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Abstract

We give an elementary proof of the following theorem on definability of Hausdorff limits of one

parameter families of definable sets: let 4 = R xR” be a bounded definable subset in o-minimal
structure on (R,+,-) such that for any y € (0,c), ¢>0, the fibre 4, :={xe R”:(y,x) € 4}

is a Lipschitz cell with constant L independent of y. Then the Hausdorff limit lim Ey exists
y—0

and is definable.
Keywords: Hausdorff limit, definable sets, o-minimal structure
Streszczenie
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finiowalnos$ci granicy Hausdorffa jednoparametrowej rodziny zbioréw definiowalnych: niech

AcRxR" bedzie ograniczonym zbiorem definiowalnym w strukturze o-minimalnej typu
(R,+,-) takim, ze dla dowolnego y €(0,c), ¢ >0, wokno Ay ={xeR":(y,x)e 4} jest ko-

morka Lipschitza ze stag L niezalezng od y. Wtedy granica Hausdorffa lim Zy istnieje 1 jest
y—0

definiowalna.
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1. Introduction

In [1] Brocker proved that for any family of semialgebraic sets 4 and any convergent
sequence y, of parameters the Hausdorff limit of A, exists and is semialgebraic. In [3]

a short geometric proof of the generalization of Brocker’s result to the case of sets definable
in an o-minimal structure was given.

The aim of this paper is to present an elementary proof of the following one-parameter
case of this result

Theorem 1. Let AcRxR" be a definable subset in an o-minimal structure on
(R,+,7) such that for any y € (0,c), ¢ >0, thefibre A, :={xe R" :(y,x) € 4} is a bounded

Lipschitz cell with constant L independent of y. Then the Hausdorff limit lim Zy exists and is
y—0

definable.

For the convenience of the reader we present in Section 2 results on Hausdorff distance
and o-minimal structure that we use in the proof of the main result.

2. Preliminaries

2.1. Hausdorff distance.

Let (X, d) be a complete metric space, denote by C(X) the space of all non-empty compact
subsets in X.

Definition 1. For any two sets Y,Y, € C(X) we define Hausdorff distance as

dy (Y,,Y,) = max{max mind(x, y),max mind(x, y)}
xel, yel, yel, xek;

Remark 1. Hausdorff distance of two sets is the infimum of positive numbers € > 0 such
that each of them is contained in the g-envelope of the other, i.e.

dy (4. Y,) = infle > 0; Y, < B(K.¢) and K < B(¥5.¢)}

where
B(Z,e)=U.., B(z,¢)
forany Z e C(X) and € > 0.
Remark 2. Observe that the function d :C(X)xC(X)—> R, defined by the following

formula

d(¥,,Y,)=max{d(x,Y,):x €Y}, for ¥,Y eC(X)
where

d(x,Y):=min{d(x,y):yeY}, for xeX,YeC(X)
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cannot be used to define a metric on C(X) as in general the function d is not symmetric,

we have only the following
dy (1. %,) = mac{d(%. By), d(Y. 1)} for EY, € CLX).
Example 2. Let Y, = (0,15) and Y,:=[8,112] x {0}, then
d(%.Y,)=17=113=d(Y,.Y)).

By definition, in this example we have d, (Y, Y,)=113.

We end this section with the following characterization of convergence in Hausdorff
metric.

Theorem 3. Let X be a compact metric space, A,A4, €C(X), v=L12,3,.... Then the

sequence A converges to A in Hausdorff metric (A, ——> A) iff the following two conditions

hold
1) (ka eAVk’ka —)XO,VI <V2 <V3 <...):>x0 EA,

2) xp€e A=3x, € A, such that x,—> x,.

Proof. First we shall prove that conditions 1) and 2) are necessary for the convergence
in Hausdorff metric.

Assume that 4, —— 4, since X is a compact set we can find a sequence x, €4,
(with v; <v, <v; <...) suchthat x, —— x, for some poin x, € X. We want to show that

x, € A. Since the set 4 is compact and x, € 4, there exists y, €A such that
d(xy 5 py) = d(x, A < dy (4, ,4)—>0
Therefore d(x,,,y, )—>0. We shall show that c?(xO,A) = 0. Observe that
d(xo, ) < d(x0.3,,)
As y, €4 and consequently
d(xy.3,,) < d(xp.x, ) +d(x, .y,

Therefore d(x,,4)=0 and x, € 4 = A.

Assume that 4, ——> 4 and x, € 4. To prove that condition 2) is necessary fix a point
x, €A, forv=1,2,... such that d(x,,x,) = d(x,,4,). Then

0<d(xg,x,) =d(xp, 4,) < d(xy, 4,) < djy (4, 4,)—0

implies d(x,x) — 0.
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Now, we shall prove the opposite implication. Assume to the contrary that conditions
1) and 2) hold while the sequence (4,) does not converge to 4. Then there exists € > 0 such
that d,(A4 ,A4) > ¢ for infinitely many v. Consequently at least one of the inequalities
d(A,,A)>¢ or d(4,4,)>¢
holds for infinitely many v.

In the first case there exist v) <v, <... and x, €4 such that (;(ka ,A) > €, since Xis
compact replacing Xy, by a subsequence we can also assume that x,, converges to a point
x, € X. From condition 1) we get x; € 4 which contradicts c?(ka ,A)> €.

In the second case for infinitely many v there exists y, € 4 such that d( y,,4,)>¢€,

by compactness of A there exists a sequence v, <V, <... such that 67(ka A, )>¢€ and

Yy, —> X, for some x, € 4. By condition 2) there exists x, € 4, such that x, —>x,.

In this situation we have
e<d(y,, .4, ) <d(y,, %, ) <d, ,X)+d(x,x, )—>0

which is a contradiction.
O

Remark 3. The above theorem does not hold without the assumption that X is a compact
space.

Example 4. Let X be any non-compact complete space, fix x, € X, letx € X'be a sequence
that does not contain any convergent subsequence. Put 4:= {x}, 4, = {x,,x,}. Then conditions
1) and 2) hold true but the sequence 4 does not converge in Hausdoff metric.

2.2. o-minimal structures.

We shall collect here the basic definitions and properties of o-minimal structures that
are crucial for our further considerations. For a detailed exposition of o-minimal structures
we refer the reader to [2].

Definition 2. A structure S on R consists of a collection S of subsets of R”, for each
n € N, such that

1. S is a boolean algebra of subsets of R”,
2. §, contains the diagonals d(x,,x{(x;,...x,) € R":x;=x} for 1<i< j<n,
3.if4eS  ,then4 x Rand R x 4 belongto S

nt+1? nt+1?

4. if 4 € S, then n(4) € S, where n: R"" — R” is the projection on the first n

ntl1?
coordinates.
We say that a set 4 < R is definable if and only if 4 € S . A function f: 4 — R™ with
A < R is called definable if and only if its graph is definable.
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Definition 3. A structure S on R is o-minimal if and only if
1. {(x,y):x<y}eS, and {a} € S, for each aeR,
2. each set in is a finite union of intervals (a,b), —oco < a < b < +oo, and points {a}.

A structure on (R,+,-) is a structure on R containing the graphs of both addition and

multiplication.

The main technical tool used in the studies of geometry of sets definable in o-minimal
structures is the cell decomposition. The notions of a cell and that of a cell decomposition are
defined inductively.

Definition 4. The cells in R! exactly are points and open intervals.
A definable set C < R”, where n > 1, is a cell if its image n(C) < R"! by the projection

TR 3 (x),..00X, 15X, ) —(X;,...,X, ;) € R" is a cell and C is one of the following two

types:
either
C=T(f)={(x"x,) e(C)xR:x, = f(x)}
(and then C is called a graph)
or

C=(g,g)={(x",x,)en(C)xR: g (x)<x, < g,(x")}
(and then C is called a band),

where £ ©(C) — R is a continuous definable function (resp. g;,g, : ®(C) — R are functions
such that g, < g, on 7(C) and, for each i € {1,2}, g is either a continuous definable function
g: ™(C) > R or g, is identically equal to —oo, or else g, is identically equal to +o0).

Acell Cis called a C*-cell (where k € NU {oo}), if m(C) is a C*-cell and f (resp. g, i = 1,2
if finite) is a C*-function. Notice that every C*-cell is a C*-submanifold of R".

Definition 5. A cell decomposition of R! is a finite collection of open intervals and points
of the following form:

{(=00,a)),(a;,a,),...,(a;,+00), {a },....{a, } },
where g < a, <...<a, are real numbers.

A cell decomposition of R" (n > 1) is a finite partition C of R” into cells such that the set
of all projections {n(C): CeC} is a cell decomposition of R™!, where ©: R” — R"! is the
projection on the first n — 1 coordinates as in Definition 4.

Theorem 5. Let (X, d) be a compact metric space, f,: X — R be a sequence of Lipschitz
continuous functions with a common Lipschitz constant M > 0. Then the sequence ( f)
converges uniformly to a function f, if and only if their graphs converge to the graph of f,
in Hausdorff metric.

Moreover, f, = lim f, is a Lipschitz function with the Lipschitz constant M.

n—>00
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Proof. Let us notice that if f, = £, then f; is a Lipschitz function with constant M.

/6@ = £ = Tim |£,(0)= ()| < lim M -d(x, y) = M -d(x, ).
We will prove that
dy (graph fy. graph f,) <||f, = fo| < (M +1)-dy (graph f,, graph f,).

First we shall show the first of the inequalities:

dy (graph fy, graph £,) <|f, - £

dy (graph fy, graph f,)=max{d(graph fy, graph f,), d(graph f,, graph f,)}
As the inequality is symmetric with respect to f, and f, we may assume that

d( graph f,, graph f,) >d (graph f,, graph f,)} and then

dy (graph fy, graph f,)=d(graph f,, graph f,)=
=max{xe X : a~7((x,f0(x)), graph f,)} <
<max{x e X :d((x, fo(x)), (x, /,(x))} =
=max{x e X :|fo(x) = £, =]/ = 1,
Now we shall show that
17, = fol < (M +1)-dyy (graph £y, graph f,)
Fix x € X and let y € X such that
dy (graph fy, graph f,) =d((x, f,(x), (v, £, (¥) =
=d () +| /() = (0] = d((x, fy (), graph f,,)
Consequently
|/, ) = fo (| < |1, () = £, D] +] £, () = fo ()] <
<M -d(x,y)+dy(graph hfy, graph f,) <
<M -dy(graph f,, graph f,)+dy(graph f,, graph f,) =
=(M +1)-dy (graph f,, graph f,)

and taking the limits we conclude the proof.

3. Proof of the main result

Let us start with some technical results on extending Lipschitz functions
Lemma 6. Let F:(0,)xR" >R be a bounded definable map such that for any

v € (0,1) the restriction F, ‘R" 5 x—— F(y,x) € R satisfies the Lipschitz condition with
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a constant independent of y. Then for any a € R" the limit  lim F(y,x) exists and
(y,x)(0,a)

defines a definable extension of F to a function F :[0,1)xR" — R.
Proof. For any a € R” the function (0,1) > y——>F(y,a) is definable, so there exists

the limit F(0,a):= lin})F(y,a). Now, |F(y,x)—ﬁ(0,a)|S|F(y,x)—F(y,a)|+|F(y,a)—
Yy

F(0,a)| < L|x—a|+|F(y,a)- F(0,a)

, hence the limit in question exists. Since, the graph

of F is the closure of graph (F), the function F is definable.
O

Lemma 7 (Banach—McShane—Whitney extension theorem, [6]). Let f: S — R be
L-lipschitz function on the subset S in a metric space X. Then the formula

F(x)=sup{f(x")—L-d(x,x"):x" €S}

For x € X defines the extension of the function f'such that F: X — R is L-lipschitz.
Now, we are in a position to give the proof of our main result

Proof of Theorem 1. Induction with respect to n. For n = 0 it is obvious. Let 4, be the
projection of 4 onto R x R"", by the inductive hypothesis the limit 4, := lim (4;), exists
y—0
and is definable. Without loss of generality we may assume that dim(4 l)y and dim(Ay) is
constant for y € (0,¢), so all cells A are of the same type (a graph or a band).

If all fibres are graphs, there exists a definable function /: 4, — R such that 4 = graph (F),
for any y € (0, ¢), the function F is Lipschitz with a constant L independent of y. Using

lemmas 6 and 7 we can extend this function to a definable function F :[0,c)xR"” — R, set
Fy(x) = F(0,x), forx e R".
Let C = graph (150|A0), we shall show lin}) 4, =C. Lety, € (0,c) be a sequence such
Yo

that y, ——0, let x, € 4,

B
v

x e C. Let x, =(x;,%,) and xy = (x5,%,). We have (y,,x,) € (4), , 50 x) € 4. By the

x, —>Xx, be a convergent sequence, we shall prove that

definition Fy(x})=1lim, ,  F(y,,x,)=lim, , _x’ =x", hencexe C.

Now, let x € C and y, € (0,c) be a sequence such that y, ——0. Since xj € 4,
x0 = Fy(x}) thereis x!, € (4)),, suchthat x; —— xg. Put x, = F(y,,x,), weget x, € 4,
and x) = F(y,,x.)— F(0,x}) = Fy(x}) = x. Consequently we have x, —>x, which

lim4, =C.

proves lim 4,

If is a band for y € (0, c) proceeding in a similar way, we have 4 = (G,H), where
G,H : 4 —>R and define G,, H,. We shall show that
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C:{xeR":x"€ 4),Gy(x") < x, < Hy(x")}
is the Hausdorff limit of Ay as y——0, y€(0,c).
Let y, € (0,¢) be a sequence such that y,——0, let x, € 4, ,x, —>x,. Let
x, = (x,x}) and xo = (x),x0). We have (7>x)) €(4), , 50 x5 € 4. By the definition
Gy(xp) =lim, . Gy, x,), Gy(xp) =1lim,,_,, G(y,,x,) s0
Go(xy) <, < Ho(xf)
and hence x, € C.

Now, fix x, € C and y, € (0,c) such that y, ——0. We have x} € 4, and Gy(x) <
xg < ﬁo (xg)- There exists x! € (4 )yv such that x, —> x;.
~ , ~ , . 1 0 0 ~ ’ 7 ’
If Gy(x)=Hy(x") put x, = E(G(yv,xv),H(yv,xv)). If Gy(x)<Hy(x") put

XV = xg _Go(xé)
T (Hy(x0) = Gy (xp))
Then x, € 4, and x, —>Xx,.

(H(y\/’x\,/)_G(yv:xv))"'G(ywxv)-
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