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MEASUREMENTS

WYZNACZANIE PIONOWYCH I POZIOMYCH 
PRZEMIESZCZEŃ GRUNTU W AUTOMATYCZNYCH 

SYSTEMACH POMIAROWYCH NA PODSTAWIE 
POMIARÓW KĄTOWYCH

A b s t r a c t 

The increasing interest in monitoring systems for soil displacements, prompted the authors to 
search for calculation methods which would allow the construction of monitoring devices with­
out the need to place sensors in inclinometric tubes. The application of the spline interpolation 
method and the local approximation method by means of weighted moving squares allowed for 
the creation of curves which describe the soil deformation with the required accuracy. The basic 
equations of this calculation method and numerical examples are presented in the paper.
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S t r e s z c z e n i e 

Wzrastające zainteresowanie systemami monitorowania przemieszczeń gruntów skłoniło au­
torów do poszukiwania metod obliczeniowych, z wykorzystaniem których możliwe byłoby 
budowanie urządzeń pomiarowych bez konieczności zabudowy czujników w rurach inklino­
metrycznych. Zastosowanie metody interpolacji składanej oraz metody lokalnej aproksymacji 
za pomocą techniki ważonych ruchomych kwadratów umożliwiło zbudowanie krzywych opi­
sujących deformację gruntu z założoną dokładnością. W artykule przedstawiono podstawowe 
równania metody obliczeniowej oraz przykłady numeryczne.
Słowa kluczowe: pomiary deformacji gruntu, inklinometry, interpolacja sklejana
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1. Introduction – contemporary design tools

Currently, linear objects are very often located on soils of a high compressibility since 
terrains of more favourable geological structure are the most often taken by building and 
other locations are not possible. This causes the  necessity to apply various geotechnical 
methods leading to the  strengthening of the  subsoil. Often, the  economically favourable 
solution is making an overloaded embankment. Obtaining the  soil improvement effect is 
in this case related to the  consolidation of the  soil. The  consolidation effect is based on 
the  reduction of the  soil volume as a  result of water outflow and decreasing distances 
between soil particles. The  duration time of the  consolidation process depends, first and 
foremost, on the infiltration coefficient cv and the load value resulting from the built overload 
embankment. It has been observed in accurate investigations [1] that increased stress in 
the  soil causes a certain reduction of the consolidation coefficient. This effect, as well as 
the natural variability of soils, is the reason that the theoretically determined settlement of 
the improved base and its minimal time can differ from the real situation. Therefore, during 
the  consolidating improvement process performing its constant control is recommended. 
Apart from the measurements of water pressure changes, the basic parameters describing 
the effect of soil improvement are vertical and horizontal displacements. Measurements of 
vertical displacements allow for tracing the consolidation process over time, while horizontal 
displacement measurements enable controlling the effect of soil driven out from strengthened 
spaces. More and more often, the automatic monitoring systems which allow for observation 
of soil displacement both at the stage of object building and during operation, are used for 
these measurements.

2. Measurement methods of vertical and horizontal soil displacements 

The measurement of vertical soil displacements is usually perceivable as measurements 
of its surface deformation. Broadly understood geodetic surveying methods from the classic 
levelling, via satellite techniques GPS [2], up to laser scanners, are here applied. However, with 
regard to the consolidation process, it is essential to observe the soil response to the overload 
applied in the space where displacements occur, meaning within the improved soil. 

The basic way of measuring vertical soil displacements is through the  use of plate 
benchmarks [3]. This measurement allows for determining the  soil displacements in 
the measuring points and at time intervals at which observations are made. More and more 
often, hydraulic prophilometers, manual or automatic, are used for measuring the vertical 
soil displacements. Hydraulic prophilometers are devices in which the  sensor measures 
the hydrostatic liquid pressure change caused by changes of the measured value in relation 
to the  assumed reference point. Vertical soil displacements in the  selected places can 
also be measured by means of indenting extensometers or individual points of hydraulic 
measurement. 

The best known and the  most commonly applied method is taking inclinometric 
measurements [4]. These measurements allow for determining vertical as well as horizontal 
displacements. This method is used both for manual measurements and for building automated 
measuring systems tracing the consolidation process.
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3. Inclinometric measurements

Inclinometric measurements are based on determining shape changes of the inclinometric 
tube placed in the soil due to the ground deformation. The measurement is done by means of 
the probe called the inclinometer. The measurement can be done manually, by an individual 
probe shifted along the inclinometric tube or automatically by stable inclinometers (a few or 
several dozen inclinometers connected together). Angular positions n of measured segments 
(probes) of a  known length L are determined (Fig. 1). These items of information are 
then recalculated into vertical or horizontal displacements, depending on the kind of task. 
The input data are as follows:

–– total length, at which the measurement is done, Lt,
–– number of measuring sensors (segments, probes, protractors) n, connected by articulated 

joints of length L: (L = Lt / n),
–– angles of inclination of individual probes αi, i = 1,…, n, (acc. to Fig. 1), in their middle 

points,
–– reference height d (height of the first point of the segment).

Measuring sensors determine points of the  broken line situated on the  original curve. 
Coordinates can be calculated from the equation: 
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Fig. 1. Principle of inclinometric measurements

This solution (later referred to as the  ‘simplified solution’) allows for obtaining 
the displacement in an arbitrary point of the segment by connecting points of coordinates 
(1) with straight segments (broken line). Then, the vertical soil displacement function can be 
written in one equation, joining with each other straight lines in individual segments:
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Points (1) are lying on the original curve, with the accuracy determined by the protractor 
measuring precision (measuring range). In spite of the  simplicity of such an approach, 
the solution does not correspond with real soil deformation. It can be expected that the largest 
errors will occur in the middle of the measuring segments.

4. Inclinometric measurements in automated monitoring systems

Inclinometric measurements can by easy read autamatically. Sets of stable inclinometers 
are placed in previously prepared vertical measuring openings or in horizontal tubes. After 
connecting them to the device reading the data, the automatic monitoring system is ready – 
this allows for a very fast measurement of the soil displacement profile. The read-out of all 
sensors from the given measuring cross-section requires only a few seconds. This provides 
the possibility of tracing, for example, the consolidation process and the soil displacement 
from under the over-loaded embankment during building works and adjusting their successive 
stages to the progressing consolidation process. Automatic systems can be equipped with 
additional sensors, e.g. of the water pore pressure measurements.

High equipment costs constitute a significant limitation in the inclinometric measurements 
automation. The measuring probe length is usually 1 meter. This means that, for the profile 30 
meters long, the measuring chain should consist of 30 sensors. Additionally, for communicating 
with sensors, a recording device of 30 channels is needed. One of the ways of decreasing 
the costs of the monitoring system can be the elongation of measuring probes. However, this 
operation has physical limitations relating to the diameter of standard inclinometric tubes and 
to the bending stiffness of the measuring probes. 

To avoid these limitations, it is possible to place special probes directly into the  soil. 
However, in this case, it is necessary to take into account length changes of the measuring 
set due to soil deformation. When inclinometric tubes are applied, the  above problem 
does not exist since the measuring chain retains its length displacing itself inside the tube. 
Length changes of the measuring chain do not allow the application of simple equations for 
the measured results analysis.
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Thus, there is a  need for development of the  measuring method which would allow 
the above mentioned limitations to be overcome. Information on an angular position of each 
measuring segment must be recalculated into vertical soil displacements in a  way which 
would enable making the automatic measuring system without the need for protecting tubes. 

5. Complex calculation methods of soil displacement and assessment of their accuracy 

The problem of identifying vertical soil displacement on the basis of data concerning 
angular positions of measuring segments requires solving the mathematical approximation 
task [6], [7], i.e. in general cases, fitting the curve to the measured data. 

Defined in such a  way, the  complex solution not only better describes the  real soil 
movements after deformation, but can also serve as the accuracy indicator of the obtained 
previously simplified solution (1). This solution will be determined in the form of a curve of 
the proper order (e.g. multinomial), Fig. 2, which will be controlled by fitting to the measuring 
points of coordinates: 
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Fig. 2. Principle of determining the subsidence curve by means of the complex solution

The simplest approximation, in the  result of which the  curve will be obtained, is 
the interpolation [5], [7]. The interpolation simplicity relies on the fact that the curve passes 
through all given points and that this is the only condition which has to meet. Out of various 
interpolation techniques, the  most often the  so-called Lagrange’s interpolation formula is 
applied:
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However, this formula has a  significant limitation. In a  similar fashion, as in each 
multinomial interpolation, at a large N, the solution in between points can become unstable, 
especially at the segment ends. This phenomenon is called Runge’s effect and most often 
occurs in cases when, for large numbers of initial data, the original function (given either 
in a  continuous or discrete way) indicates large differences in values (large gradients). 
Therefore, in practice, the applicability range of equation (6) is also limited. 

Another interpolation technique applied here is the so-called spline interpolation [7], in 
which curves of low orders (most often 2 or 3) are applied on individual segments which 
are then splined together in such a manner as to retain the continuity of the  function and 
its successive derivatives (determined by the curve order). Its certain variant is the broken 
line (2), for which only the function continuity is ensured. In the case of the spline square 
interpolation, the equation for the displacement can be written as:
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where coefficients a1, a2, a3 are the solution to the set of equations:
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And coefficients bi, i = 2, 3, …, N – 1 are resulting from the following recurrence formula:
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The application range of equation (7) is wider than of equation (6). Solutions by means of 
spline functions are worth being applied when the measurement data are numerous (N >> 6), 
and the soil deformation is relatively mild (modelling of depressions, hillsides). 

The last method discussed here is the interpolation method, this is a local approximation 
method by means of the weighted moving squares technique [6]. In a similar fashion as in 
the case of spline curves, local multinomial curves of low orders are used, however, they are 
ascribed to points not to segments, and their passing through the given points is controlled 
by weighted function. Its singularity in the given points assures interpolation properties of 
the final curve in spite of coefficients selected by approximation (minimisation of errors 
understood as the weighted sum of squares of deviation values on the curve and the given 
value).

The local curve (multinomial of a low order) is built on a group of a few points from 
the nearest vicinity of the point for which the approximation value is needed. A group 
of such points is called a  star. The  number of star points (m) depends on the  task 
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dimensionality and on the curve order. For the parabola (p = 2) at least 3 points should 
be taken, but no more than 6–10 (for more points, the curve loses the local character). In 
order to determine the displacement of the arbitrary point x, the following matrix values 
should be calculated:
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where s – number of approximation parameters (s = p + 1), h = xi – x and:
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ε is a very small number, corresponding to the calculating accuracy (e.g. ε = 10–16 for 
the real type of dual precision). Then, the displacement is expressed by the equation:
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This method can be successfully applied in cases where there are a  lot of measuring 
results and the soil deformation is highly variable (e.g. in the case of a fault or hole). A certain 
difficulty in its application can constitute the  fact that the  analytical form of the  curve is 
unknown – its calculation by a point after point according to equations (10)–(12) is possible. 

Each of the  complex equations (6), (7) and (12) can be used for the  assessment of 
the simplified solution quality (2). A difference between the simplified solution and one of 
the complex solutions should indicate the true error of the simplified solution, which for real 
measurements, will not be known. Whereas the error of complex solutions can be assessed 
in a few ways. Analogous to the assessment of the simplified solution error, curves of higher 
orders than in the case of (7) and (12) can be built. It is also possible to retain the  same 
order (second), but instead to build interpolations on a larger number of data. In this case, 
angular measurements can be supplemented by additional virtual data calculated on the basis 
of the complex solution.
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6. Numerical examples

With the aim of testing the measuring data, at the length Lt = 30 m, were simulated by 
means of curves not being multinomial (of ordinates from the range ± 0.5 m). Calculated 
angles were additionally disturbed within limits of the measuring accuracy of protractors 
(± 0.1% of the measuring range (–10° 10°) i.e. ± 36’’). The data prepared in such a way were 
used in controlling calculations. 

Three commonly occurring types of soil deformations, differing in their forms and  
in number of extreme points, were subjected to analysis. Results of calculation for each type 
of deformation are shown in the  figure (Figs. 3–5). The  calculations were performed for 
the configuration of n = 10 or 30 inclinometers (of the same length). 

The upper diagram (Figs. 3–5) contains: 
–– accurate solution (on which angles were found) – dashed blue line,
–– simplified solution (2) – dotted pink line,
–– one selected complex solution (typical for the given deformation form) – solid red line.

The lower diagram (Figs. 3–5) contains solution errors and their assessments: 
–– accurate error of the simplified solution (difference between the simplified solution and 

the accurate mathematical solution) – dotted pink line,
–– estimated error of the simplified solution – dotted green line,
–– accurate error of the complex solution – dashed blue line,
–– estimated error of the complex solution – solid red line.

Maximum displacement values of the module and errors are given in diagram headings. 
The  first case constitutes a  large, basin type soil subsidence, which may be modelled by 
equation (6) or (7). Equation (7) and a configuration of 10 inclinometers of a length L = 3 m 
were used in calculations. The results are presented in Fig. 3.

Fig. 3. Calculation results for the first form of the soil deformation (configuration of 10 inclinometers)
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The error of the  complex solution is one order smaller, and the  solution successfully 
estimates the simplified solution error. 

The second case constitutes the slope and its model will be the spline square interpolation, 
calculated according (7). The results, also for n = 10, are presented in Fig. 4.

Fig. 5. Calculation results for the third form of soil deformation (configuration of 30 inclinometers)

Fig. 4. Calculation results for the second form of soil deformation (configuration of 10 inclinometers)
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The last case (3rd) constitutes two crater type depressions of different depths. 
The configuration of n = 30 inclinometers with a length L = 1 m each, and the local weighted 
approximation (10)–(12) were used in calculations. The results are presented in Fig. 5.

The estimated errors can be used not only in statements of how accurate was the solution, 
but also, for example, the optimal planning of numbers and placements of measuring sensors. 
For the second calculation example there is a need for an increased number of sensors in 
the middle zone and of decreased outside it. One of the plans for the discussed system is 
checking its usefulness for the dynamic measurements of bridges.

7. Conclusions

The presented method of analysis of data obtained from the measurement chains built 
from inclinometric rods allows:
–– improvement of the result accuracy in cases of applying the classic inclinometric measu­

rements,
–– performance of measurements of soils displacements by means of measuring chains, wi­

thout protecting tubes.

Renouncement of using inclinometric tubes, the method allows the building of automated 
systems of significantly long measuring elements, and to achieve sensible costs of building 
the measuring system.

Two methods of fitting curves to measured data were presented and discussed here. 
The  commonly applied simplified technique is based on the  assumption of there being 
straight segments between the  measuring sensors, constituting the  straight broken line 
(first order spline function). Though it interpolates data points, its accuracy is usually low, 
with the highest errors located between the sensors. The second, more complex approach, 
is based on mathematical approximation methods, like Lagrange interpolation, spline 
functions of the higher orders (2, 3), and the most general method, local approximation 
generated by moving the least squares. The numerical tests performed clearly showed that 
these methods reproduce the actual solution (soil displacement) in a much more accurate 
manner, especially in cases where solution gradients are high (ground collapse or hillsides). 
Moreover, these solutions may be applied as the error estimators for the simplified solution, 
if necessary.
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