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1. Preliminaries and introduction

Throughout the article, R is an associative ring and δ : R −→ R is a derivation. We do not
assume that R has an identity.

Definition 1.1. A map δ : R−→ R is said to be a derivation, if it is additive and satisfies the
Leibniz rule

∀a,b ∈ R : δ (ab) = δ (a)b+aδ (b).

Notice that the zero map is a derivation of the ring R. We define

δ n =

⎧⎨
⎩

idR, if n = 0,
δ ◦ . . .◦δ︸ ︷︷ ︸

n

, if n ∈ N\{0}.

The center of the ring R will be denoted by Z(R), i.e.,

Z(R) = {a ∈ R : ab = ba for all b ∈ R}.

Let us remark that Z(R) is a subring of R. For any elements a,b∈R we define [a,b] = ab−ba.
By “ideal of the ring R” we always mean a left, right, or two-sided ideal.

Prime rings and, more generally, semiprime rings are fundamental objects of study in
noncommutative algebra. For a long time the research has also been focused on various ex-
tensions of these classes of rings. Taking into account the analogues of prime and semiprime
rings defined by means of ideals that are invariant with respect to either a single derivation
or a family of derivations, yields important examples of such extensions. The analogues are
referred to as δ -(semi)prime rings and Δ-(semi)prime rings, respectively. They still attract
interest of algebraists.

The article does not bring new results. Our first purpose is to collect and systematize
basic facts about δ -prime rings and δ -semiprime rings. Some of these facts seem a bit less
known. The second purpose is to provide complete and self-contained proofs for all the pre-
sented theorems (the proofs are very often omitted in reference sources). The proofs we pro-
vide are mostly modifications of corresponding “nondifferential” proofs given in the classical
monographs [4, 6, 7]. Two features of the article seem worth emphasizing: all the proofs are
valid for rings without identity and a brief introduction to δ -nilpotent elements is included.

The article is organized as follows. In Section 2 we collect some useful facts and ex-
amples concerning δ -ideals. In Section 3 we discuss various characterizations of δ -prime
rings and δ -prime ideals. Section 4 is devoted to strongly nilpotent elements and δ -nilpotent
elements. Finally, in Section 5 we deal with characterizations of δ -semiprime rings.

2. δ -ideals

We begin with a few standard definitions.

Definition 2.1. A set S ⊆ R is called δ -stable, if δ (S)⊆ S. An ideal I of the ring R is said to
be a δ -ideal, if it is δ -stable.
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Definition 2.2. The two-sided ideal of R generated by the set {[a,b] : a,b ∈ R} is called the
commutator ideal. This ideal is denoted by C(R).

Definition 2.3. For a set S⊆ R we define

• the left annihilator ann�(S) = {a ∈ R : ab = 0 for all b ∈ S},
• the right annihilator annr(S) = {a ∈ R : ba = 0 for all b ∈ S}.

Notice that if δ is the zero derivation, then every ideal of the ring R is a δ -ideal. More-
over, ann�(S) is a left ideal of R, annr(S) is a right ideal of R, and R is commutative if and
only if C(R) = {0}.

Before we turn to more interesting observations, let us state an obvious but useful for-
mula.

Lemma 2.4. If a,b ∈ R, then δ ([a,b]) = [δ (a),b]+ [a,δ (b)].

Take now a closer look at C(R), Z(R) and annihilators.

Proposition 2.5. The commutator ideal C(R) is a δ -ideal and the center Z(R) is a δ -stable
set. Moreover, if S⊆ R is a δ -stable set, then ann�(S) and annr(S) are δ -ideals.

Proof. Let us first define A = {[a,b] : a,b ∈ R}, B = {x[a,b] : a,b,x ∈ R}, C = {[a,b]y :
a,b,y ∈ R}, and D = {x[a,b]y : a,b,x,y ∈ R}. Then C(R) coincides with the totality of finite
sums of elements belonging to the set A∪B∪C∪D. Pick arbitrary a,b,x,y ∈ R. By Lemma
2.4, we have

δ ([a,b]) = [δ (a),b]+ [a,δ (b)] ∈ C(R),

δ (x[a,b]) = δ (x)[a,b]+ x[δ (a),b]+ x[a,δ (b)] ∈ C(R),

δ ([a,b]y) = [δ (a),b]y+[a,δ (b)]y+[a,b]δ (y) ∈ C(R),

δ (x[a,b]y) = δ (x)[a,b]y+ x[δ (a),b]y+ x[a,δ (b)]y+ x[a,b]δ (y) ∈ C(R).

The δ -stability of C(R) follows.
Now, pick an arbitrary a ∈ Z(R) and an arbitrary b ∈ R. Then [a,b] = 0 = [a,δ (b)], and

hence
0 = δ ([a,b]) = [δ (a),b]+ [a,δ (b)] = [δ (a),b].

Consequently, δ (a) ∈ Z(R). The δ -stability of Z(R) follows.
Suppose, finally, that S ⊆ R is a δ -stable set. Pick an arbitrary a ∈ ann�(S) and an arbi-

trary b ∈ S. Then ab = 0 and δ (b) ∈ S. Consequently,

0 = δ (ab) = δ (a)b+aδ (b) = δ (a)b.

This yields δ (a) ∈ ann�(S). The δ -stability of annr(S) can be proved analogously.

The intersection of any family of two-sided δ -ideals of the ring R is also a two-sided
δ -ideal. Obviously, the statement remains true, if we replace the word “two-sided” by “left”
or “right”. We are thus enabled to consider δ -ideals generated by subsets of R.

Let us define 〈S〉δ , 〈S〉δ� and 〈S〉δr to be the two-sided, the left and the right δ -ideal of the
ring R generated by a set S⊆ R (respectively). We will write as usual 〈a〉δ instead of 〈{a}〉δ ,
and analogously for the left and the right δ -ideal generated by the singleton {a}.
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Proposition 2.6. Let a ∈ R. Define A =
{

kδ n(a) : k ∈ Z, n ∈ N∪{0}}, B =
{

xδ n(a) : x ∈
R, n ∈ N∪{0}}, C =

{
δ n(a)y : y ∈ R, n ∈ N∪{0}}, and D =

{
xδ n(a)y : x,y ∈ R, n ∈ N∪

{0}}. Then
(i) 〈a〉δ coincides with the totality of finite sums of elements belonging

to the set A∪B∪C∪D,
(ii) 〈a〉δ� coincides with the totality of finite sums of elements belonging

to the set A∪B,
(iii) 〈a〉δr coincides with the totality of finite sums of elements belonging

to the set A∪C.

Proof. Denote by T the totality of finite sums of elements belonging to A∪B∪C∪D. No-
tice that T is an additive subgroup of the ring R. Moreover, T is a two-sided ideal and
a = δ 0(a) ∈ T . A reasoning similar to the proof of the δ -stability of C(R) shows that T
is δ -stable. We therefore get 〈a〉δ ⊆ T . On the other hand, if I ⊆ R is a two-sided δ -ideal
and a ∈ I, then clearly T ⊆ I. The converse inclusion follows. Properties (ii) and (iii) can be
proved analogously.

It seems worth noting that in the above proposition

B =
∞⋃

n=0

Rδ n(a), C =
∞⋃

n=0

δ n(a)R, D =
∞⋃

n=0

Rδ n(a)R.

We conclude the section with some remarks on products and sums of δ -ideals. Let k ∈
N \ {0} and S1, . . . ,Sk ⊆ R. If either all the sets are two-sided ideals or all the sets are left
ideals or all the sets are right ideals, then we define S1 · . . . · Sk to be the additive subgroup
of the ring R generated by the “elementwise product” {a1 · . . . ·ak : a1 ∈ S1, . . . ,ak ∈ Sk} (the
usual product of ideals). Otherwise, we define S1 · . . . ·Sk to be just the elementwise product.

If all the sets S1, . . . ,Sk are two-sided δ -ideals, then S1 · . . . ·Sk is also a two-sided δ -ideal.
Obviously, we can replace the word “two-sided” by “left” or “right”. Hence any power of a
δ -ideal is also a δ -ideal.

Notice, finally, that if I,J ⊆ R are two-sided δ -ideals, then I+J = {a+b : a ∈ I, b ∈ J}
is also a two-sided δ -ideal. (We can replace “two-sided” by “left” or “right”).

3. δ -prime rings and δ -prime ideals

We start with the following quite standard definition.

Definition 3.1. The ring R is said to be δ -prime if it is nonzero and for any two-sided δ -ideals
I,J ⊆ R such that IJ = {0}, we have either I = {0} or J = {0}.

Notice that if δ is the zero derivation, then the δ -primeness is the same thing as the
usual primeness of R (see, for instance, [6, Ch. 3]). Moreover, the ring R is prime if and only
if it is d-prime for each derivation d : R −→ R. Let us now state and prove a fundamental
characterization of δ -prime rings (cf. [1, Lemma 2]).



111

Theorem 3.2. Suppose that R is a nonzero ring. The following conditions are equivalent:
(i) R is δ -prime,
(ii) for any elements a,b ∈ R, if ∀n ∈ N∪{0} : aRδ n(b) = {0}, then

either a = 0 or b = 0,
(iii) for any elements a,b ∈ R, if ∀n ∈ N∪{0} : δ n(a)Rb = {0}, then

either a = 0 or b = 0,
(iv) for any elements a,b ∈ R, if 〈a〉δ 〈b〉δ = {0}, then either a = 0

or b = 0,
(v) for any right δ -ideals I,J ⊆ R, if IJ = {0}, then either I = {0}

or J = {0},
(vi) for any left δ -ideals I,J ⊆ R, if IJ = {0}, then either I = {0}

or J = {0},
(vii) for an arbitrary nonzero right δ -ideal I ⊆ R we have

annr(I) = {0},
(viii) for an arbitrary nonzero left δ -ideal I ⊆ R we have ann�(I) = {0}.

Proof. Assume that R is δ -prime. Let a,b ∈ R be such that

∀n ∈ N∪{0} : aRδ n(b) = {0}. (1)

Define I to be the totality of finite sums of elements of the set
{

c1δ m(a)c2 : c1,c2 ∈ R, m ∈
N ∪ {0}}. Furthermore, define J to be the totality of finite sums of elements of the set{

h1δ n(b)h2 : h1,h2 ∈ R, n ∈ N∪{0}}. Then I and J are two-sided δ -ideals of the ring R.
Next, we will prove by induction on m that

∀m,n ∈ N∪{0} : δ m(a)Rδ n(b) = {0}.

If m = 0, then the assertion coincides with (1). Pick therefore some k ∈ N∪{0} and suppose
that

∀n ∈ N∪{0} : δ k(a)Rδ n(b) = {0}.
If c ∈ R and n ∈ N∪{0}, then the induction hypothesis yields

0 = δ (δ k(a)cδ n(b)) = δ k+1(a)cδ n(b)+δ k(a)δ (c)δ n(b)+δ k(a)cδ n+1(b) =

= δ k+1(a)cδ n(b).

In this way, we have proved that δ k+1(a)Rδ n(b) = {0} for all n ∈ N∪{0}. The induction
step is complete.

Pick arbitrary m,n ∈ N∪{0}. Since δ m(a)Rδ n(b) = {0}, we get

(Rδ m(a)R)(Rδ n(b)R)⊆ R(δ m(a)Rδ n(b))R = {0}

(the products above are elementwise products of sets). Consequently, IJ = {0}. The δ -
primeness therefore implies that either I = {0} or J = {0}. It is easy to verify that (〈a〉δ )3 ⊆ I
and (〈b〉δ )3 ⊆ J (see Proposition 2.6). Thus we have either (〈a〉δ )3 = {0} or (〈b〉δ )3 = {0}.
Since the square of a two-sided δ -ideal is also a two-sided δ -ideal, the δ -primeness yields
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that either 〈a〉δ = {0} or 〈b〉δ = {0}. This means, finally, that either a = 0 or b = 0. Condition
(ii) follows. The implication (i) =⇒ (iii) can be proved analogously.

Assume that condition (ii) is satisfied. Let a,b ∈ R be such that 〈a〉δ 〈b〉δ = {0}. Ob-
serve that for an arbitrary n ∈ N∪{0}, we have aRδ n(b)⊆ 〈a〉δ 〈b〉δ . Hence (ii) implies that
either a = 0 or b = 0. Condition (iv) follows. The implication (iii) =⇒ (iv) can be proved
analogously.

Assume now that condition (iv) is satisfied. Let I,J ⊆ R be right δ -ideals such that
IJ = {0}. Suppose that I �= {0} and pick some a ∈ I \{0}. Let b ∈ J. It is quite easy to verify
that

〈a〉δ 〈b〉δ ⊆ IJ+RIJ = {0}.

Condition (iv) therefore yields b = 0. In this way, we have proved that J = {0}. Condition (v)
follows. The implication (iv) =⇒ (vi) can be proved analogously.

It is clear that any of conditions (v) and (vi) implies the δ -primeness of the ring R. We
have thus proved that conditions (i)–(vi) are pairwise equivalent.

Assume that condition (vi) is satisfied. Let I ⊆ R be a nonzero left δ -ideal. Since ann�(I)
is a left δ -ideal and ann�(I)I = {0}, condition (vi) yields that ann�(I) = {0}. Condition (viii)
follows. The implication (v) =⇒ (vii) can be proved analogously.

Assume, finally, that condition (viii) is satisfied. Let I,J ⊆ R be two-sided δ -ideals such
that IJ = {0}. Suppose that J �= {0}. Since I ⊆ ann�(J), condition (viii) implies that I ⊆
ann�(J) = {0}. The δ -primeness of the ring R follows. The implication (vii) =⇒ (i) can be
proved analogously. The proof of the theorem is complete.

Let us remark that if R is a ring with identity, then the totality I of finite sums of elements
of the set

{
c1δ m(a)c2 : c1,c2 ∈ R, m ∈ N∪{0}}, considered in the above proof, is the same

thing as 〈a〉δ . But in the case where R is a ring without identity, it may happen that a /∈ I.
Recall that if I is a two-sided δ -ideal of the ring R, then

δI : R/I � a+ I 
−→ δ (a)+ I ∈ R/I

is a well-defined derivation.

Definition 3.3. A two-sided δ -ideal P⊆ R is said to be δ -prime, if R/P is a δP-prime ring.

Obviously, each δ -prime ideal is a proper ideal. It is worth noting that the ring R is δ -
prime if and only if {0} is a δ -prime ideal of R. The corollary below follows quite directly
from Theorem 3.2.

Corollary 3.4. Let P be a proper two-sided δ -ideal of the ring R. The following conditions
are equivalent:
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(i) P is δ -prime,
(ii) for arbitrary two-sided δ -ideals I,J ⊆ R, if IJ ⊆ P, then

either I ⊆ P or J ⊆ P,
(iii) for any elements a,b ∈ R, if ∀n ∈ N∪{0} : aRδ n(b)⊆ P, then

either a ∈ P or b ∈ P,
(iv) for any elements a,b ∈ R, if ∀n ∈ N∪{0} : δ n(a)Rb⊆ P, then

either a ∈ P or b ∈ P,
(v) for any elements a,b ∈ R, if 〈a〉δ 〈b〉δ ⊆ P, then either a ∈ P

or b ∈ P,
(vi) for arbitrary right δ -ideals I,J ⊆ R, if IJ ⊆ P, then either I ⊆ P

or J ⊆ P,
(vii) for arbitrary left δ -ideals I,J ⊆ R, if IJ ⊆ P, then either I ⊆ P

or J ⊆ P.

Again, if δ is the zero derivation, then the notion of a δ -prime ideal coincides with the
well-known general (“noncommutative”) notion of a prime ideal. We are ready to discuss an
example of a δ -prime ring which is not prime (the example is taken from [5]).

Example 3.5. Let F be a field of characteristic p �= 0. Consider the principal ideal P of the
polynomial ring F[x] generated by xp. Since R = F[x]/P is a commutative ring and x+P is a
nonzero nilpotent element of R, the ring R is not prime. (Let us recall here that a commutative
ring with identity is prime if and only if it is an integral domain). Using condition (iii) of
Corollary 3.4, we can prove quite easily that P is a δ -prime ideal for the natural derivation
δ : F[x] � f 
−→ f ′ ∈ F[x]. Thus R is δP-prime.

In the sequel we will deal with the following generalization of the prime radical. This
generalization has been introduced by Burkov (see [2]).

Definition 3.6. The intersection Nδ (R) of the family of all δ -prime ideals of the ring R is
called the δ -prime radical of R.

Notice that Nδ (R) = R whenever R has no δ -prime ideals.

4. δ -nilpotent elements

Consider the family

D =

{
n

∑
j=0

c jδ j : n ∈ N∪{0}, c0, . . . ,cn ∈ R

}

of “differential operators on the ring R”.

Remark 4.1. If D ∈D and I is a left δ -ideal of R, then D(I)⊆ I.

The definition below is taken from [2].



114

Definition 4.2. An element a ∈ R is said to be δ -nilpotent, if for any sequence {Dk}∞
k=0 of

elements of D almost all members of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akDk(ak)

are equal to 0.

Let us also recall the well-known concept of a strongly nilpotent element.

Definition 4.3. An element a ∈ R is said to be strongly nilpotent, if almost all members of
any sequence {ak}∞

k=0 in the ring R such that a0 = a and

∀k ∈ N∪{0} : ak+1 ∈ akRak

are equal to 0.

Observe that an element a ∈ R is strongly nilpotent if and only if for an arbitrary se-
quence {xk}∞

k=0 of elements of R, almost all members of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akxkak

are equal to 0.
It is clear that in the definitions of a δ -nilpotent element and a strongly nilpotent element

(as well as in the equivalent definition of a δ -nilpotent element given in the sequel of this
section), the words “almost all members of the sequence {ak}∞

k=0 are equal to 0” can be
replaced by “the sequence {ak}∞

k=0 contains a member equal to 0”. Let us now take a look at
some simple but important properties.

Proposition 4.4. For an element a ∈ R the following hold true:
(i) if a is δ -nilpotent, then it is strongly nilpotent,
(ii) if a is strongly nilpotent, then it is nilpotent in the usual sense,
(iii) if a is nilpotent in the usual sense, a ∈ Z(R) and δ (a) = 0, then

a is δ -nilpotent,
(iv) if a is nilpotent in the usual sense and a ∈ Z(R), then a is

strongly nilpotent,
(v) if δ is the zero derivation and a is strongly nilpotent, then a is

δ -nilpotent.

Proof. Assume that a is δ -nilpotent. Pick an arbitrary sequence {xk}∞
k=0 in the ring R. Since

∀k ∈ N∪{0}∀b ∈ R :
{

bxkb = bxkδ 0(b),
xkδ 0 ∈D ,

the δ -nilpotency implies that almost all members of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akxkak



115

are equal to 0. Therefore, a is strongly nilpotent.
If a is a strongly nilpotent element, then almost all members of the sequence {ak}∞

k=0 of
powers of a defined by {

a0 = a,
ak+1 = akaak

are equal to 0 and hence a is nilpotent in the usual sense.
Let us turn to property (iii). It is easy to see that if δ (z) = 0 for some z ∈ R, then

∀ t ∈ N\{0}∀ j ∈ N∪{0}∀b ∈ R :
{

δ (zt) = 0,
δ j(ztb) = ztδ j(b). (2)

Assume that a is nilpotent in the usual sense, a ∈ Z(R) and δ (a) = 0. Let {Dk}∞
k=0, where

Dk =
nk

∑
j=0

c jkδ j

for some nk ∈N∪{0} and some c0k, . . . ,cnkk ∈ R, be a sequence of elements of the family D .
Consider the sequence {ak}∞

k=0 defined by{
a0 = a,
ak+1 = akDk(ak).

We will show by induction that ak ∈ a2k
R for an arbitrary k ∈ N \{0}. First, since δ (a) = 0

and a ∈ Z(R), we have

a1 = aD0(a) = a
n0

∑
j=0

c j0δ j(a) = a2c00.

Suppose therefore that a� = a2�b for some � ∈N\{0} and some b ∈ R. In view of (2) and the
fact that a ∈ Z(R), we obtain

a�+1 = a�D�(a�) = a2�bD�(a2�b) = a2�b
n�

∑
j=0

c j�δ j(a2�b) =

= a2�b
n�

∑
j=0

c j�a2�δ j(b) = a2�+1
b

n�

∑
j=0

c j�δ j(b).

The induction step is complete. Now, let s ∈ N\{0} be such that as = 0 (“usual nilpotency”
of a). Observe that if k ∈ N\{0} satisfies the condition 2k � s, then ak ∈ a2k

R⊆ asR = {0}.
The δ -nilpotency of a follows.

Let us turn to (iv). Assume that a is nilpotent in the usual sense and a ∈ Z(R). Suppose
additionally that δ is the zero derivation. Then property (iii) yields that a is δ -nilpotent. It
therefore follows from (i) that the element a is strongly nilpotent.

Property (v) is an immediate consequence of the fact that if δ is the zero derivation,
then D = {c · idR : c ∈ R} (and hence the definition of a δ -nilpotent element reduces to the
definition of a strongly nilpotent element).
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Notice that in the case where R is a commutative ring and δ is the zero derivation, the
usual nilpotency, the strong nilpotency and the δ -nilpotency of an element are the same thing.
Let us see an example of a strongly nilpotent element which is not δ -nilpotent.

Example 4.5. With the assumptions and notations of Example 3.5, we have (x+P)δP(x+
P) = x+P. Hence all members of the sequence {ak}∞

k=0 defined by{
a0 = x+P,
ak+1 = akδP(ak)

are nonzero. This yields that x+P is not a δP-nilpotent element of the ring R. On the other
hand, x+P is a strongly nilpotent element, because it is nilpotent in the usual sense and R is
a commutative ring.

The main theorem of the section is a modification of a result which has been first stated
in [2].

Theorem 4.6. Let a ∈ R. The following conditions are equivalent:
(i) a is δ -nilpotent,
(ii) for arbitrary sequences {ck}∞

k=0 of elements of R and {nk}∞
k=0

of non-negative integers, almost all members of the sequence
{ak}∞

k=0 defined by {
a0 = a,
ak+1 = akckδ nk(ak)

are equal to 0,
(iii) a ∈ Nδ (R).

Proof. The implication (i) =⇒ (ii) is obvious (see the definition of the family D).
Suppose that a∈R\Nδ (R). Then a /∈P for some δ -prime ideal P of the ring R. Hence by

condition (iii) of Corollary 3.4, there exist sequences {ck}∞
k=0 of elements of R and {nk}∞

k=0
of non-negative integers such that no member of the sequence {ak}∞

k=0 defined by{
a0 = a,
ak+1 = akckδ nk(ak)

belongs to P. It follows that ak �= 0 for all k∈N∪{0}. Therefore, condition (ii) is not satisfied.
This completes the proof of the implication (ii) =⇒ (iii).

Now suppose that the element a is not δ -nilpotent. Then there exists a sequence {Dk}∞
k=0

of elements of D such that all members of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akDk(ak)

are different from 0. Consider the family F of all two-sided δ -ideals I ⊆ R with the property
that I∩{ak : k ∈ N∪{0}}= /0. Notice that {0} ∈ F. The family F (partially) ordered by set
inclusion satisfies the assumption of Zorn’s lemma. Pick a maximal element P0 ∈ F. Let us
emphasize that P0 is a proper two-sided δ -ideal of the ring R.
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Let J,K ⊆ R be two-sided δ -ideals such that JK ⊆ P0. Assume that neither J nor K is
contained in P0. Since P0 ⊆ (P0 +J)∩ (P0 +K), P0 �= P0 +J and P0 �= P0 +K, the maximality
of P0 implies that P0 + J /∈ F and P0 +K /∈ F. But P0 + J and P0 +K are two-sided δ -ideals
of the ring R. Hence there are s, t ∈ N∪{0} such that as ∈ P0 + J and at ∈ P0 +K. Let us
define u = max{s, t}. If T ⊆ R is a right ideal, x ∈ T and D ∈D , then obviously xD(x) ∈ T . It
follows therefore from the definition of {ak}∞

k=0 that au ∈ (P0 + J)∩ (P0 +K). Next, observe
that if x ∈ P0 + J, y ∈ P0 +K and D ∈D , then by Remark 4.1 we have

xD(y) ∈ (P0 + J)(P0 +K)⊆ P0 + JK = P0.

Since au ∈ (P0+J)∩ (P0+K), the observation yields au+1 = auDu(au) ∈ P0. This contradicts
the fact that P0 ∈ F.

We have therefore proved that for any two-sided δ -ideals J,K ⊆ R, if JK ⊆ P0, then
either J ⊆ P0 or K ⊆ P0. In other words, P0 is a δ -prime ideal of the ring R. Since a = a0 /∈ P0,
we get a /∈ Nδ (R). The proof of the implication (iii) =⇒ (i) is complete.

It follows immediately from the above theorem that Nδ (R) coincides with the totality of
δ -nilpotent elements of the ring R. The theorem also allows us to give an equivalent definition
of a δ -nilpotent element (namely, an element a ∈ R is δ -nilpotent if and only if for arbitrary
sequences {ck}∞

k=0 of elements of R and {nk}∞
k=0 of non-negative integers, almost all members

of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akckδ nk(ak)

are equal to 0).
Recall that a set S ⊆ R is said to be nil, if every element of S is nilpotent in the usual

sense. Combining Theorem 4.6 with Proposition 4.4 yields a noteworthy corollary.

Corollary 4.7. The δ -prime radical Nδ (R) is a nil two-sided δ -ideal of the ring R.

Let us finally notice that if δ is the zero derivation, then Nδ (R) and the standard prime
radical rad(R) are the same thing. In view of Theorem 4.6 and Proposition 4.4, we thus obtain
the following classical fact.

Corollary 4.8. The prime radical rad(R) coincides with the totality of strongly nilpotent
elements of R.

5. δ -semiprime rings

We will use the following definition of a δ -semiprime ring.

Definition 5.1. The ring R is called δ -semiprime, if there exists no two-sided δ -ideal I ⊆ R
such that I �= {0} and I2 = {0}.

Obviously, each δ -prime ring is δ -semiprime. Recall that an ideal I of the ring R is said
to be nilpotent, if Ik = {0} for some k ∈ N \ {0}. We are in a position to state and prove a
fundamental characterization of δ -semiprime rings (cf. [1, Lemma 1]).
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Theorem 5.2. The following conditions are equivalent:
(i) R is a δ -semiprime ring,
(ii) for any element a ∈ R, if ∀n ∈ N∪{0} : aRδ n(a) = {0},

then a = 0,
(iii) for any element a ∈ R, if ∀n ∈ N∪{0} : δ n(a)Ra = {0},

then a = 0,
(iv) for any element a ∈ R, if (〈a〉δ )2 = {0}, then a = 0,
(v) for an arbitrary right δ -ideal I ⊆ R, if I2 = {0}, then I = {0},
(vi) for an arbitrary left δ -ideal I ⊆ R, if I2 = {0}, then I = {0},
(vii) {0} is the only nilpotent two-sided δ -ideal of the ring R,
(viii) {0} is the only nilpotent right δ -ideal of the ring R,
(ix) {0} is the only nilpotent left δ -ideal of the ring R,
(x) for any two-sided δ -ideals I,J ⊆ R, if IJ = {0}, then I∩ J = {0},
(xi) for any right δ -ideals I,J ⊆ R, if IJ = {0}, then I∩ J = {0},
(xii) for any left δ -ideals I,J ⊆ R, if IJ = {0}, then I∩ J = {0},
(xiii) R has no nonzero δ -nilpotent elements,
(xiv) Nδ (R) = {0}.

Proof. The equivalence of conditions (i)–(vi) can be proved analogously as in Theorem 3.2.
Assume that R is a δ -semiprime ring. Let I ⊆ R be a nilpotent two-sided δ -ideal. De-

fine k0 = min{k ∈ N \ {0} : Ik = {0}} (in other words, k0 is the nilpotency index of I).
Let s ∈ {0,1} be such that k0 + s is even. Then (It)2 = {0}, where t = (k0 + s)/2. The δ -
semiprimeness now implies that It = {0}. Thus k0 � t. The inequality is equivalent to k0 � s.
Therefore, k0 = 1 and hence I = {0}. Condition (vii) follows. The implications (v) =⇒ (viii)
and (vi) =⇒ (ix) can be proved analogously.

The implications (vii) =⇒ (i), (viii) =⇒ (v) and (ix) =⇒ (vi) are obvious.
Assume again that R is a δ -semiprime ring. Let I,J ⊆ R be two-sided δ -ideals such that

IJ = {0}. Since I∩J is also a two-sided δ -ideal and (I∩J)2 ⊆ IJ, the δ -semiprimeness yields
that I ∩ J = {0}. Condition (x) follows. The implications (v) =⇒ (xi) and (vi) =⇒ (xii) can
be proved analogously.

Assume that condition (x) is satisfied. Let I ⊆ R be a two-sided δ -ideal such that I2 =
{0}. Then I = I∩ I = {0}. The δ -semiprimeness of the ring R follows. The implications (xi)
=⇒ (v) and (xii) =⇒ (vi) can be proved analogously. Hence, we have proved that conditions
(i)–(xii) are pairwise equivalent.

Now assume that condition (ii) is satisfied. Let a ∈ R\{0}. Then there exist sequences
{ck}∞

k=0 of elements of the ring R and {nk}∞
k=0 of non-negative integers such that every mem-

ber of the sequence {ak}∞
k=0 defined by{

a0 = a,
ak+1 = akckδ nk(ak)

is different from 0. Consequently, the element a is not δ -nilpotent (cf. the proof of Theorem
4.6). Condition (xiii) follows.

The equivalence (xiii)⇐⇒ (xiv) follows immediately from Theorem 4.6.
Assume, finally, that Nδ (R) = {0}. Let I,J⊆R be two-sided δ -ideals such that IJ = {0}.

Moreover, let P be a δ -prime ideal of the ring R. Since IJ ⊆ P, we get either I ⊆ P or J ⊆ P.
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Hence I∩ J ⊆ P. We have therefore proved that I∩ J is contained in any δ -prime ideal of R.
This means exactly that I∩ J ⊆ Nδ (R). Condition (x) follows. The proof is complete.

As an obvious consequence of the above theorem, we obtain a quite important fact.

Corollary 5.3. Suppose that the ring R is δ -semiprime. Let I ⊆ R be a δ -ideal. Then
(i) I∩ annr(I) = {0} whenever I is a right ideal,
(ii) I∩ ann�(I) = {0} whenever I is a left ideal.

In the case where δ is the zero derivation, the definition of a δ -semiprime ring is just
the well-known definition of a semiprime ring. Clearly, the ring R is semiprime if and only if
it is d-semiprime for all derivations d : R−→ R. Notice that in fact, the ring R considered in
Examples 3.5 and 4.5 is not semiprime (a commutative ring with identity is semiprime if and
only if it has no nilpotent elements different from 0).

Though a δ -semiprime ring has no δ -nilpotent elements different from 0 and no nonzero
nilpotent δ -ideals, it can have a nonzero nil δ -ideal. For an example we refer to [3, p. 332].

Finally, let us see how another important fact about semiprime rings generalizes to δ -
semiprime rings (cf. [1, Lemma 5]).

Proposition 5.4. Suppose that R is a δ -semiprime ring. Let I ⊆ R be a two-sided δ -ideal.
Then ann�(I) = annr(I).

Proof. Define K = annr(I)I (product of right δ -ideals). We have

K2 = (annr(I)I)(annr(I)I)⊆ annr(I)(Iannr(I))I = {0}
and hence, by the δ -semiprimeness, annr(I)I = K = {0}. Therefore, annr(I)⊆ ann�(I). The
converse inclusion can be proved analogously.

The author would like to thank the anonymous referees for carefully reading the manuscript and giving a
number of constructive comments which helped him to substantially improve the text.
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