

P-
05y

P-
06z

P-
10x

P-
11y

P-
12z

P-
16x

P-
17y

P-
18z

P-
22x

P-
23y

P-
24z

40 3.16 1.95 1.97 1.46 1.53 0.64 1.60 1.26 0.72 0.73 0.68 0.27

80 6.20 3.25 3.59 2.76 3.06 1.46 2.41 2.14 0.99 1.60 1.20 0.57

120 7.38 9.35 6.25 5.51 5.19 2.52 4.36 4.70 1.50 2.71 3.37 1.14

135 13.55 9.27 7.43 6.81 6.90 3.12 6.20 8.16 2.23 3.69 3.32 1.23

160 11.57 10.84 7.93 7.12 7.03 3.71 7.19 5.48 2.81 4.16 3.79 2.03

180 19.13 9.10 10.36 9.91 9.41 3.91 6.08 7.48 2.57 4.09 4.54 2.27

200 18.15 13.40 11.60 7.42 9.34 4.97 7.76 8.27 3.95 5.63 4.47 1.93

220 13.99 11.50 10.35 9.31 9.76 5.91 9.35 9.09 3.76 4.33 5.13 2.66

240 16.50 27.48 14.70 10.71 8.60 5.93 7.04 7.23 5.78 5.43 5.39 2.78

250 17.52 16.96 11.35 9.49 8.66 5.77 7.75 7.59 4.99 5.74 4.30 2.22

270 19.88 20.32 15.03 10.99 7.58 6.62 10.04 8.37 4.47 6.75 5.14 3.58
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A comparison of the maximum value of the horizontal components x (axmax) and y (aymax) 
listed in Tables 1–3 showed that in the overwhelming number of cases axmax values were 
greater than the aymax values. In turn, the maximum values of the vertical component (azmax) 
were generally smaller than the maximum values of the horizontal component axmax. Based on 
the data from Tables 1–3, for some chosen speeds of the Pendolino train, passages vibration 
reduction coefficients were determined at selected points (20 m and 60 m from the bottom 
of the escarpment). The values of the vibration reduction coefficients for each component of 
the vibration were calculated as the ratio of the maximum value of the measured vibration 
acceleration at the starting point profile to the maximum value of the measured vibration 
acceleration at a  given distance. Table 4  and Table  5  summarise the calculated values 
for vibration reduction coefficients for the three components of vibration acceleration 
respectively 20 and 60 m from the bottom of the escarpment.

Table 2.	 Summary of maximum acceleration values of the horizontal components 
x and y and the vertical component z, cm/s2 in the profile No. 2 for selected 
measuring points 

Speed,
km/h

Point No. 1 Point No. 3 Point No. 5 Point No. 7

P-
04x

P-
05y

P-
06z

P-
10x

P-
11y

P-
12z

P-
16x

P-
17y

P-
18z

P-
22x

P-
23y

P-
24z

40 60.04 27.95 25.36 2.96 2.78 2.37 3.73 3.22 3.09 0.35 0.35 0.50

80 50.41 25.98 23.49 3.72 2.01 2.23 1.44 1.57 0.98 0.66 0.43 0.61

120 81.11 33.80 31.37 4.92 3.53 4.13 2.24 2.74 1.62 0.99 0.90 1.14

160 68.88 59.59 48.05 10.74 6.62 5.80 5.27 5.74 2.74 1.34 0.92 1.28

180 49.76 40.61 29.93 6.09 4.01 3.96 2.44 2.38 1.63 0.96 0.61 0.88

200 186.10 134.80 57.94 9.89 5.45 7.13 7.27 8.11 4.62 1.72 1.52 2.03

250 107.44 98.55 75.26 18.92 12.25 7.31 9.29 5.42 5.09 2.36 2.03 2.22

260 195.98 128.91 62.79 14.58 7.46 8.38 8.17 6.42 4.99 2.36 2.36 2.69

270 179.32 123.43 79.55 22.50 13.54 9.02 8.16 7.45 6.74 3.23 2.45 3.12

275 236.96 117.71 88.30 12.42 9.50 8.74 7.15 7.40 6.29 3.41 2.39 4.20

280 172.81 119.20 69.20 21.93 16.58 8.38 8.82 7.69 6.68 3.15 2.13 2.87

293 241.50 114.38 87.39 13.24 7.49 9.01 6.93 6.95 6.19 3.67 2.23 2.88
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Table 3.	 Summary of maximum acceleration values of the horizontal components 
x and y and the vertical component z, cm/s2 in the profile No. 3 for selected 
measuring points

Speed,
km/h

Point No. 1 Point No. 3 Point No. 5 Point No. 7

P-
04x

P-
05y

P-
06z

P- 
10x

P- 
11y

P-
12z

P- 
16x

P- 
17y

P- 
18z

P- 
22x

P- 
23y

P- 
24z

40 46.67 29.73 14.36 0.87 0.56 0.58 0.33 0.41 0.25 0.43 0.49 0.20

80 84.07 39.02 16.70 1.35 1.02 1.78 1.13 1.16 0.64 0.72 0.63 0.36

120 153.07 56.55 33.33 1.79 1.66 1.96 0.77 0.70 0.70 0.96 1.06 0.51

160 262.22 137.42 43.22 2.47 2.66 1.76 1.30 1.48 1.23 1.62 1.83 0.94

180 177.03 134.06 36.08 2.90 2.42 2.03 1.35 1.59 1.92 2.84 2.26 1.01

200 187.08 86.43 39.99 3.56 5.24 2.77 1.39 2.81 1.97 2.68 2.36 1.14

230 235.29 108.71 54.46 5.33 4.19 3.37 1.85 3.26 2.10 2.83 2.79 1.71

250 182.39 113.26 52.58 25.09 25.90 24.14 1.85 3.25 2.15 3.28 2.76 1.73

Table 4.	 The values of the vibration reduction coefficient 20 meters from the starting 
point of the measuring profile 

Speed,
km/h

Profile No. 1 Profile No. 2 Profile No. 3

x y z x y z x y z

160 1.6 1.5 2.1 6.4 9.0 8.3 106.2 51.6 24.6

250 1.8 2.0 2.0 5.7 8.0 10.3 7.3 4.4 2.2

270 1.8 2.7 2.3 8.0 9.0 8.8 - - -

293 - - - 18.2 15.3 9.7 - - -

Table 5.	 The values of the vibration reduction coefficient 60 meters from the starting 
point of the measuring profile

Speed,
km/h

Profile No. 1 Profile No. 2 Profile No. 3

x y z x y z x y z

160 2.8 2.9 3.9 51.4 64.2 37.5 161.9 75.1 46.0

250 3.1 3.9 5.1 45.5 48.5 33.9 55.6 41.0 30.4

270 2.9 4.0 4.2 55.5 50.4 25.5 - - -

293 - - - 65.8 51.3 22.5 - - -
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The analysis of the data given in Tables 1–3 and values of reduction coefficients of 
maximum components of vibration acceleration (see Tables 4 and 5) revealed a decrease 
of the maximum values of axmax, aymax and azmax with the distance. A significant effect of soil 
conditions on the values of the vibration reduction coefficients was also noted. Considerably 
lower values of vibration reduction coefficient were obtained in case of all three considered 
directions at hydrated profile No. 1. For example Figure 5, 6 and 7 show the change of the 
maximum value of the horizontal component x ground vibrations, respectively in the profile 
1, 2 and 3 for some passages of the Pendolino train with dedicated speeds.

Figures 5–7 also show the exponential dependences of the maximum value of the 
horizontal component x  of ground acceleration versus the speed of the Pendolino train, 
trend lines and correlation coefficients R2. An analysis of the dependences presented in 
Figures 5–7 showed that the maximum values of the horizontal component (x) of ground 
vibrations across all measurement profiles decrease with increasing distance from the source 
of vibration. Similar results were obtained for the horizontal component (y) and the vertical 
component (z) of vibration acceleration. For example, correlation coefficient R2 for the 

Fig. 5.	 The maximum value of the horizontal component (x) of free-field acceleration versus the change 
of distance – profile No. 1, the speed of a train: a) v = 120 km/h, b) v = 160 km/h, c) v = 180 km/h, 
d) v = 200 km/h, e) v = 250 km/h, f) v = 270 km/h

a) b)

c) d)

e) f)
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exponential function between the maximum values of ground acceleration vibrations and 
distances from the vibration source in profile No. 2 were between 0.95–0.99. Slightly smaller 
values of R2 appeared in the measuring profile No. 3 (0.84–0.895), which may be the result of 
the profile shape (occurrence of a drainage ditch). In profile No. 1, passages of the Pendolino 
train at speeds of 120, 250 and 270 km/h caused low values of coefficient R2, respectively 
0.21, 0.44 and 0.35 – cf. Figure 5a, e and f. It can be associated with retention of the ground 
water at a very low level and rehydration of the substrate.

Fig. 6.	 The maximum value of the horizontal component (x) of free-field acceleration versus the change 
of distance – profile No. 2, the speed of a train: a) v = 120 km/h, b) v = 160 km/h, c) v = 180 km/h, 
d) v = 200 km/h, e) v = 250 km/h, f) v = 270 km/h, g) v = 293 km/h

a) b)

c) d)

e) f)

g)
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Using measurement data contained in Tables 1–3, an attempt to determine the 
relationship between the maximum values of horizontal and vertical components 
of free-field vibrations and the speed of the Pendolino passages was made. For example, 
Figures 8a–g show the change in the value of the horizontal (x) component of free-
field vibration acceleration in profile No. 3 as a function of the Pendolino train speeds. 
Figures 8a–g also show a trend-line of the proposed function of maximum values of the 
horizontal x  component of free-field vibrations as a  function of the Pendolino train 
speeds and correlation coefficient R2. Depending on the analysis presented in Figures 
8a–g, it follows that the maximum values of the horizontal (x) component of free-field 
vibrations rose with an increase of the Pendolino train speeds. Similar dependencies 
were obtained for the horizontal component (y) and vertical (z) of free-field vibrations. 
For example, the correlation coefficient R2 values for the proposed relationship between 
the maximum values of free-field vibrations in the profile No. 3 (measurement points 
No. 1–7), and the speed of passages, range from 0.47–0.96 – cf. Figures 8a–g. An analysis 

Fig. 7.	 The maximum value of the horizontal component (x) of free-field acceleration versus the change 
of  istance – profile No. 3, the speed of a train: a) v = 120 km/h, b) v = 160 km/h, c) v = 180 km/h, 
d) v = 200 km/h, e) v = 250 km/h

a) b)

c) d)

e)
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of the data contained in Tables 1–3 implies that the relationships between maximum 
values of free-field vibrations and the Pendolino train speeds are variable. In most of 
the measuring points in the assumed measurement profiles, there is a  linear trend of 
increasing maximum values of free-field vibrations together with the Pendolino train 
speeds.

Fig. 8.	 Change the value of the horizontal component (x) of free-field acceleration in a) p. 1, b) p. 2, 
c) p. 3, d) p. 4, e) p. 5, f) p. 6, g) p. 7, profile No. 3 as a function of the Pendolino speeds

a) b)

c) d)

e) f)

g)
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3.  Research of the vibration of the selected building

The second part of the dynamic investigation refers to measuring the vibration of the dwelling 
building, situated at a distance of 49 m from the track along which the train was moving. The 
place where the study was conducted is a flat area where classical bedding layer is arranged. The 
investigated building is a  low-rise, one-family, one-storey, masonry dwelling house with plan 
dimensions of 6.7 m x 16.0 m. Building vibration acceleration was measured at a ground level in 
order to determine the kinematic loads to which the building is subjected when the trains are 
passing near the building. The kinematic loads are also usable for evaluating the impact of these 
vibrations on the building structure using SWD scales from the Polish standard [4].

Figures 10 to 11 show an example of building vibrations due to the Pendolino passages at 
a speed equal to 250 km/h.

The most adverse results of the influence analysis of the horizontal components of 
vibration on the building during the passage of the Pendolino train at a speed of 250 km/h 
are given in Figure 12a and 12b. The presented results indicate that the measured vibrations 
of the building are classified as non-appreciable for its construction because the peak values 
of vibration accelerations in all 1/3 octave frequency bands are below the bottom of the curve 
that determines the appreciable threshold of vibrations through the structure of the building 
(according to the SWD-II scale from PN-85/B-02170 standard [4]).

Fig. 9.	 View of the investigated building

Fig. 10.	The horizontal components of the vibration of the building at ground level recorded during the 
Pendolino passage at a speed of 250 km/h: a) component x, b) component y

a) b)
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For the comparison, Figure 13a and 13b show the results of the analysis of the impact 
of horizontal components (x, y) of vibrations for the building caused by passenger train 
with a speed of 160 km/h. The level of impact of these vibrations is not appreciable for the 
structure of the building and is about three times lower in relation to the listed in Figure 
12a and 12b, which concerns the results of the analysis of the vibration impact on building 
generated by passage of the Pendolino train with a speed of 250 km/h.

Fig. 11.	The vertical z  component of the vibration of the building at ground level recorded during the 
Pendolino passage at a speed of 250 km/h

Fig. 12.	The most adverse results of influence of vibrations caused by passing of the Pendolino train 
on the masonry structure of the building: a) component x, b) component y (measurement 
No. 32 – 30.11.2013)

a) b)

Fig. 13.	The most adverse results of influence of vibrations caused by passing of the passenger train 
on the masonry structure of the building: a) component x, b) component y (measurement 
No. 32 – 30.11.2013.)

a) b)
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4.  Conclusions

When drawing conclusions from the research results presented above, it should be 
remembered that they relate to the specific water – soil conditions in place where the 
vibrations were recorded and the particular type of building structure receiving vibrations.

On the basis of measurements of free-field vibrations, in three selected profiles of 
measurement, caused by passages of the Pendolino train and the results of the analysis of these 
vibrations, a relationship between the maximum values of the components of the vibration 
acceleration and the speed of the train can be noticed.

In the individual measuring points, generally the greater the speed of the train, the 
higher the value of the maximum acceleration values; there is also the impact of ground 
conditions on the propagation of vibrations. On the basis of an analysis of the measurement 
data, the exponential decay functions of maximum horizontal (x and y), and the vertical (z) 
component of the free-field measuring vibrations in three profiles versus dedicated speeds of 
the Pendolino train were adopted.

Vibrations of the building generated by passages of the Pendolino train are classified as 
non-appreciable for the structure of the building. The reason for this is e.g. the distance of 
the building from the railway track. The influence of vibrations on the building due to the 
passages of the Pendolino train was three times higher than during the passages of trains with 
conventional speed.

These conclusions cannot be generalised uncritically because they concern the specific 
surface as well as soil – water conditions at the profile of the measurements. However, they 
indicate that, in the future, vibrations of buildings (and hence the people in the buildings) 
caused by passages of the Pendolino trains may have a higher influence than it had during 
conventional train crossings. Hence, the result is the need to expand the area of research of 
dynamic influences of the high-speed line. It is therefore necessary to elaborate and implement 
a  comprehensive research program referring to the measurement of building vibrations 
generated by passages of high-speed trains, including buildings at a  smaller distances than 
permitted by the Railway Regulations. These studies should also address the impact of 
vibrations on humans; account should be taken of the different types of buildings as well as 
various geotechnical conditions on the road of the propagation of vibrations.

The results of such comprehensive research (performed on selected profiles) should 
be the basis for the elaboration of environmental impact assessments and design work 
associated with high-speed railway program in Poland in terms of influence of vibrations on 
the environment and design concerning vibro-isolation.
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