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A b s t r a c t

We give an elementary proof of the following theorem on definability of Hausdorff limits of one 
parameter families of definable sets: let A n⊂ ×   be a bounded definable subset in o-minimal 

structure on ( , , ) + ⋅  such that for any y c c∈ ( , ), ,0 0>  the fibre A x y x Ay
n: { : ( , ) }= ∈ ∈  

is a Lipschitz cell with constant L independent of y. Then the Hausdorff limit lim
y yA
→0

 exists 

and is definable.
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S t r e s z c z e n i e

W prezentowanej pracy przedstawiamy elementarny dowód następującego twierdzenia o de-
finiowalności granicy Hausdorffa jednoparametrowej rodziny zbiorów definiowalnych: niech 

A n⊂ ×   będzie ograniczonym zbiorem definiowalnym w strukturze o-minimalnej typu 

( , , ) + ⋅  takim, że dla dowolnego y c c∈ ( , ), ,0 0>  wókno A x y x Ay
n: { : ( , ) }= ∈ ∈  jest ko-

mórką Lipschitza ze staą L niezależną od y. Wtedy granica Hausdorffa lim
y

yA
→0

 istnieje i jest 

definiowalna.
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1.  Introduction

In [1] Bröcker proved that for any family of semialgebraic sets Ay and any convergent 
sequence yv of parameters the Hausdorff limit of Ayν  exists and is semialgebraic. In [3] 
a short geometric proof of the generalization of Bröcker’s result to the case of sets definable 
in an o-minimal structure was given.

The aim of this paper is to present an elementary proof of the following one-parameter 
case of this result 

Theorem 1. Let A n⊂ ×   be a definable subset in an o-minimal structure on  

( , , ) + ⋅  such that for any y c c∈ ( , ), ,0 0>  the fibre A x y x Ay
n: { : ( , ) }= ∈ ∈  is a bounded 

Lipschitz cell with constant L independent of y. Then the Hausdorff limit lim
y yA
→0

 exists and is  

definable.
For the convenience of the reader we present in Section 2 results on Hausdorff distance 

and o-minimal structure that we use in the proof of the main result. 

2.  Preliminaries

2.1.  Hausdorff distance.

Let (X, d) be a complete metric space, denote by (X) the space of all non-empty compact 
subsets in X.

Definition 1. For any two sets Y Y X1 2, ( )∈  we define Hausdorff distance as

	 d Y Y d x y d x yH x Y y Y y Y x Y
( , ) max{max min ( , ),max min ( , )}1 2

1 2 2 1

=
∈ ∈ ∈ ∈

	

Remark 1. Hausdorff distance of two sets is the infimum of positive numbers ε > 0 such 
that each of them is contained in the ε-envelope of the other, i.e.
	 d Y Y Y B Y Y B YH ( , ) inf{ ; ( , ) and ( , )}1 2 2 1 1 20= ⊆ ⊆ε ε ε> 	

where
	 B Z B zz Z( , ) ( , )ε ε= ∈ 	

for any Z X∈( ) and .ε> 0

Remark 2. Observe that the function d X X: ( ) ( ) × → +  defined by the following 
formula

	  d Y Y d x Y x Y Y Y X( , ) : max{ ( , ) : }, , ( )1 2 2 1 1 2= ∈ ∈for  C 	

where

	 d x Y d x y y Y x X Y X( , ) : min{ ( , ) : }, , ( )= ∈ ∈ ∈for  C 	
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cannot be used to define a metric on (X) as in general the function d  is not symmetric, 
we have only the following

	 d Y Y d Y Y d Y Y YY XH ( , ) max{ ( , ), ( , )} ( ).1 2 1 2 2 1 1 2= ∈  for  	

Example 2. Let Y1 = (0,15) and Y2:=[8,112] × {0}, then

	  d Y Y d Y Y( , ) ( , ).1 2 2 117 113= = = 	

By definition, in this example we have dH(Y1, Y2)=113.
We end this section with the following characterization of convergence in Hausdorff 

metric.
Theorem 3. Let X be a compact metric space, A A Xv, ( ), , , ,∈ = ν 1 2 3 . Then the 

sequence Av converges to A in Hausdorff metric ( )A Aν  →  iff the following two conditions 
hold

1)  ( , , ) ,x A x x x A
k k kν ν ν ν ν ν∈  → ⇒ ∈0 1 2 3 0< < <

2)  x A x A such that x x0 0∈ ⇒ ∃ ∈  →ν ν ν .

Proof. First we shall prove that conditions 1) and 2) are necessary for the convergence 
in Hausdorff metric.

Assume that A Aν  → ,  since X is a compact set we can find a sequence x A
k kν ν∈  

(with ν ν ν1 2 3< < <)  such that x x
kν  → 0  for some poin x0 ∈ X. We want to show that 

x0 ∈ A. Since the set A is compact and x A
k kν ν∈  there exists y A

kν ∈  such that

	 d x y d x A d A A
k k k kH( , ) ( , ) ( , )ν ν ν ν= → £ 0 	

Therefore d x y
k k

( , ) .ν ν  → 0  We shall show that d x A( , ) .0 0=  Observe that

	 d x A d x y
k

( , ) ( , )0 0£ ν 	

As y A
kν ∈  and consequently

	 d x y d x x d x y
k k k kv( , ) ( , ) ( , ).0 0ν ν ν£ + 	

Therefore d x A x A A( , ) .0 00= ∈ =and

Assume that A Aν  →  and x0 ∈ A. To prove that condition 2) is necessary fix a point 

xν ∈ Aν for v = 1, 2,… such that d x x d x A( , ) ( , ).0 0ν ν=   Then

	 0 00 0 0£ £ £d x x d x A d x A d A AH( , ) ( , ) ( , ) ( , )ν ν ν ν=  →  	

implies d(x0, xν) → 0.
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Now, we shall prove the opposite implication. Assume to the contrary that conditions 
1) and 2) hold while the sequence (Aν) does not converge to A. Then there exists ε > 0 such 
that dH(Aν, A) > ε for infinitely many ν. Consequently at least one of the inequalities

	  d A A d A A( , ) ( , )ν νε ε> >or 	

holds for infinitely many ν.

In the first case there exist ν ν ν1 2< < and x A
k

∈  such that d x A
k

( , ) ,ν ε>  since X is 

compact replacing x
kν

 by a subsequence we can also assume that x
kν

 converges to a point 

x0 ∈ X. From condition 1) we get x0 ∈ A which contradicts d x A
k

( , ) .ν ε>

In the second case for infinitely many v there exists yν ∈  A such that d y A( , ) ,ν ν ε>  

by compactness of A there exists a sequence ν ν1 2< <  such that d y A
k k

( , )ν ν ε>  and 

y x
kν  → 0  for some x0 ∈ A. By condition 2) there exists x A

k kvν ∈  such that x x
kν  → 0.  

In this situation we have

	 ε ν ν ν ν ν ν< ≤ ≤d y A d y x d y x d x x
k k k k k k

( , ) ( , ) ( , ) ( , )0 0 0+  → 	

which is a contradiction.


Remark 3. The above theorem does not hold without the assumption that X is a compact 
space.

Example 4. Let X be any non-compact complete space, fix x0 ∈ X, let xv ∈ X be a sequence 
that does not contain any convergent subsequence. Put A:= {x0}, Aν = {x0, xν}. Then conditions 
1) and 2) hold true but the sequence Aν does not converge in Hausdoff metric.

2.2.  o-minimal structures.

We shall collect here the basic definitions and properties of o-minimal structures that 
are crucial for our further considerations. For a detailed exposition of o-minimal structures 
we refer the reader to [2].

Definition 2. A structure  on  consists of a collection n of subsets of n, for each 
n ∈ , such that
1.  n is a boolean algebra of subsets of n,
2.  n contains the diagonals d x x x x x x i j nn

n
i i( , {( , ) : } ,0 1 1 ∈ = for ≤ < ≤

3.  if A ∈ n+1, then A ×  and  × A belong to n+1,
4.  if A  ∈  n+1, then π(A)  ∈  n, where π: n+1 → n is the projection on  the first n  

coordinates.
We say that a set A ⊂ n is definable if and only if A ∈ n. A function f: A → m with 

A ⊂ n is called definable if and only if its graph is definable.
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Definition 3. A structure  on  is o-minimal if and only if
1.  {( , ) : } { } ,x y x y a a< ∈ ∈ ∈ 2 1and for each 
2. each set in  is a finite union of intervals ( , ), ,a b a b− +∞ ≤ < ≤ ∞  and points {a}.

A structure on ( , , ) + ⋅  is a structure on  containing the graphs of both addition and 
multiplication.

The main technical tool used in the studies of geometry of sets definable in o-minimal 
structures is the cell decomposition. The notions of a cell and that of a cell decomposition are 
defined inductively.

Definition 4. The cells in 1 exactly are points and open intervals.
A definable set C ⊂ n, where n > 1, is a cell if its image π(C) ⊂ n‒1 by the projection 

π : ( , , , ) ( , , ) n
n n n

nx x x x x∋  → ∈− −
−

1 1 1 1
1

   is a cell and C is one of the following two 
types:
either
	 C f x x C x f xn n= = ′ ∈ × = ′Γ( ) {( , ) ( ) : ( )}π  	

(and then C is called a graph)
or
	 C g g x x C g x x g xn n= = ′ ∈ × ′ ′( , ) : {( , ) ( ) : ( ) ( )}1 2 1 2π  < < 	

(and then C is called a band),

where f: π(C) →  is a continuous definable function (resp. g g C1 2, : ( )π →   are functions 
such that g1 < g2 on π(C) and, for each i ∈ {1, 2}, gi is either a continuous definable function 
gi: π(C) →  or gi is identically equal to ‒¥, or else gi is identically equal to +¥).

A cell C is called a k-cell (where k ∈  È {¥}), if π(C) is a k-cell and f (resp. gi, i = 1, 2 
if finite) is a k-function. Notice that every k-cell is a k-submanifold of n.

Definition 5. A cell decomposition of 1 is a finite collection of open intervals and points 
of the following form:
	 {( , ), ( , ), , ( , ),{ }, ,{ }},− +¥ ¥a a a a a ak k1 1 2 1  	

where a a ak1 2< < <  are real numbers.
A cell decomposition of n

 (n > 1) is a finite partition  of n into cells such that the set 
of all projections {π(C): C∈} is a cell decomposition of n‒1, where π: n → n‒1 is the 
projection on the first n ‒ 1 coordinates as in Definition 4.

Theorem 5. Let (X, d) be a compact metric space, fn: X →  be a sequence of Lipschitz 
continuous functions with a common Lipschitz constant M > 0. Then the sequence (  fn) 
converges uniformly to a function f0 if and only if their graphs converge to the graph of f0 
in Hausdorff metric.

Moreover,
 
f f

n n0 =
→
lim

¥
 is a Lipschitz function with the Lipschitz constant M.
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Proof. Let us notice that if f fn  0  then f0 is a Lipschitz function with constant M.

	 f x f y f x f y M d x y M d x y
n n n n0 0( ) ( ) lim ( ) ( ) lim ( , ) ( , ).− = − ⋅ = ⋅

→ →∞ ∞
≤ 	

We will prove that

	 d graph f graph f f f M d graph f graph fH n n H n( , ) ( ) ( , ).0 0 01£ £− + ⋅ 	

First we shall show the first of the inequalities:

	 d graph f graph f f fH n n( , ) .0 0£ − 	

	 d graph f graph f d graph f graph f d graph f graH n n n( , ) max{ ( , ), ( ,0 0=   pph f0 )} 	
As the inequality is symmetric with respect to f0 and fn, we may assume that 

 d graph f graph f d graph f graph fn n( , ) ( , )}0 0³  and then 

	

d graph f graph f d graph f graph f

x X d x f
H n n( , ) ( , )

max{ : (( , (
0 0

0

= =

= ∈



 xx graph f
x X d x f x x f x
x X f

n

n

)), )}
max{ : (( , ( )), ( , ( ))}
max{ :

£

£ ∈ =

= ∈
0

0 (( ) ( ) }x f x f fn n− = −0

	

Now we shall show that

	 f f M d graph f graph fn H n− + ⋅0 01£ ( ) ( , ) 	

Fix x ∈ X and let y ∈ X such that

	
d graph f graph f d x f x y f y

d x y f x f
H n n( , ) (( , ( )), ( , ( ))

( , ) ( )
0 0

0

³  =

= + − nn ny d x f x graph f( ) (( , ( )), )³ 

0

	

Consequently

	

f x f x f x f y f y f x
M d x y d graph h f

n n n n

H

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( ,

− − + −

⋅ +
0 0

0

£ £

£ ggraph f
M d graph f graph f d graph f graph f
M

n

H n H n

)
( , ) ( , )

(

£

£ ⋅ + =

= +
0 0

1)) ( , )⋅d graph f graph fH n0

	

and taking the limits we conclude the proof.


3.  Proof of the main result

Let us start with some technical results on extending Lipschitz functions
Lemma 6. Let F n: ( , )0 1 × →   be a bounded definable map such that for any  

y ∈ (0, 1) the restriction F x F y xy
n: ( , ) ∋  → ∈  satisfies the Lipschitz condition with 
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a constant  independent of y. Then for any a ∈ n the limit lim ( , )
( , ) ( , )y x a

F y x
→ 0

 exists and 

defines a definable extension of F to a function F n: [ , ) .0 1 × → 

Proof. For any a ∈ n the function ( , ) ( , )0 1 ∋  →y F y a  is definable, so there exists 

the limit F a F y a
y

( , ) : lim ( , ).0
0

=
→

 Now, F y x F a F y x F y a F y a( , ) ( , ) ( , ) ( , ) ( , )− − + − 0 £
 

 F a L x a F y a F a( , ) ( , ) ( , ) ,0 0£ − + −  hence the limit in question exists. Since, the graph 

of F  is the closure of graph (F), the function F  is definable.


Lemma 7 (Banach–McShane–Whitney extension theorem, [6]). Let f  :  S →  be 
L-lipschitz function on the subset S in a metric space X. Then the formula
	 F x f x L d x x x S( ) : sup{ ( ) ( , ) : }= ′ − ⋅ ′ ′∈ 	

For x ∈ X defines the extension of the function f such that F: X →  is L-lipschitz.
Now, we are in a position to give the proof of our main result
Proof of Theorem 1. Induction with respect to n. For n = 0 it is obvious. Let A1 be the 

projection of A onto  × n‒1, by the inductive hypothesis the limit A A
y y0 0 1: lim ( )=

→
 exists 

and is definable. Without loss of generality we may assume that dim(A1)y and dim(Ay) is 
constant for y ∈ (0, c), so all cells Ay are of the same type (a graph or a band).

If all fibres are graphs, there exists a definable function F: A1 →  such that A = graph (F), 
for any y ∈ (0, c), the function Fy is Lipschitz with a constant L independent of y. Using 
lemmas 6 and 7 we can extend this function to a definable function F c n: [ , ) ,0 × →   set 
 F x F x0 0( ) : ( , ),=  for x ∈ n.

Let C graph F A: ( ),= 

0 0  we shall show lim .
y yA C

↔
=

0
 Let yv ∈ (0, c) be a sequence such 

that y x A x xyν ν νν
 → ∈  →0 0, ,let  be a convergent sequence, we shall prove that 

x ∈ C. Let x x x x x xn nν ν
ν= ′ = ′( , ) ( , ).and 0 0

0
 We have ( , ) ( ) , .y x A x Ayν ν ν

′ ∈ ′ ∈1 0 0so  By the 

definition F x F y x x xn n0 0
0( ) lim ( , ) lim ,′ = ′ = =→ →ν ν ν ν

ν
¥ ¥  hence x ∈ C.

Now, let x  ∈  C and yv ∈ (0, c) be a sequence such that yν  → 0.  Since ′ ∈x A0 0 ,  
x F xn

0
0 0= ′ ( )  there is ′ ∈x A yν ν

( )1  such that ′  → ′x xν 0.  Put x F y xn n
ν

ν= ′( , ),  we get x Ayν ν
∈  

and x F y x F x F x xn n
ν

ν ν= ′  → ′ = ′ =( , ) ( , ) ( ) . 0 0 0 0
0  Consequently we have x xν  → 0  which 

proves lim .
y yA C

→
=

0

If  is a band for y ∈ (0, c) proceeding in a similar way, we have A = (G,H), where 
G H A, : 1  →   and define  G H0 0, .  We shall show that
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	 C x x A G x x H xn
n:{ : , ( ) ( )}∈ ′∈ ′ ′ 0 0 0

 £ £ 	

is the Hausdorff limit of Ay as y y c → ∈0 0, ( , ).

Let yν  ∈  (0,  c) be a sequence such that y x A x xyν ν νν
 → ∈  →0 0, , .let  Let 

x x x x x xn
v

nν ν= ′ = ′( , ) ( , ).and 0 0
0  We have ( , ) ( ) , .y x A x Ayν ν ν

′ ∈ ′ ∈1 0 0so  By the definition 

 G x G y x G x G y xv0 0 0 0( ) lim ( , ), ( ) lim ( , )′ = ′ ′ = ′→ →¥ ¥ν ν ν ν ν  so

	  G x x H xn0 0
0

0 0( ) ( )′ ′£ £ 	

and hence x0 ∈ C.
Now, fix x0 ∈ C and yν ∈ (0, c) such that yν  → 0.  We have ′ ∈x A0 0  and G x0 0( )′ £  

x H xn
0

0 0£  ( ).′  There exists ′ ∈x A yν ν
( )1  such that ′  → ′x xν 0.

If  G x H x0 0( ) ( )′ = ′  put x G y x H y xn
v = ′ ′1

2
( ( , ), ( , )).ν ν ν ν  If  G x H x0 0( ) ( )′ ′<  put 

x
x G x

H x G x
H y x G y x Gn

nν
ν ν ν ν=

− ′
′ − ′

′ − +
0

0 0

0 0 0 0



 

( )
( ( ) ( ))

( ( , ) ( , )) (yy xν ν, ).

Then x A x xyν νν
∈  →and 0.


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