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analiza pracy maszyny synchronicznej 
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A b s t r a c t
The steady state response of a synchronous machine to the torque with angle dependent pul-
sating component is of great practical importance for the piston drive. Determining such a re-
sponse is not easy due to the necessity of solving the system of nonlinear differential equations. 
This paper describes an algorithm that allows directly determining the steady states of a syn-
chronous machine driven by an internal combustion engine (e.g. diesel engine). To create such 
an algorithm, the harmonic balance method and the iterative Newton–Raphson procedure are 
used. This approach allows obtaining steady-state solutions directly in the frequency domain. 
Exemplary calculations are performed for synchronous generators derived from the four-stroke 
internal combustion engine.
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S t r e s z c z e n i e
Reakcja maszyny synchronicznej na moment napędowy zależny od kąta obrotu wirnika ma 
duże znaczenie praktyczne dla napędów tłokowych. Określenie rozwiązania ustalonego nie jest 
łatwe ze względu na konieczność rozwiązywania układu nieliniowych równań różniczkowych. 
W niniejszym artykule opisano algorytm pozwalający na bezpośrednie wyznaczanie stanu usta-
lonego w maszynie synchronicznej napędzanej przez silnik spalinowy. Algorytm ten opiera się 
na metodzie bilansu harmonicznych oraz wykorzystuje procedurę iteracyjną Newtona–Raphso-
na. Pozwala to na uzyskanie rozwiązania ustalonego bezpośrednio w dziedzinie częstotliwości 
w postaci szeregu Fouriera. Przykładowe obliczenia przeprowadzono dla prądnicy pracującej 
synchronicznie na sieć sztywną i napędzanej momentem mechanicznym pochodzącym od spa-
linowego silnika czterosuwowego.
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1. Introduction

This paper considers the performance of synchronous generators driven by internal com-
bustion engines, mainly by diesel engines. These are commonly used as small or medium 
power electric sources. The characteristic features of such a drive is the pulsating torque of 
the driven engine due to the pulsating nature of the forces acting on the pistons in the cylin-
ders, these are caused by the changeable pressure of a medium in cylinders. This causes the 
angle depended torque, which generates the speed ripples, even if the generator is running 
synchronously [2]. The second independent phenomenon causing the speed ripples is a varia-
tion of the total moment of inertia of the whole piston drive with the angle of rotation [3]. The 
resulting fluctuations of the torque acting on the synchronous generator shaft are a function 
of the shaft’s rotational angle. It generates oscillations in the angular velocity of the syn-
chronous generator. In turn, it has a direct impact on the oscillations of the power angle ϑ of 
the synchronous generator. Also, the winding’s currents reflect on those oscillations by new 
components. In practice, in order to counteract this, the amplitude of the alternating compo-
nent in torque is reduced to a minimum, most often through multiplication of the number of 
cylinders and selection of an appropriate tact of work for each cylinder [4].

Determining the steady-state of a synchronous generator when the oscillation of the an-
gular speed has an impact on the winding currents requires solving the generator electrical 
equations together with the equation of rotary motion. However, such a set of differential 
equations is nonlinear. The most popular method is a numerical integration of that equation 
set. As a result, the steady-state solution in the time domain could be obtained. To find useful 
measures of currents and torque, i.e. mainly their Fourier spectra, additional signal process-
ing is necessary, this can be complicated because steady-state performances are quasi-perio
dic in such cases. The steady-state in a considered case can be directly determined in the 
frequency domain using the harmonic balance method for nonlinear systems presented in 
[5]. This allows finding a steady-state for the synchronous generator directly in the frequency 
domain, when the period of the alternating component of mechanical torque is known. This 
algorithm, after some modifications, can also be applied to determine a steady-state when the 
external mechanical torque is a periodic function of the rotation angle.

This paper presents the steady-state analysis of a salient-pole synchronous generator run-
ning synchronously and driven by a four-stroke internal-combustion engine [2]. The basic 
model of synchronous machines was used assuming linearity of the magnetic circuit when 
the stator windings are supplied by the balanced voltage source and the field winding is 
supplied by a DC voltage source. The steady-state equations combining both electrical and 
mechanical equations were formulated by the harmonic balance method and the Newton–
Raphson algorithm was used to solve them. The results are presented in the form of the 
Fourier spectra of all generator currents as well as the power angle.

2. Formulation of harmonic balance equations for a synchronous machine

The harmonic balance method [6] operates within the complex Fourier series. Therefore, 
the synchronous machine equations are presented at a specially chosen rotating coordinate 
system (0,+,–) [6]. For those coordinates, the three phase voltages and stator currents are 
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represented by complex time functions and in steady-states they can be described by the com-
plex Fourier series. Resulting equations in (0,+,-) coordinates take the forms: the electrical 
equations (1a) and the mechanical equation (1b), in which notations follow [6]: 
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The balanced stator voltages are represented in these coordinates by constant values:

	 u u U+ −= = 3
2  	 (2)

The list of unknown functions for equations (1a, b) is: i+(t); i–(t); i'f(t); i'D(t); i'Q(t); rotor 
rotation angle φ(t). The harmonic balance method allows qualitatively and quantitatively 
predicting periodic or quasi-periodic solutions in steady-states. The rotation angle φ(t) is not 
periodic in time and must be replaced by some periodic function. At a synchronous speed, the 
angle φ(t) can be substituted by its fluctuations Δφ(t) defined by the formula:

	 ϕ ϕ( ) / ( )t p t ts= ( ) ⋅ +Ω ∆ 	  (3)

where:
Ωs	 – pulsation of supplied voltages,
p	 – pole-pair number.

The mechanical equation (1b) takes new form:
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Combining (1a) and (4) into one set, the resulting vector equation takes the form:
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in which the vector of unknown functions x has the form:
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And Fn(x) are vectors of functions with respect to x. 
Due to periodicity of the mechanical torque generated by the combustion engine and 

keeping in mind the assumption that the generator runs synchronously, all variables in vector 
x will be periodic too with the period of the forced torque and consequently the functions in 
vectors F1(x), F2(x) and F0(x, t) are also periodic. To use the harmonic balance method for 
the equation (5), all of them should be presented in the form of the complex Fourier series 
(7) and (8) with the period Tx = 2π/Ωx = 1/fx, i.e. the period of the oscillating component of 
the driven torque:
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Substituting the series (7) and (8) into equation (5) and comparing coefficients for the 
same basic functions on both sides, a set of non-linear algebraic (9) is obtained. It has an 
infinite number of equations and an infinite number of variables, which are the Fourier coef-
ficients of the series (7).
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The matrix Ω = 2πfxE is created by the unity matrix E with dimensions [6 × 6]. Below, 
simplified notation is used by introducing the so-called vector and matrix representations of 
the complex Fourier series [6]. As a result, equation (9) takes the form:

	 –(Ω)2 · F2 + j · Ω · F1 + F0 = 0	  (9a)
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3. Iterative algorithm of finding steady-state solutions for a synchronous machine

The equation (9a) constitutes an infinite set of non-linear algebraic equations with the in-
finite number of variables. It can only be solved numerically by using an iterative procedure 
when the number of equations and number of variables are reduced to finite one, i.e. reducing 
the number of considered harmonics in the Fourier series (7) and (8) to sufficiently high. In this 
paper, the Newton–Raphson iterative procedure was used given by the general formula:

	 x x J x F xi i i i+ −= − ⋅1 1( ) ( )  	 (10)

The matrix J(x) and the vector F(x) are the respective matrix and vector representation 
and they are determined by the formulas below:
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The matrices Fd,k(x) (for k = 1, 2, 3) are calculated based on the functions in the vectors 
F1(x), F2(x) and F0(x, t). 
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(13)

Details of calculating the individual components of expressions (11), (12) and (13) after 
each iteration are described in [7]. The problem of selecting the starting point for the iterative 
algorithm is also discussed in that paper.
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4. The results of numerical calculations

The iterative algorithm was implemented in MATLAB. Calculations were provided for 
the synchronous machine with rated data PN = 1250 kW, UN = 6 kV, cosφN = 0.9, nN = 750 rpm,  
Js = 250 kg · m2. It was assumed that Iʹf = 0.95IʹfN and that the mean value of the torque was 
equal to the rated torque. The spectra of the phase stator current and load angle were selected 
as the most representative measures of the generator properties.

Numerical tests were done to study the influence of the moment of inertia and the number 
of combustion engine pistons on the performance of the synchronous generator. As a refe
rence, the case when a torque performance versus rotary angle is as in Fig. 1, i.e. represents 
the torque of a four-stroke internal combustion engine [2]. 

Fig. 1. The torque of the four-stroke internal combustion engine [2]

Figures 2 and 3 present the influence of the moment of inertia on the spectra of the stator 
phase current and the load angle. The amplitudes of the individual components are done in 
decibels due to significant differences in their values. The spectrum of the phase stator cur-
rent ia(t) given by the formula:
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is shown in Fig. 2. The component I0 with network frequency f0 = 50 Hz dominates in this spec-
trum. Frequencies of other harmonics take the values according to relationships fs = fs + k · (fs/2p), 
in which p is the generator pole-pair number. From Fig. 2, it follows that if the moment of 
inertia grows twice, the spectrum of the stator current changes significantly and only the 
component with network frequency fs do not change. The first additional components I–1 and 
I1 are almost 20 dB smaller to the main harmonic I0 for basic case and are reducing by 10 dB 
when the moment of inertia is growing twice. For sequent components I–2 and I2, the same 
tendencies can be observed and they achieve the levels of 2% and 1% of I0, respectively. 
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Generally, the growing moment of inertia twice additional components in the stator currents 
are reducing more than twice and only the basic harmonic I0 does not change. So, fluctuations 
of the stator current are reduced, which could be expected.

Fig. 2. Spectrum of phase stator current for two different moments of inertia 

Fig. 3. Spectrum of the power angle for two different values of the moment of inertia 

The spectrum of the power angle in Fig. 3, which is done by the formula:
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contains components with frequencies fk = k · (fs/2p). The component ϑ0 represents the mean 
value of the power angle and the amplitudes of sequent components decrease but not as fast 
as in the stator current spectrum. When increasing the moment of inertia twice, the mean 
value of the power angle is not changed, whereas the amplitudes of the other harmonics are 
reduced by over 50%. This means that fluctuations of the angular velocity of the synchronous 
generator driven by the combustion engine can be reduced by increasing the total moment of 
inertia, which is in line with expectations. 



370

Improving the uniformity of the mechanical torque of an internal combustion piston en-
gine is commonly achieved by increasing the number of cylinders. For the confirmation of 
the validity of such a statement, the performance of the mechanical torque versus angle was 
changed as is shown in Fig. 4. It was found from the curve in Fig. 1 adding two curves re-
spectively shifted, but keeping the mean value. The differences to the mean value decrease 
and change the Fourier spectrum of the torque. It allows showing the influence of a number 
of cylinders on the steady-state. Results of calculations are shown in Fig. 5 and Fig. 6.

Fig. 4. Mechanical torque of the four-stroke internal combustion engine with double the number  
○of the cylinders

Fig. 5. Spectrum of phase stator currents for: a) four-stroke internal combustion engine, b) four-stroke 
internal combustion engine with doubled number of cylinders

The spectrum of the phase stator current in Fig. 5 confirms that all higher harmonics are 
more or less reduced. The most limited are components I2 and I–2 with frequencies of 62.5 Hz 
and 37.5 Hz respectively, which dropped nearly five times. This means that the stator currents 
become really close to being sinusoidal. 

The spectra of the power angle for those two cases are presented in Fig. 6. All harmonics 
are decreasing too when the number of cylinders is doubled, beside the mean value. The 
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second harmonics and higher are reduced significantly – this means that the power angle 
fluctuations are practically mono-harmonic. 

Fig. 6. Spectrum of the power angle for: a) four-stroke internal combustion engine,  
b) four-stroke internal combustion engine with double the number of cylinders 

The developed algorithm also determines the spectra of the field current, of currents of 
equivalent damping windings and also of the angular velocity but these results are not pre-
sented in this paper.

5. Conclusions 

The algorithm presented in this paper allows the direct steady-state analysis of synchro-
nous generators driven by a piston engine, which is a source of angle dependent torque. Such 
an electromechanical system is described by a set of nonlinear differential equations and di-
rect steady-state analysis is extremely complicated. In this paper, the steady-states equations 
have been created by the harmonic balance method. They have a form of an infinite set of 
algebraic equations with an infinite number of unknowns. To solve them, the Newton–Raph-
son iterative algorithm was developed for those equations, when limited to finite dimensions. 

Numerical tests show that the presented algorithm is rather effective and allows directly 
determining the Fourier spectra of generator currents and mechanical variables. This ability 
of the algorithm can also be applied for determining the spectra in cases of internal faults in 
generators or faults in the mechanical part of a drive when the angle dependent distortions of 
the torque are generated. Detail properties of the Fourier spectra in faulty states can be useful 
for diagnostic purposes using motor current signature analysis.

R e f e r e n c e s

[1]	L audyn D., Pawlik M., Strzelczyk F., Elektrownie, WNT, Warszawa 2000. 
[2]	A nuszczyk J., Maszyny elektryczne w energetyce. Zagadnienia wybrane, WNT, Warsza

wa 2005. 



372

[3]	 Jagiełło A., Systemy elektromechaniczne dla elektryków, Wydawnictwo Politechniki 
Krakowskiej, Kraków 2008.

[4]	L aible Th., Die Theorie der Synchronmaschine im nichtstationären Betrieb, Springer- 
-Verlag, Berlin–Göttingen–Heidenberg 1952.

[5]	S obczyk T.J., Radzik M., Algorytm bezpośredniego określania stanów ustalonych 
w  maszynach synchronicznych z uwzględnieniem równania ruchu metodą bilansu 
harmonicznych, Zeszyty Problemowe – Maszyny Elektryczne, 2009, nr 83, BOBRME 
Komel, pp. 83–88.

[6]	S obczyk T.J., Metodyczne aspekty modelowania matematycznego maszyn indukcyjnych, 
WNT, Warszawa 2004.

[7]	R adzik M., Algorytm bezpośredniego określania stanów ustalonych w maszynach 
synchronicznych z uwzględnieniem równania ruchu, praca doktorska, Cracow University 
of Technology, Cracow 2011.

[8]	R adzik M., Sobczyk T.J., Analiza pracy maszyny synchronicznej napędzanej silnikiem 
tłokowym, Zeszyty Problemowe – Maszyny Elektryczne, 2014, nr 103(3), Wyd. Instytut 
Maszyn i Napędów Elektrycznych (KOMEL), pp. 217–222 (SME 2014).


