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Abstract
This paper presents a sensitivity analysis related to the solution of a stationary, linear system of second order 
equations of motion obtained by the Finite Element Method. The Direct Differentiation Method was 
presented in this paper. The essence of this method is the explicit differentiation of the system of equations 
with respect to parameters. As a result, derivatives of vectors and matrices are obtained. The necessary 
material derivatives of vectors and matrices associated with the simplest 3D beam element are presented. 
Sensitivity analysis consists in searching for changes in physical quantities in relation to selected parameters. 
Ultimately, the sensitivity analysis comes down to calculating derivatives of specific functions with respect 
to parameters. Real and continuous design variables are considered.
Keywords: sensitivity analysis, direct differentiation method, explicit differentiation

Streszczenie
Analiza wrażliwości polega na poszukiwaniu zmian wielkości fizycznych względem wybranych parametrów. 
Sprowadza się ona do obliczania pochodnych określonych funkcji. W pracy przedstawiono analizę 
wrażliwości rozwiązania stacjonarnego, liniowego układu równań ruchu drugiego rzędu otrzymanego 
metodą elementów skończonych. Przedstawiono metodę bezpośrednią analizy wrażliwości. Polega ona 
na bezpośrednim zróżniczkowaniu równań względem parametrów. W rezultacie uzyskano pochodne 
wektorów i macierzy. Przedstawiono niezbędne pochodne materialne wektorów i macierzy związanych 
z najprostszym elementem belki 3D. Rozpatrywano rzeczywiste i ciągłe zmienne projektowe.
Słowa kluczowe: analiza wrażliwości, bezpośrednia analiza wrażliwości, pochodne równania ruchu
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1.  Introduction

Sensitivity analysis consists in searching for changes in physical quantities in relation to 
changes in selected parameters, which are called design variables, decision variables or free 
variables. Ultimately, the sensitivity analysis comes down to calculating derivatives of specific 
functions with respect to parameters [10]. These parameters can determine the configuration 
of the structure (i.e. its geometry), properties of materials, dimensions or characteristics of 
cross-sections, etc. A wide discussion about various types of parameters is contained in [10, 
16, 19]. If the parameters depicts the geometry of the structure, then the sensitivity analysis 
is related to the determination of material derivatives [13].

In this paper, only real and continuous design variables are analysed. These variables can 
be arranged in the form of the vector h:

	 h � �[ , , , , ], ,h h h hp N pp1   R 	 (1)

where Np means the number of design variables.
Determination of derivatives of solutions (i.e. sensitivity analysis) is mostly used in the 

Optimization [16, 15], Identification, in the Structural Health Monitoring [8, 17, 5], Model 
Updating [18, 12]. Obtaining derivatives of solutions also provides valuable information at the 
design stage, indicating which parameter has the largest impact on the determined values [6, 10].

The broad literature has been focused on sensitivity analysis (see basic issues eg. [13, 10]). 
This analysis is commonly implemented in software dedicated to mechanical problems (see 
eg. [16, 7]) – unfortunately, it is less frequently applied in Civil Engineering software. The 
classic approach is dominated by two methods: Direct Differentiation Method (DDM) and 
Adjoint System Method. Numerous papers have been devoted to both methods. Additionally, 
the Virtual Distortion Method [11] and Virtual Load Method [2, 3] have been developed. All 
above methods are applied in both linear and nonlinear problems.

This paper presents a sensitivity analysis related to the solution of a stationary, linear 
system of second order equations of motion obtained by the Finite Element Method (FEM). 
The DDM will also be presented. The essence of this method is the explicit differentiation 
of the system of equations with respect to parameters. As a result, derivatives of vectors and 
matrices are obtained. The necessary material derivatives of vectors and matrices associated 
with the simplest 3D beam element are presented in this paper.

Presented approach is parallel to [1, 9, 6, 14].

2.  Second order matrix equation of motion

Movement of the structure with N dynamic degrees of freedom can be written using the 
N system of ordinary and stationary differential equations:
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M h x h C h x h K h x h F h

x h v h x

( ) ( , ) ( ) ( , ) ( ) ( , ) ( , ),

( , ) ( ),

 



t t t t� � �

�0 0 (( , ) ( ),0 0h u h�
�
�
�

��
	 (2)

where matrix M, C and K are symmetric and K is positive defined; displacement vector x 
dependent on time and design parameters. Similarly, the right hand side F(t, h) describes the 
excitation of the system. The dot above vector means differentiation over time, i.e.:

	
x h

x h
( , )

( , )
.t

t

t
�
�

�
	 (3)

In the equation (2) the dependence of the existing matrices on the parameter vector is 
marked explicitly. In general, the initial conditions may also depend on design parameters. In 
the analysis of civil structures, it is often assumed that these conditions are zero:

	 v h 0 u h 00 0( ) , ( ) .= = 	 (4)

The common used method of obtaining the equation (2) is FEM [4]. The matrices of the 
system are global matrices expressed in the global coordinate system after the aggregation 
process. Typically, boundary conditions are also included in the matrices of the (2) system.

One of the method of considering the boundary conditions of the structure and introducing 
them into the matrix of the system is reorganization of matrices. The key is isolation and ordering 
those elements of the displacement vector x of which absolute displacements are known (equal 
to zero for fixed supports or non-zero for supports receiving settlements, offsets, etc.). The 
subvector of known generalized displacements is denoted as xb. The remaining components 
are ordered in xs subvector, which is associated with unknown displacements of nodes which 
do not have contact with a boundary. All matrices and vectors are subject to similar division:
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x
x
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P R

ss sb

bs bb

s

b

s

b b
, 	 (5)

where for all matrices there is ( ) ( )� � �bs sb
T  (symmetry). Vector Rb consists of reactions 

i.e. unknown nodal forces associated with the boundary. By expandig the equation (5) we 
obtained:

	
M x C x K x P M x C x K x
R P M x

ss s ss s ss s s sb b sb b sb b

b b bb b

   



� � � � � �
� �

,
�� � � � �

�
�
� C x K x M x C x K xbb b bb b bs s bs s bs s   .

	 (6)

The first equation in (6) is a state equation – it allows to calculate unknown displacements xs 
of non-boundary nodes of a model, with known nodal loads and nodal support displacements. 
The second equation in (6) allows to calculate the unknown reactions Rb in support nodes 
with previously determined components of the vector xs. All occurrences of vectors in (6) are 
dependent on the h vector, which is not written for the clarity.
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Equations (6) are the general form of discrete motion equations with any kinematic 
excitations. Thus, one can solve them, for example, the response of a structure subjected to a 
seismic excitation to any function xb = xb(t) (depending only on time) which is theoretically 
different for each degree of freedom associated with the boundary. The generality of this rule 
allows to analyse spatially sprawling structures (long bridges, pipelines, dams, geotechnical 
objects, etc.) subjected to kinematic excitations caused by a moving seismic wave. It is also 
possible to design buildings subjected to kinematic excitations caused by trains, road traffic 
(heavy vehicles or trams) or subway etc.

On the other hand the presence of the Ps component allows to enter any other excitations 
forces (including harmonics) into free nodes of the mechanical system.

If the boundary conditions are unchanged in time (no movement of supports) and equal 
to zero (no static settlements), i.e. xb(t, h) ≡ 0, then the equations (6) take the form:

	 M x C x K x P
R P M x C x K x

ss s ss s ss s s

b b bs s bs s bs s

 

 

� � �
� � � �

�
�
�

,
.

	 (7)

However, if there is no force excitation in the system P(t, h) ≡ 0 and only kinematic inputs 
are present, then:

	
M x C x K x M x C x K x
R M x C

ss s ss s ss s sb b sb b sb b

b bb b bb

   



� � �� � �
�� �

,
  x K x M x C x K xb bb b bs s bs s bs s� � � �

�
�
� .

	 (8)

In the analysis of building structures most often a simpler form of kinematic excitations is 
assumed – this is connected with the assumption that the movement of the base within the 
foundations can be treated as a movement of a rigid body which usually has three translational 
degrees of freedom (or six DOFs including rotation of the base). So, it possible to write two 
dependencies:

	 x h B h u x h A h u y hb b s b st t t t t( , ) ( ) ( ), ( , ) ( ) ( ) ( , ),� � � 	 (9)

where: vector ub describes the absolute, stiff movement of the base, the matrix B expresses 
the purely geometric relationship of motion of nodes of the boundary of the structure 
with ground movement, vector ys expresses relative displacements of the free nodes of the 
structure, matrix A expresses the purely geometric relationship of motion of free nodes of 
structure which is result of the motion of rigid ground and is equal to:

	 A K K B�� �
ss sb

1 . 	 (10)

Assuming that the damping of the structure is defined by the classical proportional 

relations C = αM + βK and it is small (i.e. 0 1�� �  )  and that low frequencies dominate 
in excitation, the first equation in (8) takes the form:
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	 M y C y K y M M K K Buss s ss s ss s sb ss ss sb b  � � �� � �( ) .1 	 (11)

Further considerations assume zero initial conditions (4) for (2).

3.  Drect differentiation method

The essence of the DDM is the direct differentiation of the equation (2) with respect to 
the parameter hp. After differentiation and arrangement, we get:

	 M
x

C
x

K
x F M

x
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, 	 (12)

where zero initial conditions were assumed and the symbol D()/Dhp denotes a material 
derivative of a given quantity.

The introducing of the material derivative [13] is important due to the fact that changing 
some parameters (e.g. element length) may involve changing the configuration and geometry 
of the structure, which in turn causes that a material point as a result of this change has a 
different position in space than before. Thus, the computed spatial derivative would not be 
expressed as a quantity. From a mathematical point of view, the material derivative of 
f f t s= ( , ( ), )h h  is a derivative of a composition mapping:

	
D
D

f

h
f
s

s
h

f
hp p p

�
�
�

�
�

�
�
�

, 	 (13)

where the first summand of (13) is associated with the change node location (convection) 
and the second summand expresses the change of function f at the fixed node position. Due 
to the rules of differentiating vectors and matrices, the formula (13) is transferred to the 
components of these objects. If the parameter does not specify the geometry of the structure 
and specify of properties of material or the cross-section, then the material derivative is 
equivalent to a simple derivative (no dependence of f on the s variable).

Finally, derivatives DM/Dhp, DC/Dhp, DK/Dhp in (12) means material derivatives 
of inertia, damping and stiffness matrix; Dx/Dhp and DF/Dhp denote material derivatives 
of system response and excitation. The Dx/Dhp and its derivatives with respect to time are 
unknowns in the equation (12). Thus, by comparing (2) and (12) we can see that in order to 
determine the material derivatives of the response from the equation (12) we should resolve 
(2) earlier by designating the x vector and its time derivatives.

From a formal point of view, equations (2) and (12) have a similar structure – they differ 
only in the right hand side. Therefore, known and typical methods of direct integrating second 
order equations can be used.

The next two sections present vectors and matrices and their derivatives used in (12).
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4.  Vectors and matrices for 3D beam elements

The FEM belongs to the basic numerical methods of solving physical problems. In this 
section element matrices and their derivatives in relation to beam elements are shown. Beams 
describes straight frame bars (without shearing) in 3D space. Explicit forms of the stiffness, 
inertia and damping matrices were presented, without reference to the shape functions. The 
following text presents only the dependencies necessary to obtain derivatives.

The FEM introduces two types of orthogonal and right coordinate systems: the element’s 
local system for each element and one common global system – Fig. 1. Local system with 
versors 

 


i h j h k he e e( ), ( ), ( )  can be generally a system depending on the parameters h.

A typical beam element e is the line segment between nodes i, j. Vectors  r h r hi j( ), ( ), 
specified in the global coordinate system, indicate the location of the nodes. For an 
unambiguous orientation of the local coordinate system, an additional point k should be 
introduced with vector r hk ( ). Then the versors of the local coordinate system are given the 
following formulas:

	


 

 i h
r h r h

h
h r h r he

j i

e
e j iL

L( )
( ) ( )

( )
, ( ) ( ) ( ) ,�

�
� �where 	 (14)

	




 



 

k h
i h r h r h
i h r h r he

e k i

e k i

( )
( ) [ ( ) ( )]
( ) [ ( ) ( )]

,�
� �
� �

	 (15)

	








j h
k h i h

k h i h
e

e e

e e

( )
( ) ( )
( ) ( )

.�
�
�

	 (16)

The cross × means the vector product. As noted above, the vector r hk ( ),  in general, 
is dependent on the parameters h – it means that sensitivity analysis is possible due to the 
spatial orientation of the element’s cross section. This orientation is often associated with 
parameters defining the geometry of the structure.

Fig. 1.	 Coordinate systems: global OXYZ and local 3D beam element oxyz.  
Orientation of an exemplary cross-section
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The set of vectors r hl ( ),  where l iterates through all nodes of the FE model, unambiguously 
defines the geometry of the structure.

Any vector rg  specified in the global coordinate system OXYZ has coordinates in the 
local system of the e element defined by vector re .  Both vectors are related by geometric 
transformation:
	  r h t h r he e g( ) ( ) ( ),= 	 (17)

where the transformation matrix te(h) is given by:

	 t h

i i h j i h k i h
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hh
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e e e
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�
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�

	 (18)

The circle  means the dot product. Due to the orthogonality of both coordinate systems, 
the asymmetric matrix te is orthonormal, i.e.:

	 t t t t Ie
T

e e e� ��1 . 	 (19)

The nodal forces f and the moments m acting in nodes i, j of the beam element e (Fig. 2), 
can be arranged in the following columns:

	 f f m mi
T

xi yi zi j
T

xj yj zj i
T

xi yi zi j
Tf f f f f f m m m= = = =[ , , ], [ , , ], [ , , ], [[ , , ].m m mxj yj zj 	 (20)

Fig. 2.	 Presentation of forces f and moments m and translation u and angular φ displacements in nodes 
i – j of finite element e
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Between local and global values based on (17) there is:

	 p h T h P he e e( ) ( ) ( ),= 	 (21)

where the dependence of the existing quantities on the h parameter vector has been marked. 
Additionally:

	 p f m f m P F M F M T t t t te
T

i i j j e
T

i i j j e e e e e= = =[ , , , ], [ , , , ], [ , , , ].diag 	 (22)

Vectors of forces Fi, Fj and nodal moments Mi, Mj are defined in the global system.
Based on (19), the inverse of the relationship (21) is given by the formula:

	 P h T h p h T h p he e e e
T

e( ) ( ) ( ) ( ) ( ).� ��1 	 (23)

This equation should be used for the aggregation of the node load vector when the pe 
vectors are known.

By analogy to (20), the displacements vectors are defined in the e nodes (Fig. 2):

	 u ui
T

xi yi zi j
T

xj yj zj i
T

xi yi zi j
Tu u u u u u� � � �[ , , ], [ , , ], [ , , ],�� ��� � � [[ , , ].� � �xj yj zj 	 (24)

Similarly to (22), an additional arrangement of displacements is introduced:

	 u u u x x xe
T

i i j j e
T

i i j j� �[ , , , ], [ , , , ],�� �� �� �� 	 (25)

where ue – are generalized nodal displacements of the element in the local system, xe – are 
generalized nodal displacements of the element in the global system. Therefore, for the 
displacement vectors, the relationship is identical to (21):

	 u h T h x he e e( ) ( ) ( ).= 	 (26)

The physical relation joins the nodal displacement ue with the nodal forces pe occurs 
throughout the element stiffness matrix ke:

	 p h k h u he e e( ) ( ) ( ),= 	 (27)

where matrix ke has the following structure:

	 k
k k

k k
k ke

e

e

ii
e

ij
e
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e

jj
e ij

e
ji
e TE

L
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�
�
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�
�
�

�3 , ( ) . 	 (28)

The matrix ke was defined in the local system. A sequence of formulas for the submatrices 
appearing in the (28) is presented below:

	 k
k k

k k
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e e
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21 33
12 21 	 (29)



127

Also:
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e
ye ze4 1( )
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In the entries of the above formulas the dependence on h was omitted, for the sake of 
simplicity. An analogous relation to (27) occurs at the element level for objects defined in the 
global system, i.e.:
	 K h x h P he e e( ) ( ) ( ),= 	 (31)

where the stiffness matrix Ke of the element in the global system is related to the matrix ke 
by the known transformation

	 K h T h k h T he e
T

e e( ) ( ) ( ) ( ).= 	 (32)

The inertia matrix of the element e written in the local system has the following structure:
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�� , ( ) . 	 (33)

The sequence of the formulas containing the submatrices appearing in the (33) is 
summarized below:
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where:
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The relation of the inertia matrix Me of the element e written in the global system with the 
matrix me written in the local system of the element is analogous to (32).

The elemental matrices Me, Ke and the vector of nodal loads Pe, defined in the global 
system, constitute the basis for the aggregation of global arrays of the system of equations and 
global vectors [4]. The general formula of these matrices can be summarized as:

	 M M K K P P= = =
e

e
e

e
e

eA A A, , , 	 (36)

where the A character should be understood in sense of an aggregation operation.
The global damping matrix C is defined as usual proportional matrix:

	 C h h M h h K h( ) ( ) ( ) ( ) ( ), .� � �� � � �0 1 
	 (37)

5.  Derivatives of vectors and matrices

Length Le of an element is present in all formulas defining element matrices – hence, it 
is necessary to derive a derivative of this value with respect to h. The derivative is given by:
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Derivatives D Drje ph/  and D Drie ph/  of the coordinates of the ends of the bar 
element must be known and/or calculated before. These derivatives are obtained with known 
parametrizations of curves or surfaces on which the FE nodes lie.

Derivatives of the versors of the local coordinate system (14)÷(16) are the next functions 
to be determined:
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Now, having derivatives of the versors of the local coordinate system, the derivatives of the 
transformation matrix te and Te should be calculated. The derivative of the matrix Te allows 
to specify the bar stiffness changes in the global coordinate system due to the change of the 
configuration described by the parameters hp. The derivation of D Te /Dhp reduced to the 
calculation of D te /Dhp using equations (18) and (22). Thus:
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Shown derivatives express that in the most complicated case, when the hp describes the 
configuration of the structure, non-zero derivatives remain dependencies indirectly or directly 
on vectors of the ends of the element e, i.e. from   r r rie je ke, .and  Thus, non-zero derivatives 
remains of transformation matrix D te /Dhp, D Te /Dhp and above all D Le /Dhp. It is also 
important that the arrays of derivatives in (42) often lose their orthogonality.

The derivation of the stiffness matrix ke in the local system with respect to hp is defined by 
the following formulas:
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(43)
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where:
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Additionally:
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It was assumed that Poisson’s ratio νe does not depend on the hp which is justified in 
practices. Matrix of the derivatives D ke /Dhp is symmetrical, but often it is not positively 
defined (negative values and zeros may happen on the diagonal).

The derivative of the stiffness matrix of an element in the global system is given by the 
formula:
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where the dependence of (32) and equality
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was utilized.

The derivative of the inertia matrix me of the element e in the local coordinate system with 
respect to hp is expressed by the following formulas:
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where:
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Additionally:
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The derivative of the inertia matrix of an element in the global system is given by the 
formula:
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On the end, the derivative of the global damping matrix C is equal to:
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if that happens α, β depends on h, in general.
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For derivatives of elemental matrices the aggregation process of global derivatives arrays is 
identical as the aggregation process for global matrices (36):
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6.  Conclusions

The DDM is simple in its mathematical form as well as in numerical implementation. The 
basic equation of the (12) has a similar form as the motion equation given in (2). Therefore 
it is easy to use the known methods of direct integrating of the equation of motion to obtain 
derivative of displacements, velocities and accelerations.

The algorithm of the DDM reduced to a one-time calculation of the system response via 
(2) and the need to integrate the equation of derivatives (12) for each parameter separately. 
This is a fundamental disadvantage of DDM. Because in the case of a huge model with 
thousands of degrees of freedom and of large number of parameters, the DDM method 
becomes ineffective. A helpful solution is using parallel algorithms.

In the range of civil engineering problems, where beam models predominate – so in fact 
with relatively small number of dynamic degrees of freedom, the DDM is attractive because 
of relative easy of software application.
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