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PRZY UŻYCIU SIECI RZADKICH I HIGH DIMENSIONAL 

MODEL REPRESENTATION – PORÓWNANIE 

A b s t r a c t 

In many areas of science and technology, there is a need for effective procedures for approximating 
multivariate functions. Sparse grids and cut-HDMR (High Dimensional Model Representation) 
are two alternative approaches to such multivariate approximations. It is therefore interesting 
to compare these two methods. Numerical experiments performed in this study indicate that 
the sparse grid approximation is more accurate than the cut-HDMR approximation that uses 
a comparable number of known values of the approximated function unless the approximated 
function can be expressed as a sum of high order polynomials of one or two variables.
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S t r e s z c z e n i e 

W wielu obszarach nauki i technologii potrzebne są efektywne metody aproksymacji funkcji 
wielu zmiennych. Sieci rzadkie i cut-HDMR (High Dimensional Model Representation) są 
dwoma alternatywnymi podejściami do aproksymacji funkcji wielu zmiennych. Interesujące 
jest zatem porównanie tych dwóch metod. Eksperymenty numeryczne przeprowadzone w ra-
mach niniejszych badań wskazują, że aproksymacja sieciami rzadkimi jest bardziej dokładna 
niż aproksymacja cut-HDMR wykorzystująca porównywalną liczbę znanych o ile aproksymo-
wana funkcja nie może być wyrażona jako suma wielomianów wysokiego stopnia jednej lub 
dwóch zmiennych.

Słowa kluczowe: Sieci Rzadkie. Aproksymacja, Eksperymenty numeryczne, Metamodelowanie, 
Przekleństwo wymiarowości
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1. Introduction 

The approximation of multivariate functions is a remarkably hard problem due to the 
so-called ‘curse of dimensionality’ [1]. However, the effective approximation of high-
dimensional functions is the only solution in numerous practical problems from virtually 
all branches of science and technology. In particular such an approximation is an essential 
element of the so-called metamodelling [2, 3] (see also [4] for a discussion of metamodelling 
of high-dimensional problems, [5] for a comparison of a few metamodelling techniques and 
[6] for an example of the usage of sparse grids in metamodelling).

Examples of the application of high-dimensional approximation in science and engineering 
include ionosphere modelling [7], quantum mechanics [8], materials science [9], structural 
engineering [10], electrochemistry [11] and nuclear reactor modelling [12].

Sparse grids offer a method of function approximation where instead of one dense grid, 
we have a number of sparser grids and a linear combination is used [13]. The method is also 
known under other names such as the (discrete) blending method [14], the Boolean method 
[15] and hyperbolic cross approximation [16].

HDMR (High Dimensional Model Representation) approximation is a different approach 
that hinges on the fact that many high-dimensional functions can be efficiently approximated 
by sums of low-dimensional functions. The concept is attributed to Sobol [17]. The method 
is described in [18, 19]. Reference [20] describes many variants of HDMR approximation.

This paper compares the above two methods for the approximation of multivariate functions. 
In Section 2, a basic theory of sparse grid and cut-HDMR methods is described. Section 3 
describes the performed numerical experiments. Section 4 summarizes the obtained results.

2. Theory of sparse grids and cut-HDMR 

2.1. Sparse grids 

Let us start with a one-dimensional interpolation. Consider a function f M: ,0 1[ ] →  .  

We need a sequence Ui
i

{ }
=

∞

1
 of interpolating operators, each one providing a better 

approximation than the previous one. The formula for operator Ui, which interpolates on 
nodes x x xi i

m
i
i1 2, , , ,…{ }  can be written as
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Functions a xj
i ( )  depend on the interpolation nodes and interpolation type. For Lagrange 

interpolation, the functions are given by [21]: 
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An M-dimensional approximation corresponds to the tensor product of operators 
U U Ui i iM1 2, , ,  as follows: 
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(see [22]). The interpolating operator for a kth variable is Uik . The calculation of the inter-
polant requires computing the interpolated function at m m mi i iM1 2

  nodes. In polynomial 
or spline interpolation, we select a single grid corresponding to a single tensor product of 
operators. In sparse grid approximation, we combine multiple grids.

The central idea in sparse grid approximation is Smolyak’s formula [13]. This formula 
represents a linear combination of interpolants on many grids. The sparse grid interpolation 
operator is defined by a linear combination of operators from Eq. (3): 
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The operator (4) has two arguments: the first (q) describes the density of the grid and the 
second (M) is the number of variables. The sum of components of index i = …{ }i i iM1 2, , ,  is 

denoted by i =
=
∑
j

M

ji
1

.  Figure 1 shows two examples of two-dimensional sparse grids.

One can choose different approximation spaces for the sparse grid approximation. The 
simplest choice is a space constructed from so-called hat functions [23] but this space is 
rarely used in practice. Instead, commonly used sparse grids are based on polynomial or 
piecewise-polynomial functions.

One important feature of all sparse-grid methods is that one-dimensional basis functions  
ψi jj

x( )  are combined into M-dimensional basis functions ψi x( )  defined as:

	 ψ ψi x( ) = ( )
=
∏
j

M

i jj
x

1

. 	 (5)

In Eq. (5), j is the number of independent variables and ij is a parameter to distinguish 
different one-dimensional functions of that variable. A sparse grid approximant is constructed 
as a linear combination of the multivariate basis functions ψi x( )  for different values of 
i = …{ }i i iM1 2, , , .

A motivating feature of sparse grids with polynomial interpolation is the fact that formula 
A(M + k, M) exactly reproduces multivariate polynomials up to order k [22]. Full grid 
approximation by operators from Eq. (3) on the other hand, exactly reproduces monomial 
x x xm m

M
mi i iM

1 2
1 2

  of order m m mi i iM1 2
  but not monomial xmi1

11 +  of order mi1 1+ .
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(a) (b)

Fig. 1. Two-dimensional sparse grids with q equal to 3 (a) and 7 (b). Both examples use equidistant 
one-dimensional nodes

2.2. Cut-HDMR approximation 

An approximated M-variate function f(x) can be written as a sum of the constant term, 
functions of one variable, etc. 

	 f f f x f x x f x x
i M

i i
i j M

i j i j Mx( ) = + ( ) + ( ) +…+ …
≤ ≤ ≤ < ≤

…∑ ∑0
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The choice of functions f0, fi, fi,j etc. is not unique. By retaining only a few initial terms 
in the expansion (6) one obtains an HDMR approximation. The maximum dimension of the 
domain of functions used in the approximation is called the order of the approximation, for 
example, the first-order approximation consist only of a constant f0 and one-dimensional 
functions fi.

In the cut-HDMR variant of the method, a reference point r is selected and used to 
determine the terms of expansion (6) in the following way: 

	 f0 = f(r),	 (7)

	 f x f x x r x x fi i i i i M( ) = … …( ) −− +1 1 1 0, , , , , , , 	 (8)

	 f x x f x x r x x r x x f xi j i j i i i j j j M i i, , , , , , , , , , , ,( ) = … … …( ) − (− + − +1 1 1 1 1 )) − ( ) −f x fj j 0 ,  	 (9)

etc.
For analytic functions f this approximation can be compared to the multidimensional 

Taylor expansion at point r: 

	 f f
f
x

x r
f
x x

x r
i

M

i
i i

i

M

j

M

i j
i ix r

r r
( ) = ( ) +

∂ ( )
∂

−( ) +
∂ ( )
∂ ∂

−
= = =
∑ ∑∑

1 1 1

2

(( ) −( ) +…x rj j , .	 (10)

a) b)



101

Regrouping the terms in Eq. (10) gives expressions for the cut-HDMR terms. As each cut-
HDMR term corresponds to many Taylor expansion terms, cut-HDMR usually offers a better 
approximation than the Taylor expansion. The cut-HDMR approximation is, like the Taylor 
expansion, local. However, in certain subspaces, the approximation is exact (i.e. there is no 
error). They are called cut subspaces and depend solely on the expansion point (cut point, 
anchor point) and the order of the expansion. In agreement with Eqs. (7) to (9), first order cut 
subspaces are straight lines of the form 

	 { )( , , , , , , : },r r x r r x i Mi i i M i1 1 1 1… … ∈ ≤ ≤− + R � 	 (11)

and second order cut subspaces are planes described by

	 { )( , , , , , , , , , , : , },r r x r r x r r x x i j Mi i i j j j M i j1 1 1 1 1 1… … … ∈ ≤ < ≤− + − + R � .	 (12)

For the purpose of representing a cut-HDMR expansion on a computer, a method of 
interpolating the low-variate functions is necessary. Typically, first degree spline interpolation 
is used. The approximated function is calculated on grids spanning the cut subspaces. This is an 
improvement over interpolation in the whole M , as fewer values of the approximated function 
need to be known. The number N of values of function f, that need to be stored decreases from 
KM (assuming K interpolation nodes for each independent variable), to the value
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for an lth order expansion. For each l the value N given by Eq. (13) is a polynomial in M. 
Equation (13) can be obtained by counting the number of points that lie in an lth order cut 
subspace, but not in an  l – 1st order cut subspace, adding points that lie in an l – 1st order cut 
subspace, but not in an l – 2nd order cut subspace etc. In this way no point is counted twice.

The choice of the cut point r is an important issue. Wang [24] proposed an automatic method 

of selecting the best cut point. A low-discrepancy sequence of points x xi i M

i

p
: ,∈[ ]{ }

=
0 1

1
 is 

selected and each point is taken tentatively as a cut point of the HDMR decomposition. The 
error of the expansion is calculated as

	 e f f
f
e f fL L, ,( ) =

( )
( )1

2 2
σ

	 (14)

where:
f 	 – 	the approximated function,
fL 	– 	the approximant. 

The point with the lowest error is finally selected as the cut point. The variance σ2(f) of 
function f is defined as [25]: 
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and the function e2 is given by
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	 e f f f f dL L
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It can be observed that since the variance is a constant positive number that does not 
depend on the approximation, the function fL minimizing e2(f, fL) minimizes e(f, fL) as well.

2.3. Theoretical comparison of sparse grids and cut-HDMR

Sparse grids and cut-HDMR method use two different approaches for the approximation 
of multivariate functions. Both of these methods try to overcome the curse of dimensionality. 
The cut-HDMR method approximates a given function by a number of low-dimensional 
functions. The sparse grids method combines the results of interpolation using a number of 
grids to give a better approximation.

The methods utilize different assumptions about an approximated function. The sparse 
grids method assumes that high-order terms of the Taylor expansion of an approximated 
function are negligible. Cut-HDMR approximation assumes that terms of the Taylor 
expansion involving more than a few (typically one or two) variables are negligible.

3. Numerical experiments 

A number of numerical experiments were carried out to compare the sparse grid 
approximation with the cut-HDMR approximation. Six functions defined on the cube [0, 1]M 
were selected for the experiments. Results presented below refer to the following functions f1 
to f4: 
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For other functions, similar results were obtained.
The above test functions have been selected with the aim of objectively test both 

approximation methods, without favouring any one of them. Assuming the approximated 
function is analytical, sparse grids behave poorly when there are high degree terms in the 
Taylor expansion of the approximated function at a given point. The functions f1 and f4 fulfill 
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these requirements. On the other hand, cut-HDMR effectively approximates high degree 
terms as long as they are monomials of no more variables than the order of the expansion 
(functions f2, f3 and f4).

A few different one-dimensional node placements were tested for sparse grids:

•	 equidistant nodes x
k
m

k mk = −
= … −

1
0 1 1, , , , ,

•	 extrema of the Chebyshev polynomials together with endpoints

x k
m

k mk = −
−







 = … −0 5 0 5

1
0 1 1. . cos , , , , ,π

•	 roots of the Legendre polynomials P x
n
d
dx

xn n

n

n

n
( ) = −( )





1
2

12

!
 mapped to the interval 

[0, 1].
The first node placement was selected for its simplicity; the second, because it eliminates 

the Runge effect [26]. Their implementation was obtained from the code of the TASMANIAN 
sparse grid package [27]. The values of the parameter q in Eq. (4) that were used are 3, 4, 5, 
6, 7, 8 and 9.

Figure 2 shows the relationship between the absolute approximation error calculated as:

	 ERR f f G f fL G L, , max( ) = ( ) − ( )
∈x

x x ,	 (21)

and the number N of points at which the function needs to be calculated. Grid G, which is the 
third argument of the error function (21), is a Cartesian product of M sets of k equally spaced 
points between 0 and 1: 
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In the experiments, M = 4 and k = 19 were assumed. The first and second order cut-
HDMR approximations were used. The error (21) was estimated on grid G(4, 8). The 
cut-HDMR approximation used a first order spline interpolation or a Hermitian piecewise 
cubic interpolation employing first function derivatives approximated by three-point finite 
differences to represent functions of one or two arguments.

The method proposed by Wang [24] was used to determine the best placement of the cut 
points by minimizing expression  (16). Sobol sequence [28] was used both for picking up 
candidates for the cut points and for the Quasi-Monte Carlo integration needed in Eq. (16). 
In both cases, 1000 points from the Sobol Sequence were taken. The coefficients needed for 
calculation of the Sobol sequence were obtained from the web page http://web.maths.unsw.
edu.au/~fkuo/sobol/new-joe-kuo-6.21201 (accessed 2014-04-01). The details of the Sobol 
sequence generation can be found in [29].

Plot (a) in Fig. 2 shows errors for a function that cannot be expressed as a sum of 
functions of at most two arguments. As a result, the error of the cut-HDMR expansion reaches 
a minimum of approximately 0.11 and cannot become lower. At the same time, the sparse 
grids can achieve much lower errors.
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(a) (b)

(c) (d)

Fig. 1. Absolute approximation error as dependent on the number N  of known values of function f 
employed by the approximation. Plot (a) – function f1, (b) – function f2, (c) – function f3 (d) – function 
f4. Notation: (■) – sparse grids with equidistant nodes and first-order spline interpolation, (◊) – sparse 
grids with equidistant nodes and third-order spline interpolation, (○) – sparse grids with nodes at the 
extrema of Chebyshev polynomials and with Lagrange interpolation, (●) – sparse grids with nodes at 
the roots of Legendre polynomials and with Lagrange interpolation, (Δ) – second order cut-HDMR 

with first-order spline interpolation, (▲) – second order cut-HDMR with piecewise  
third-order polynomial interpolation, (♦) – first order cut-HDMR with piecewise third-order 

polynomial interpolation



105

Plot (b) in Fig. 2 shows errors for a function that can be expressed as a sum of functions 
of one argument. In this case, the error of the expansion (6) truncated to order 2 is zero so 
that only the interpolation error remains and cut-HDMR approximation can be arbitrarily 
accurate. The variant with a higher order of interpolating polynomials shows significantly 
lower errors than the one that uses only first-order spline interpolation. The variant of sparse 
grids using third-degree piecewise polynomial interpolation has the lowest error of all sparse 
grid methods. The cut-HDMR decomposing only to functions of 0 and 1 variable (using third-
degree piecewise polynomial interpolation) has the lowest error among all other methods.

Plot (c) in Fig. 2 shows errors for a function that can be expressed as a sum of functions of 
at most two variables. This function is characterized by high correlations between variables 
and is relatively fast-changing so that the error of the expansion (6) truncated to order 2 is 
zero again. The second-order cut-HDMR has the lowest errors in the range of N  where the 
logarithm of the error is lower than 0.

Plot (d) in Fig. 2 shows errors for a function that can be represented as a sum of functions 
of two arguments but is relatively slow-changing. In this case, two types of sparse grid 
approximation have the lowest errors.

4. Conclusions 

In this study, two methods of approximating multivariate functions were compared – sparse 
grids and cut-HDMR. The comparison regarded the accuracy of both methods defined as the 
maximum absolute error of approximation. In most cases, sparse grids appear more accurate than 
the cut-HDMR method that employs a comparable number of known values of the approximated 
function. However, the cut-HDMR approximation has lower errors when the function is fast-
changing and can be exactly represented as a sum of functions of at most one or two variables.

In conclusion, sparse grids are recommended over cut-HDMR for approximating 
multivariate functions. Cut-HDMR approximation should only be used when the sparse grids 
method cannot achieve desired accuracy using the assumed number of known values of the 
approximated function.

R e f e r e n c e s

[1]	 Donoho D.L., Aide-Memoire. High-Dimensional Data Analysis: The Curses and 
Blessings of Dimensionality, presented at the Mathematical Challenges of 21st Century, 
Los Angeles 2000.

[2]	 Barton R.R., Metamodels for Simulation Input-output Relations, [in:] Proceedings of 
the 24th Conference on Winter Simulation, New York 1992, 289-299.

[3]	 Barton R.R., Metamodeling: a state of the art review, [in:] Simulation Conference 
Proceedings, 1994. Winter, 1994, 237-244.

[4]	 Shan S., Wang GG., Metamodeling for High Dimensional Simulation-Based Design 
Problems, J. Mech. Des., vol. 132, no. 5, 051009-1-051009-11, May 2010.

[5]	 Jin R., Chen W., Simpson T.W., Comparative studies of metamodelling techniques 
under multiple modelling criteria, Struct Multidisc Optim, vol. 23, no. 1, Dec. 2001, 
1-13.



106

[6]	 Klimke A., Pye C.J., Sparse Grid Meta-Models for Model Updating, [in:] Proceedings 
of the IMAC-XXVII, Orlando 2009.

[7]	 Schoendorf J., Rabitz H., Li G., A fast and accurate operational model of ionospheric 
electron density, Geophysical Research Letters, vol. 30, no. 9, 2003.

[8]	 Geremia J., Weiss E., Rabitz H., Achieving the laboratory control of quantum dynamics 
phenomena using nonlinear functional maps, Chemical Physics, vol. 267, no. 1–3, Jun. 
2001, 209-222.

[9]	 Zabaras N., An Information-Theoretic Multiscale Framework With Applications to 
Polycrystalline Materials, Cornell University, Ithaca NY, Materials Process Design and 
Control Laboratory, Feb. 2010.

[10] Chowdhury R., Rao B.N., Assessment of high dimensional model representation 
techniques for reliability analysis, Probabilistic Engineering Mechanics, vol. 24,  
no. 1, Jan. 2009, 100-115.

[11]	 Bieniasz L.K., Rabitz H., High-Dimensional Model Representation of Cyclic 
Voltammograms, Anal. Chem., vol. 78, no. 6, Mar. 2006, 1807-1816.

[12]	 Balu A.S., Rao B.N., Reliability analysis using high dimensional model representation 
for mixed uncertain variables, IOP Conf. Ser.: Mater. Sci. Eng., vol. 10, no. 1, Jun. 
2010, 012014.

[13]	 Smolyak S., Quadrature and interpolation formulas for tensor products of certain 
classes of functions, Soviet Mathematics, Doklady, vol. 4, 1963, 240-243.

[14]	 Gordon W.J., Blending-Function Methods of Bivariate and Multivariate Interpolation 
and Approximation, SIAM Journal on Numerical Analysis, vol. 8, no. 1, Mar. 1971, 
158-177.

[15]	 Delvos F.J., Schempp W.J., Boolean Methods in Interpolation and Approximation. 
Longman Higher Education, 1989.

[16]	 Shen J., Wang L.-L., Sparse Spectral Approximations of High-Dimensional Problems 
Based on Hyperbolic Cross, SIAM J. Numer. Anal., vol. 48, no. 3, Jul. 2010, 1087-1109.

[17]	 Sobol I.M., Sensitivity Estimates for Nonlinear Mathematical Models, Mathematical 
Modelling and Computational Experiment, vol. 1, no. 4, 1993, 407-414.

[18]	 Rabitz H., Aliş Ö.F., General foundations of high‐dimensional model representations, 
Journal of Mathematical Chemistry, vol. 25, no. 2–3, Jun. 1999, 197-233.

[19]	 Rabitz H., Aliş Ö.F., Shorter J., Shim K., Efficient input-output model representations, 
Computer Physics Communications, vol. 117, no. 1-2, Mar. 1999, 11-20.

[20]	 Li G., Wang S.-W., Rabitz H., High Dimensional Model Representation (HDMR): 
Concepts and Applications, 2000.

[21]	 Quadling D.A., Lagrange’s Interpolation Formula, The Mathematical Gazette, vol. 50, 
no. 374, Dec. 1966, 372.

[22]	 Barthelmann V., Novak E., Ritter K., High dimensional polynomial interpolation on 
sparse grids, Advances in Computational Mathematics, vol. 12, no. 4, Mar. 2000,  
273-288.

[23]	 Griebel M., Sparse grids and related approximation schemes for higher dimensional 
problems, 2005.

[24]	 Wang X., On the approximation error in high dimensional model representation, 
[in:] Proceedings of the 40th Conference on Winter Simulation, Miami, Florida 2008,  
453-462.



107

[25]	 Sobol I.M., Theorems and examples on high dimensional model representation, 
Reliability Engineering & System Safety, vol. 79, no. 2, Feb. 2003, 187-193.

[26]	 Runge C., Über empirische Funktionen und die Interpolation zwischen äquidistanten 
Ordinaten, Zeitschrift für Mathematik und Physik, vol. 46, 1901, 224-243.

[27]	 Stoyanov M., User Manual: TASMANIAN Sparse Grids, Oak Ridge National 
Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, ORNL REPORT, 
Aug. 2013.

[28]	 Sobol I.M., On the distribution of points in a cube and the approximate evaluation of 
integrals, USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4, 
1967, 86-112.

[29]	 Joe S., Kuo F.Y., Remark on Algorithm 659: Implementing Sobol’s Quasirandom 
Sequence Generator, ACM Trans. Math. Softw., vol. 29, no. 1, Mar. 2003, 49-57.




