TECHNICAL TRANSACTIONS

CZASOPISMO TECHNICZNE

FUNDAMENTAL SCIENCES

NAUKI PODSTAWOWE

1-NP/2016

BEATA KOCEL-CYNK*

HAUSDORFF LIMITS OF ONE PARAMETER FAMILIES OF DEFINABLE SETS IN O-MINIMAL STRUCTURES

GRANICE HAUSDORFFA JEDNOPARAMETROWYCH RODZIN ZBIORÓW DEFINIOWALNYCH W STRUKTURACH O-MINIMALNYCH

Abstract

We give an elementary proof of the following theorem on definability of Hausdorff limits of one parameter families of definable sets: let $A \subset \mathbb{R} \times \mathbb{R}^n$ be a bounded definable subset in o-minimal structure on $(\mathbb{R},+,\cdot)$ such that for any $y \in (0,c)$, c>0, the fibre $A_y \coloneqq \{x \in \mathbb{R}^n : (y,x) \in A\}$ is a Lipschitz cell with constant L independent of y. Then the Hausdorff limit $\lim_{y\to 0} \overline{A}_y$ exists and is definable.

Keywords: Hausdorff limit, definable sets, o-minimal structure

Streszczenie

W prezentowanej pracy przedstawiamy elementarny dowód następującego twierdzenia o definiowalności granicy Hausdorffa jednoparametrowej rodziny zbiorów definiowalnych: niech $A \subset \mathbb{R} \times \mathbb{R}^n$ będzie ograniczonym zbiorem definiowalnym w strukturze o-minimalnej typu $(\mathbb{R},+,\cdot)$ takim, że dla dowolnego $y \in (0,c), \ c>0$, wókno $A_y \coloneqq \{x \in \mathbb{R}^n : (y,x) \in A\}$ jest komórką Lipschitza ze staą L niezależną od y. Wtedy granica Hausdorffa $\lim_{y \to 0} \overline{A}_y$ istnieje i jest definiowalna.

 $Slowa\ kluczowe:\ granica\ Hausdorffa, zbiory\ definiowalne,\ struktury\ o\text{-}minimalne$

DOI: 10.4467/2353737XCT.16.140.5751

^{*} Beata Kocel-Cynk (bkocel@pk.edu.pl), Institute of Mathematics, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology.

1. Introduction

In [1] Bröcker proved that for any family of semialgebraic sets A_y and any convergent sequence y_y of parameters the Hausdorff limit of A_{y_y} exists and is semialgebraic. In [3] a short geometric proof of the generalization of Bröcker's result to the case of sets definable in an o-minimal structure was given.

The aim of this paper is to present an elementary proof of the following one-parameter case of this result

Theorem 1. Let $A \subset \mathbb{R} \times \mathbb{R}^n$ be a definable subset in an o-minimal structure on $(\mathbb{R},+,\cdot)$ such that for any $y \in (0,c)$, c>0, the fibre $A_y:=\{x\in \mathbb{R}^n: (y,x)\in A\}$ is a bounded Lipschitz cell with constant L independent of y. Then the Hausdorff limit $\lim_{y\to 0} \overline{A}_y$ exists and is definable.

For the convenience of the reader we present in Section 2 results on Hausdorff distance and *o*-minimal structure that we use in the proof of the main result.

2. Preliminaries

2.1. Hausdorff distance.

Let (X, d) be a complete metric space, denote by C(X) the space of all non-empty compact subsets in X.

Definition 1. For any two sets $Y_1, Y_2 \in C(X)$ we define Hausdorff distance as

$$d_H(Y_1, Y_2) = \max \{ \max_{x \in Y_1} \min_{y \in Y_2} d(x, y), \max_{y \in Y_2} \min_{x \in Y_1} d(x, y) \}$$

Remark 1. Hausdorff distance of two sets is the infimum of positive numbers $\varepsilon > 0$ such that each of them is contained in the ε -envelope of the other, i.e.

$$d_H(Y_1, Y_2) = \inf\{\varepsilon > 0; Y_2 \subseteq B(Y_1, \varepsilon) \text{ and } Y_1 \subseteq B(Y_2, \varepsilon)\}$$

where

$$B(Z,\varepsilon) = \bigcup_{z \in Z} B(z,\varepsilon)$$

for any $Z \in \mathcal{C}(X)$ and $\varepsilon > 0$.

Remark 2. Observe that the function $\tilde{d}: \mathcal{C}(X) \times \mathcal{C}(X) \to \mathbb{R}_+$ defined by the following formula

$$\tilde{d}(Y_1, Y_2) := \max{\{\tilde{d}(x, Y_2) : x \in Y_1\}}, \text{ for } Y_1, Y_2 \in \mathcal{C}(X)$$

where

$$\tilde{d}(x,Y) := \min\{d(x,y) : y \in Y\}, \text{ for } x \in X, Y \in \mathcal{C}(X)$$

cannot be used to define a metric on C(X) as in general the function \tilde{d} is not symmetric, we have only the following

$$d_H(Y_1, Y_2) = \max{\{\tilde{d}(Y_1, Y_2), \ \tilde{d}(Y_2, Y_1)\}} \text{ for } Y_1 Y_2 \in \mathcal{C}(X).$$

Example 2. Let $Y_1 = (0.15)$ and $Y_2 := [8,112] \times \{0\}$, then

$$\tilde{d}(Y_1, Y_2) = 17 = 113 = \tilde{d}(Y_2, Y_1).$$

By definition, in this example we have $d_H(Y_1, Y_2)=113$.

We end this section with the following characterization of convergence in Hausdorff metric.

Theorem 3. Let X be a compact metric space, $A, A_v \in C(X)$, v = 1, 2, 3, ... Then the sequence A_v converges to A in Hausdorff metric $(A_v \longrightarrow A)$ iff the following two conditions hold

1)
$$(x_{v_k} \in A_{v_k}, x_{v_k} \longrightarrow x_0, v_1 < v_2 < v_3 < ...) \Rightarrow x_0 \in A$$

2)
$$x_0 \in A \Rightarrow \exists x_v \in A_v \quad such that \quad x_v \longrightarrow x_0.$$

Proof. First we shall prove that conditions 1) and 2) are necessary for the convergence in Hausdorff metric.

Assume that $A_{\mathbf{v}} \longrightarrow A$, since X is a compact set we can find a sequence $x_{\mathbf{v}_k} \in A_{\mathbf{v}_k}$ (with $\mathbf{v}_1 < \mathbf{v}_2 < \mathbf{v}_3 < \ldots$) such that $x_{\mathbf{v}_k} \longrightarrow x_0$ for some poin $x_0 \in X$. We want to show that $x_0 \in A$. Since the set A is compact and $x_{\mathbf{v}_k} \in A_{\mathbf{v}_k}$ there exists $y_{\mathbf{v}_k} \in A$ such that

$$d(x_{v_k}, y_{v_k}) = \tilde{d}(x_{v_k}, A) \le d_H(A_{v_k}, A) \to 0$$

Therefore $d(x_{v_k}, y_{v_k}) \longrightarrow 0$. We shall show that $\tilde{d}(x_0, A) = 0$. Observe that

$$\tilde{d}(x_0, A) \leq d(x_0, y_{y_0})$$

As $y_{v_k} \in A$ and consequently

$$d(x_0, y_{v_k}) \le d(x_0, x_{v_k}) + d(x_{v_k}, y_{v_k}).$$

Therefore $\tilde{d}(x_0, A) = 0$ and $x_0 \in \overline{A} = A$.

Assume that $A_v \longrightarrow A$ and $x_0 \in A$. To prove that condition 2) is necessary fix a point $x_v \in A_v$ for v = 1, 2, ... such that $d(x_0, x_v) = \tilde{d}(x_0, A_v)$. Then

$$0 \le d(x_0, x_v) = \tilde{d}(x_0, A_v) \le \tilde{d}(x_0, A_v) \le d_H(A, A_v) \longrightarrow 0$$

implies $d(x_0, x_y) \to 0$.

Now, we shall prove the opposite implication. Assume to the contrary that conditions 1) and 2) hold while the sequence (A_n) does not converge to A. Then there exists $\varepsilon > 0$ such that $d_{\nu}(A_{\nu},A) > \varepsilon$ for infinitely many v. Consequently at least one of the inequalities

$$\tilde{d}(A_{\nu}, A) > \varepsilon$$
 or $\tilde{d}(A, A_{\nu}) > \varepsilon$

holds for infinitely many v.

In the first case there exist $v_1 < v_2 < \dots$ and $x_{v_k} \in A$ such that $\tilde{d}(x_{v_k}, A) > \varepsilon$, since X is compact replacing x_{v_k} by a subsequence we can also assume that x_{v_k} converges to a point $x_0 \in X$. From condition 1) we get $x_0 \in A$ which contradicts $\tilde{d}(x_{v_k}, A) > \varepsilon$.

In the second case for infinitely many v there exists $y_v \in A$ such that $\tilde{d}(y_v, A_v) > \varepsilon$, by compactness of A there exists a sequence $v_1 < v_2 < \dots$ such that $\tilde{d}(y_{v_k}, A_{v_k}) > \varepsilon$ and $y_{\nu_k} \longrightarrow x_0$ for some $x_0 \in A$. By condition 2) there exists $x_{\nu_k} \in A_{\nu_k}$ such that $x_{\nu_k} \longrightarrow x_0$. In this situation we have

$$\varepsilon < \tilde{d}(y_{v_k}, A_{v_k}) \le d(y_{v_k}, x_{v_k}) \le d(y_{v_k}, x_0) + d(x_0, x_{v_k}) \longrightarrow 0$$

which is a contradiction.

Remark 3. The above theorem does not hold without the assumption that X is a compact space.

Example 4. Let X be any non-compact complete space, fix $x_0 \in X$, let $x_y \in X$ be a sequence that does not contain any convergent subsequence. Put $A := \{x_0\}, A_y = \{x_0, x_y\}$. Then conditions 1) and 2) hold true but the sequence A_y does not converge in Hausdoff metric.

2.2. *o*-minimal structures.

We shall collect here the basic definitions and properties of o-minimal structures that are crucial for our further considerations. For a detailed exposition of o-minimal structures we refer the reader to [2].

Definition 2. A structure S on \mathbb{R} consists of a collection S_n of subsets of \mathbb{R}^n , for each $n \in \mathbb{N}$, such that

- 1. S_n is a boolean algebra of subsets of \mathbb{R}^n ,
- 2. S_n contains the diagonals $d(x_0, x\{(x_1, \dots x_n) \in \mathbb{R}^n : x_i = x_i\}$ for $1 \le i < j \le n$,
- 3. if $A \in \mathcal{S}_{n+1}$, then $A \times \mathbb{R}$ and $\mathbb{R} \times A$ belong to \mathcal{S}_{n+1} ,
 4. if $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_n$, where $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection on the first ncoordinates.

We say that a set $A \subset \mathbb{R}^n$ is *definable* if and only if $A \in \mathcal{S}_n$. A function $f: A \to \mathbb{R}^m$ with $A \subset \mathbb{R}^n$ is called *definable* if and only if its graph is definable.

Definition 3. A structure S on \mathbb{R} is *o-minimal* if and only if

- 1. $\{(x,y): x < y\} \in S_2$ and $\{a\} \in S_1$ for each $a \in \mathbb{R}$,
- 2. each set in is a finite union of intervals (a,b), $-\infty \le a < b \le +\infty$, and points $\{a\}$.

A *structure on* $(\mathbb{R},+,\cdot)$ is a structure on \mathbb{R} containing the graphs of both addition and multiplication.

The main technical tool used in the studies of geometry of sets definable in *o*-minimal structures is the cell decomposition. The notions of a cell and that of a cell decomposition are defined inductively.

Definition 4. The *cells* in \mathbb{R}^1 exactly are points and open intervals.

A definable set $C \subset \mathbb{R}^n$, where n > 1, is a *cell* if its image $\pi(C) \subset \mathbb{R}^{n-1}$ by the projection $\pi : \mathbb{R}^n \ni (x_1, ..., x_{n-1}, x_n) \longrightarrow (x_1, ..., x_{n-1}) \in \mathbb{R}^{n-1}$ is a cell and C is one of the following two types:

either

$$C = \Gamma(f) = \{(x', x_n) \in \pi(C) \times \mathbb{R} : x_n = f(x')\}$$

(and then C is called a graph)

or

$$C = (g_1, g_2) \coloneqq \{(x', x_n) \in \pi(C) \times \mathbb{R} : g_1(x') < x_n < g_2(x')\}$$
(and then *C* is called a *band*),

where $f: \pi(C) \to \mathbb{R}$ is a continuous definable function (resp. $g_1, g_2 : \pi(C) \to \overline{\mathbb{R}}$ are functions such that $g_1 < g_2$ on $\pi(C)$ and, for each $i \in \{1,2\}$, g_i is either a continuous definable function $g_i : \pi(C) \to \mathbb{R}$ or g_i is identically equal to $-\infty$, or else g_i is identically equal to $+\infty$).

A cell *C* is called a \mathcal{C}^k -cell (where $k \in \mathbb{N} \cup \{\infty\}$), if $\pi(C)$ is a \mathcal{C}^k -cell and f (resp. g_i , i = 1, 2 if finite) is a \mathcal{C}^k -function. Notice that every \mathcal{C}^k -cell is a \mathcal{C}^k -submanifold of \mathbb{R}^n .

Definition 5. A *cell decomposition* of \mathbb{R}^1 is a finite collection of open intervals and points of the following form:

$$\{(-\infty, a_1), (a_1, a_2), \dots, (a_k, +\infty), \{a_1\}, \dots, \{a_k\}\},\$$

where $a_1 < a_2 < ... < a_k$ are real numbers.

A *cell decomposition* of $\mathbb{R}^n (n > 1)$ is a finite partition \mathcal{C} of \mathbb{R}^n into cells such that the set of all projections $\{\pi(C): C \in \mathcal{C}\}$ is a cell decomposition of \mathbb{R}^{n-1} , where $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ is the projection on the first n-1 coordinates as in Definition 4.

Theorem 5. Let (X,d) be a compact metric space, $f_n: X \to \mathbb{R}$ be a sequence of Lipschitz continuous functions with a common Lipschitz constant M > 0. Then the sequence (f_n) converges uniformly to a function f_0 if and only if their graphs converge to the graph of f_0 in Hausdorff metric.

Moreover, $f_0 = \lim_{n \to \infty} f_n$ is a Lipschitz function with the Lipschitz constant M.

Proof. Let us notice that if $f_n \Rightarrow f_0$ then f_0 is a Lipschitz function with constant M.

$$\left| f_0(x) - f_0(y) \right| = \lim_{n \to \infty} \left| f_n(x) - f_n(y) \right| \le \lim_{n \to \infty} M \cdot d(x, y) = M \cdot d(x, y).$$

We will prove that

$$d_H(graph f_0, graph f_n) \le ||f_n - f_0|| \le (M+1) \cdot d_H(graph f_0, graph f_n).$$

First we shall show the first of the inequalities:

$$d_H(graph f_0, graph f_n) \leq ||f_n - f_0||.$$

 $d_H(graph\ f_0,\ graph\ f_n) = \max\{\tilde{d}(graph\ f_0,\ graph\ f_n),\ \tilde{d}(graph\ f_n,\ graph\ f_0)\}$ As the inequality is symmetric with respect to f_0 and f_n , we may assume that $\tilde{d}(graph\ f_0,\ graph\ f_n) \geq \tilde{d}(graph\ f_n,\ graph\ f_0)\}$ and then

$$\begin{aligned} &d_{H}(graph\ f_{0},\ graph\ f_{n}) = \tilde{d}(graph\ f_{0},\ graph\ f_{n}) = \\ &= \max\{x \in X : \tilde{d}((x,f_{0}(x)),\ graph\ f_{n})\} \leq \\ &\leq \max\{x \in X : d((x,f_{0}(x)),(x,f_{n}(x))\} = \\ &= \max\{x \in X : |f_{0}(x) - f_{n}(x)|\} = ||f_{0} - f_{n}|| \end{aligned}$$

Now we shall show that

$$||f_n - f_0|| \le (M+1) \cdot d_H(\operatorname{graph} f_0, \operatorname{graph} f_n)$$

Fix $x \in X$ and let $y \in X$ such that

$$d_{H}(graph \ f_{0}, \ graph \ f_{n}) \ge \tilde{d}((x, f_{0}(x)), (y, f_{n}(y))) =$$

$$= d(x, y) + |f_{0}(x) - f_{n}(y)| \ge \tilde{d}((x, f_{0}(x)), graph \ f_{n})$$

Consequently

$$\begin{split} \left| f_n(x) - f_0(x) \right| &\leq \left| f_n(x) - f_n(y) \right| + \left| f_n(y) - f_0(x) \right| \leq \\ &\leq M \cdot d(x,y) + d_H(\operatorname{graph} h f_0, \operatorname{graph} f_n) \leq \\ &\leq M \cdot d_H(\operatorname{graph} f_0, \operatorname{graph} f_n) + d_H(\operatorname{graph} f_0, \operatorname{graph} f_n) = \\ &= (M+1) \cdot d_H(\operatorname{graph} f_0, \operatorname{graph} f_n) \end{split}$$

and taking the limits we conclude the proof.

3. Proof of the main result

Let us start with some technical results on extending Lipschitz functions

Lemma 6. Let $F:(0,1)\times\mathbb{R}^n\to\mathbb{R}$ be a bounded definable map such that for any $y\in(0,1)$ the restriction $F_v:\mathbb{R}^n\ni x\longrightarrow F(y,x)\in\mathbb{R}$ satisfies the Lipschitz condition with

П

a constant independent of y. Then for any $a \in \mathbb{R}^n$ the limit $\lim_{(y,x)\to(0,a)} F(y,x)$ exists and defines a definable extension of F to a function $\tilde{F}:[0,1)\times\mathbb{R}^n\to\mathbb{R}$.

Proof. For any $a \in \mathbb{R}^n$ the function $(0,1) \ni y \longrightarrow F(y,a)$ is definable, so there exists the limit $\tilde{F}(0,a) := \lim_{y \to 0} F(y,a)$. Now, $\left| F(y,x) - \tilde{F}(0,a) \right| \le \left| F(y,x) - F(y,a) \right| + \left| F(y,a) - \tilde{F}(0,a) \right| \le L|x-a| + \left| F(y,a) - \tilde{F}(0,a) \right|$, hence the limit in question exists. Since, the graph of \tilde{F} is the closure of $\operatorname{graph}(F)$, the function \tilde{F} is definable.

Lemma 7 (Banach–McShane–Whitney extension theorem, [6]). Let $f: S \to \mathbb{R}$ be L-lipschitz function on the subset S in a metric space X. Then the formula

$$F(x) := \sup\{f(x') - L \cdot d(x, x') : x' \in S\}$$

For $x \in X$ defines the extension of the function f such that $F: X \to \mathbb{R}$ is L-lipschitz. Now, we are in a position to give the proof of our main result

Proof of Theorem 1. Induction with respect to n. For n=0 it is obvious. Let A_1 be the projection of A onto $\mathbb{R} \times \mathbb{R}^{n-1}$, by the inductive hypothesis the limit $A_0 := \lim_{y \to 0} \overline{(A_1)_y}$ exists and is definable. Without loss of generality we may assume that $\dim(A_1)_y$ and $\dim(A_y)$ is constant for $y \in (0,c)$, so all cells A_y are of the same type (a graph or a band).

If all fibres are graphs, there exists a definable function $F: A_1 \to \mathbb{R}$ such that $A = \operatorname{graph}(F)$, for any $y \in (0, c)$, the function F_y is Lipschitz with a constant L independent of y. Using lemmas 6 and 7 we can extend this function to a definable function $\tilde{F}: [0, c) \times \mathbb{R}^n \to \mathbb{R}$, set $\tilde{F}_0(x) := \tilde{F}(0, x)$, for $x \in \mathbb{R}^n$.

Let $C := graph(\tilde{F}_0 | A_0)$, we shall show $\lim_{y \to 0} A_y = C$. Let $y_v \in (0,c)$ be a sequence such that $y_v \longrightarrow 0$, let $x_v \in A_{y_v}$, $x_v \longrightarrow x_0$ be a convergent sequence, we shall prove that $x \in C$. Let $x_v = (x_v', x_n^v)$ and $x_0 = (x_0', x_n^0)$. We have $(y_v, x_v') \in (A_1)_{y_v}$, so $x_0' \in A_0$. By the definition $\tilde{F}_0(x_0') = \lim_{v \to \infty} F(y_v, x_v') = \lim_{v \to \infty} x_n^v = x_n^0$, hence $x \in C$.

Now, let $x \in C$ and $y_v \in (0,c)$ be a sequence such that $y_v \longrightarrow 0$. Since $x_0' \in A_0$, $x_n^0 = \tilde{F}_0(x_0')$ there is $x_v' \in (A_1)_{y_v}$ such that $x_v' \longrightarrow x_0'$. Put $x_n^v = F(y_n, x_{v'})$, we get $x_v \in A_{y_v}$ and $x_n^v = F(y_v, x_v') \longrightarrow \tilde{F}(0, x_0') = \tilde{F}_0(x_0') = x_n^0$. Consequently we have $x_v \longrightarrow x_0$ which proves $\lim_{y \to 0} A_y = C$.

If is a band for $y \in (0, c)$ proceeding in a similar way, we have A = (G,H), where $G,H:A_1 \longrightarrow \mathbb{R}$ and define \tilde{G}_0 , \tilde{H}_0 . We shall show that

$$C: \{x \in \mathbb{R}^n : x' \in A_0, \tilde{G}_0(x') \le x_n \le \tilde{H}_0(x')\}$$

is the Hausdorff limit of A_y as $y \longrightarrow 0$, $y \in (0,c)$.

Let $y_{v} \in (0, c)$ be a sequence such that $y_{v} \longrightarrow 0$, let $x_{v} \in A_{y_{v}}, x_{v} \longrightarrow x_{0}$. Let $x_{v} = (x'_{v}, x'_{v})$ and $x_{0} = (x'_{0}, x'_{0})$. We have $(y_{v}, x'_{v}) \in (A_{1})_{y_{v}}$, so $x'_{0} \in A_{0}$. By the definition $\tilde{G}_{0}(x'_{0}) = \lim_{v \to \infty} G(y_{v}, x'_{v})$, $\tilde{G}_{0}(x'_{0}) = \lim_{v \to \infty} G(y_{v}, x'_{v})$ so

$$\tilde{G}_0(x_0') \le x_n^0 \le \tilde{H}_0(x_0')$$

and hence $x_0 \in C$.

Now, fix $x_0 \in C$ and $y_v \in (0,c)$ such that $y_v \longrightarrow 0$. We have $x_0' \in A_0$ and $\tilde{G}_0(x_0') \le x_n^0 \le \tilde{H}_0(x_0')$. There exists $x_v' \in (A_1)_{y_v}$ such that $x_v' \longrightarrow x_0'$.

If
$$\tilde{G}_0(x') = \tilde{H}_0(x')$$
 put $x_n^v = \frac{1}{2}(G(y_v, x_v'), H(y_v, x_v'))$. If $\tilde{G}_0(x') < \tilde{H}_0(x')$ put

$$x_n^{\vee} = \frac{x_n^0 - \tilde{G}_0(x_0')}{(\tilde{H}_0(x_0') - \tilde{G}_0(x_0'))} (H(y_{\vee}, x_{\vee}') - G(y_{\vee}, x_{\vee})) + G(y_{\vee}, x_{\vee}).$$

Then $x_{\nu} \in A_{y_{\nu}}$ and $x_{\nu} \longrightarrow x_0$.

References

- [1] Bröcker L., Families of semialgebraic sets and limits, [in:] Real algebraic (Rennes, 1991), volume 1524 of Lecture Notes in Math., 145-162, Springer 1992.
- [2] van den Dries L., *Tame topology and o-minimal structures*, Mathematical Society Lectures Notes, 248, Cambridge University Press, London 1998.
- [3] Kocel-Cynk B., Pawłucki W., Valette A., A short geometric proof that Hausdorff limits are definable in any o-minimal structure, Adv. Geom., 14, no. 1, 2014, 49-58.
- [4] Lion J.-M., Speissegger P., A geometric proof of the definability of Hausdorff limits, Selecta Math. (N.S.), 10, no. 3, 2004, 377-390.
- [5] Łojasiewicz S., Ensembles semi-analytiques, IHES, 1965.
- [6] McShane E.J., Extension of range of functions, Bull. Amer. Math. Soc., 40, 1934, 837-842.